HL/HE-LHC summaries and status of YR reports

Clement Helsens, CERN-EP

Top LHC France, Grenoble, April 25th 2019

Pre-introduction

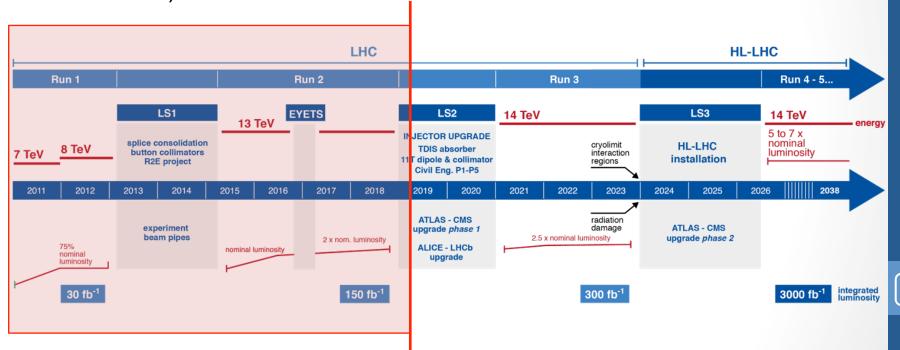
- Standard Model works beautifully at the LHC: no direct evidence of new physics
- Key questions remain unanswered
 - What gives rise to the matter-antimatter asymmetry in the universe What is dark matter made of? What is dark energy? Why is gravity so weak?
 - Small Higgs mass requires large cancellations if SM is valid to Planck scale
 - Strong motivation for new physics at the TeV scale (new particles, interactions, dimensions)
- The answers may still lie at the TeV scale...
- HL-LHC will deliver 3ab⁻¹ @14 TeV
 - Study the Higgs boson in detail -> BSM physics could manifest itself in deviations from SM predictions
 - Measure rare SM processes -> BSM could have a large effect
 - Search for new particles/phenomena at the TeV scale
- HE-LHC might double the collision energy to 27 TeV
 - Higher mass reach for new physics deeper exploration of TeV scale
 - But might not be enough, 100, 200, 300 TeV, more?

Introduction

• The physics potential of the HL/HE-LHC has been studied in detail for the European Strategy, most recently in the context of the Workshop on "The physics of HL-LHC, and perspectives on HE-LHC" (2017-2018)

- Prospects are presented in all areas:
 - 5 Working Groups: SM, Higgs, BSM, Flavour, Heavy Ion
 - ATLAS, CMS, LHCb, ALICE experimentalist and theorists worked to enrich and consolidate the HL physics program
 - precision, exploration potential and scope
 - prospects for a possible HE-LHC are also studied, but sometimes with less details

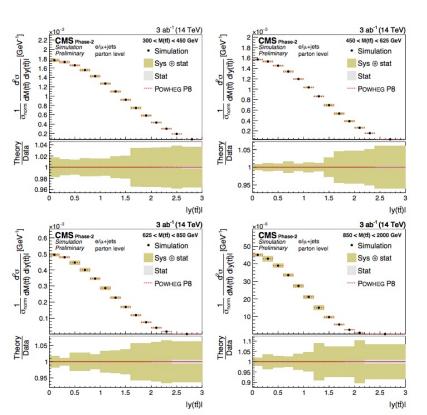
Final product

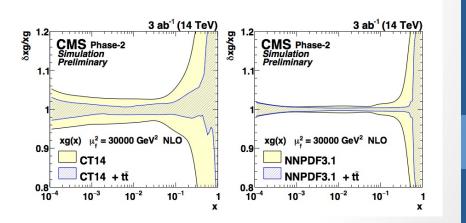

- WG Reports
 - WG1 SM and top http://arxiv.org/abs/arXiv:1902.04070 (219 pages)
 - WG2 Higgs http://arxiv.org/abs/arXiv:1902.00134 (364 pages)
 - WG3 BSM http://arxiv.org/abs/arXiv:1812.07831 (279 pages)
 - WG4 Flavour http://arxiv.org/abs/arXiv:1812.07638 (292 pages)
 - WG5 Heavy Ions
 http://arxiv.org/abs/arXiv:1812.06772 (207 pages)
 - "Volume 2" (collection of ATLAS and CMS public notes): https://arxiv.org/abs/1902.10229 (1369 pages)
- Executive summaries, submission to the European Strategy
 - HL-LHC https://indico.cern.ch/event/765096/contributions/3295995/
 - HE-LHC https://indico.cern.ch/event/765096/contributions/3296016/

- 1361 pages

The running plan

Scenarios for projections

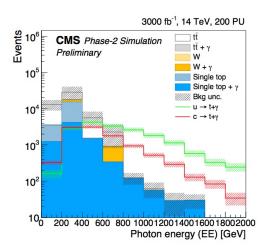

HL-LHC 14 TeV, 200 PU (5x10³⁴cm⁻²s⁻¹), 3 ab⁻¹ or even 4 ab⁻¹ in the "ultimate" scenario HE-LHC 27 TeV, 15 ab⁻¹

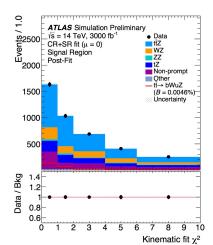

Assumptions and overall approach

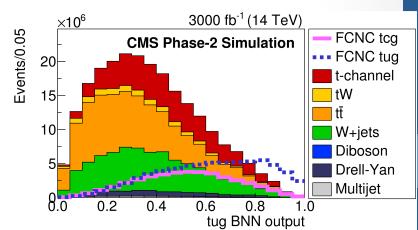
- Common assumptions (for ATLAS and CMS)
 - $3ab^{-1}$ @ 14 TeV for HL-LHC with $\langle \mu \rangle = 200$, 15 ab^{-1} @ 27 TeV for HE-LHC much larger pile-up of 500
- Different approaches have been used by experiments and in theoretical prospects
 - Detailed-simulations, used to assess the performance of reconstructed objects
 - Extrapolations of existing results using simple scale factors on individual processes
 - Fast-simulations, e.g. using DELPHES and common HE-LHC card
 - Parametric-simulations, using particle-level definitions for the main objects and taking into account the pile-up conditions: effects of an upgraded detector are taken into account by applying smearing functions and parameterizations.
 - Systematic uncertainties are based on existing data analyses and estimated using common guidelines for projecting the expected improvements foreseen thanks to large dataset and upgraded detectors
 - Intrinsic statistical uncertainty is reduced by a factor 1/VL
 - Theoretical uncertainties are halved or divided by 4; PDF reduced up to 20-50%
 - Detector-related uncertainties (JES, JER, b-tagging, e/g/μ/t ID) are ~ halved
 - Limited Monte-Carlo statistic considered as irrelevant for this exercise

PDF from double differential X-Sec

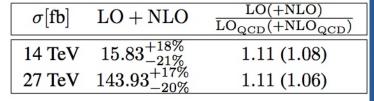
- Uncertainty on differential top x-sec O(5%)
- Significant impact on high x gluon PDF
- Complemented with forward tops:
 - 300 fb⁻¹ LHCb data probe high-x PDFs with partially reconstructed top quarks
 - quark PDFs: use differential charge asymmetry vs. lepton η

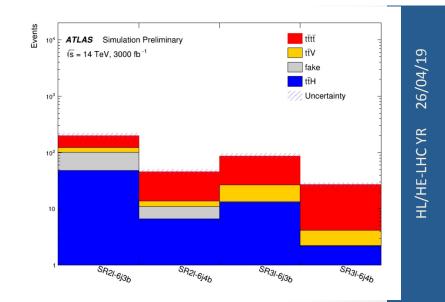


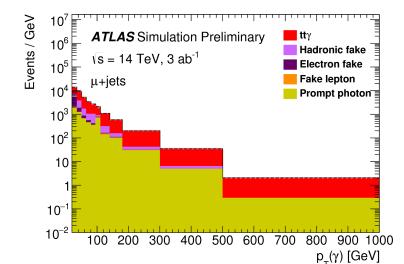

Top FCNC


- Comprehensive studies by ATLAS (tZq) and CMS (tqg, tqγ)
- Dedicated signal and background samples simulated
- Follow the Run-II strategies
- CMS uses BNN on kinematic input (tqg), photon p_T and energy (tq γ)
- ATLAS uses χ2 constructed under FCNC hypothesis (tZq)
- Improvement typically one order of magnitude (lumi increases by 100 from 30 to 3000 fb⁻¹ so kind of expected but important to check the detector performances)

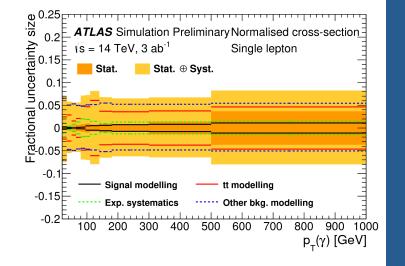
Top FCNC

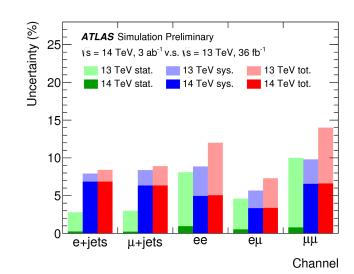

B limit at 95%C.L.	3 ab^{-1} , 14 TeV	$15ab^{-1}$, 27 TeV	Run II
t o gu	3.8×10^{-6}	5.6×10^{-7}	2x10 ⁻⁵
t o gc	32.1×10^{-6}	19.1×10^{-7}	4x10 ⁻⁴
t o Zq	$2.4 - 5.8 \times 10^{-5}$		1.7-2.4x10 ⁻⁴
$t o \gamma u$	8.6×10^{-6}		1.3x10 ⁻⁴
$t o \gamma c$	7.4×10^{-5}		2.0x10 ⁻³
t o Hq	10^{-4}		1.1x10 ⁻³



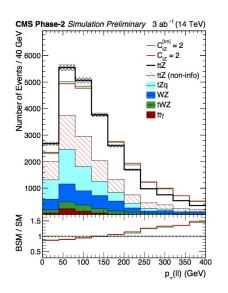


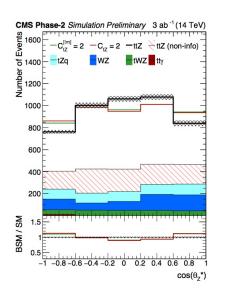
- 4 tops: complete NLO cross section known and EWK contributions not small (10%)
- 2 same charge leptons or 3 lepton channel, \geq 6 jet, \geq 3 b-tagged jets
- Uncertainty in fake/non-prompt is leading systematic
- total uncertainty in measured x-sec is 11% (9% without systematics)
- Expect evidence for tttt with 300 fb⁻¹ at 14 TeV
- Good sensitivity to top Yukawa coupling modification

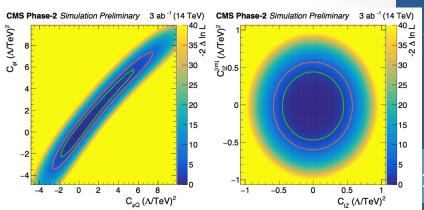



 $\text{HL} - \text{LHC} \left(\sqrt{s} = 14 \text{ TeV} \right) : \sigma(t\bar{t}t\bar{t}) = 13.14 - 2.01\kappa_t^2 + 1.52\kappa_t^4 \text{ [fb]}$ HE – LHC ($\sqrt{s} = 27 \text{ TeV}$) : $\sigma(t\bar{t}t\bar{t}) = 115.10 - 15.57\kappa_t^2 + 11.73\kappa_t^4$ [fb]

Operator	\mathcal{O}_{tB}	\mathcal{O}_{tG}	\mathcal{O}_{tW}	
Single lepton	[-0.5,0.3]	[-0.1,0.1]	[-0.3,0.5]	
Dilepton	[-0.6,0.4]	[-0.1,0.1]	[-0.4,0.3]	

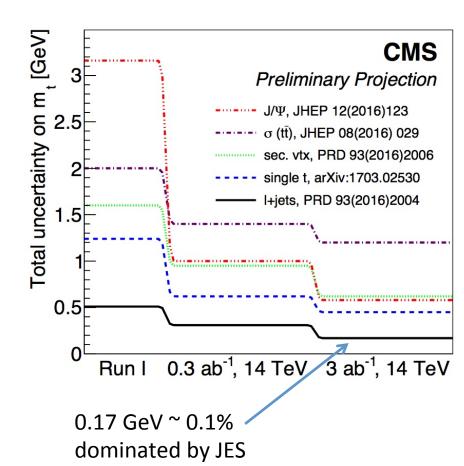

- Use $p_{\tau}(\gamma)$ as discriminant variable
- Constraint operators modifying t-γ coupling
- 1 and 2 leptons channels
- Expect an improvement in sensitivity by factor 4-6



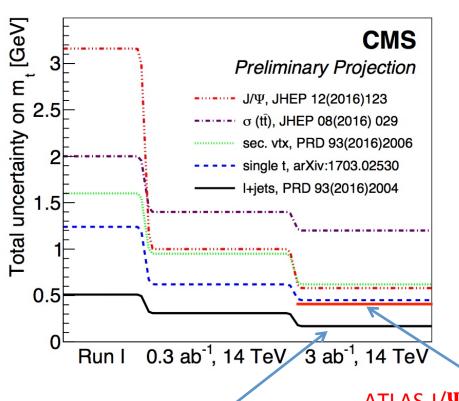


Scaled from 13TeV to 14TeV

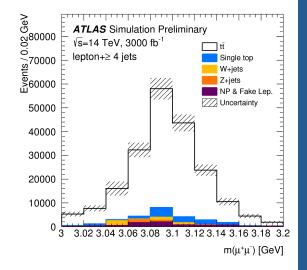
Wilson coefficient	$68 \% \text{ CL} (\Lambda/\text{TeV})^2$	95 % CL $(\Lambda/\text{TeV})^2$		
$C_{\phi t}$	[-1.65, 3.37]	[-2.89, 6.76]		
$C_{\phi Q}$	[-1.35, 2.92]	[-2.33, 6.69]		
C_{tZ}	[-0.37, 0.36]	[-0.52, 0.51]		
$\mathrm{C}^{[\mathrm{Im}]}_{tZ}$	[-0.38, 0.36]	[-0.54, 0.51]		

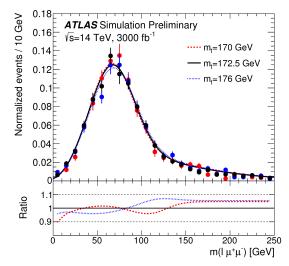


LHC YR 26/04/19


12

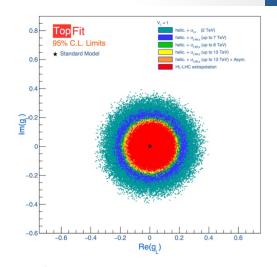
Top mass

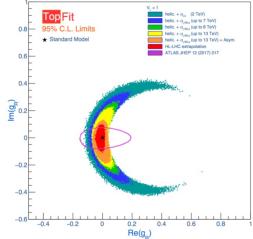

- "Simple" concept:
 - pick out jets from top
 - pair up the right jets to each top
 - calculate mass
- challenges (a selection)
 - efficient b tagging (combinatorics)
 - moderate pT triggers
 - systematic related to the 'MC mass' to a well defined parameter in a ren. scheme to 100 MeV
 - precision JES & ETmiss, lepton E scale


Top mass

0.17 GeV ~ 0.1% dominated by JES

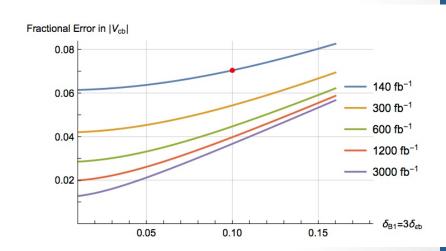
ATLAS J/ Ψ projection ± 0.14 (stat) ± 0.48 sys

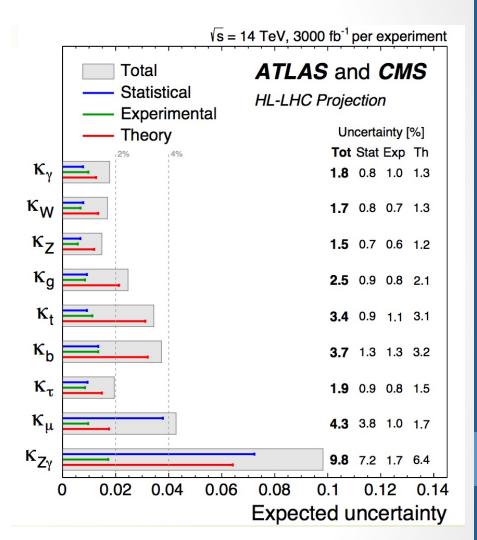



14

Top-W coupling (TH but uses ATLAS data)

HL-LHC	$g_{ m R}$	$g_{ m L}$	$V_{ m R}$	
Allowed Region (Re)	[-0.05, 0.02]	[-0.17, 0.19]	[-0.28 , 0.32]	
Allowed Region (Im)	[-0.11, 0.10]	[-0.19, 0.18]	[-0.30, 0.30]	


- W boson helicity measurements, asymmetries and single top production are able to constrain potential anomalous Wtb couplings
- comprehensive list of measurements
 - W boson helicity, AFB, Single top x-sec
- Extrapolate to 3ab⁻¹ and include scaled results
 - Reconstruction level uncertainties were kept (btagging was divided by 2)


V_{cb} in top decays (TH but uses ATLAS b-tag)

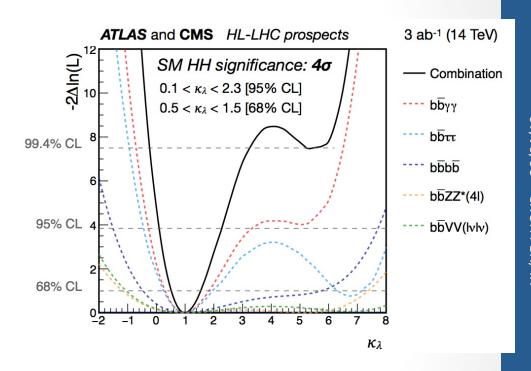
- Showed that
 - a measurement of $|V_{cb}|$ at better than the 10% level is possible with the full run II dataset
- Using improved tagging uncertainties and HL-LHC luminosities, it may be possible to reduce |V_{cb}| uncertainty towards 3% or even below 2%

Higgs couplings

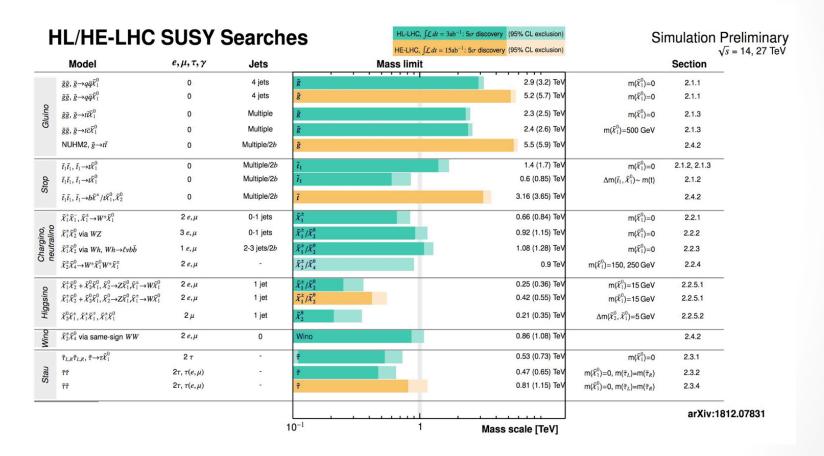
- The exploration of the Higgs sector includes precision measurements, as well as searches for rare production and decay processes:
 - Rare decays such as h -> μ⁺μ⁻ and h->Zy will be observable at HL
 - Rate measurements show that percent level precision can be reached for most couplings
 - With minimal assumptions, the total width Γ_H will be constrained with a 5% precision and an upper limit on the Higgs invisible BR of 2.5% could be reached.

Higgs couplings

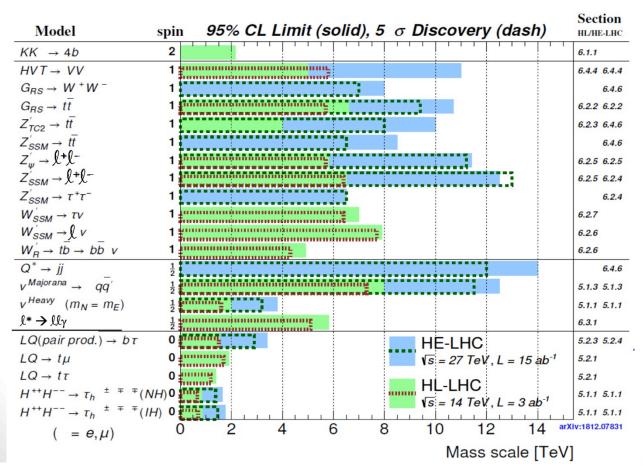
 \sqrt{s} = 14 TeV, 3000 fb⁻¹ per experiment


Total	ATLAS and CMS

Collider	HL-LHC	ILC_{250}	CLIC ₃₈₀	LEP3 ₂₄₀	CEPC ₂₅₀	FCC-ee ₂₄₀₊₃₆₅		
Lumi (ab ⁻¹)	3	2	1	3	5	5_{240}	$+1.5_{365}$	+ HL-LHC
Years	25	15	8	6	7	3	+4	
$\delta\Gamma_{\rm H}/\Gamma_{\rm H}$ (%)	SM	3.6	4.7	3.6	2.8	2.7	1.3	1.1
$\delta g_{ m HZZ}/g_{ m HZZ}$ (%)	1.5	0.3	0.60	0.32	0.25	0.2	0.17	0.16
$\delta g_{ m HWW}/g_{ m HWW}$ (%)	1.7	1.7	1.0	1.7	1.4	1.3	0.43	0.40
$\delta g_{ m Hbb}/g_{ m Hbb}$ (%)	3.7	1.7	2.1	1.8	1.3	1.3	0.61	0.56
$\delta g_{ m Hcc}/g_{ m Hcc}$ (%)	SM	2.3	4.4	2.3	2.2	1.7	1.21	1.18
$\delta g_{ m Hgg}/g_{ m Hgg}$ (%)	2.5	2.2	2.6	2.1	1.5	1.6	1.01	0.90
$\delta g_{\mathrm{HTT}}/g_{\mathrm{HTT}}$ (%)	1.9	1.9	3.1	1.9	1.5	1.4	0.74	0.67
$δg_{\rm H}μμ/g_{\rm H}μμ$ (%)	4.3	14.1	n.a.	12	8.7	10.1	9.0	3.8
$\delta g_{\rm H} \gamma \gamma / g_{\rm H} \gamma \gamma$ (%)	1.8	6.4	n.a.	6.1	3.7	4.8	3.9	1.3
$\delta g_{ m Htt}/g_{ m Htt}$ (%)	3.4	_	_	_	_	_	_	3.1
BR _{EXO} (%)	SM	< 1.7	< 2.1	< 1.6	< 1.2	< 1.2	< 1.0	< 1.0


0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 Expected uncertainty

Higgs self couplings

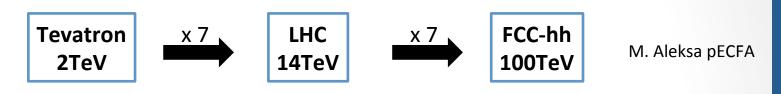

- Assuming SM Higgs selfcoupling λ:
 - observation sensitivity of 3σ per experiment,
 4σ combined
- The secondary minimum can be excluded at 99.4% CL, with a constraint on the Higgs self-coupling of $0.5 < \kappa_{\lambda} < 1.5$ at the 68% CL.

BSM (SUSY) summary

BSM (Exotic) summary

Conclusions 1/2

- The 1 year Workshop in preparation for the European Strategy has delivered five documents on SM, Higgs, BSM, Flavor physics and Heavy Ions for a total of 1361 pages plus two short summaries for the ESU
- Very partial overview given
 - Impressive potential in the higgs sector for properties and BSM prospects
 - Impressive expectations for di-higgs production using bb+X modes
 - Possibilities to discover new particles, i.e. in the EWK SUSY sector, and/ or at high mass
 - Precision SM measurements allow reduction of uncertainties and provide indirect probe to searches for NP


Conclusions 2/2

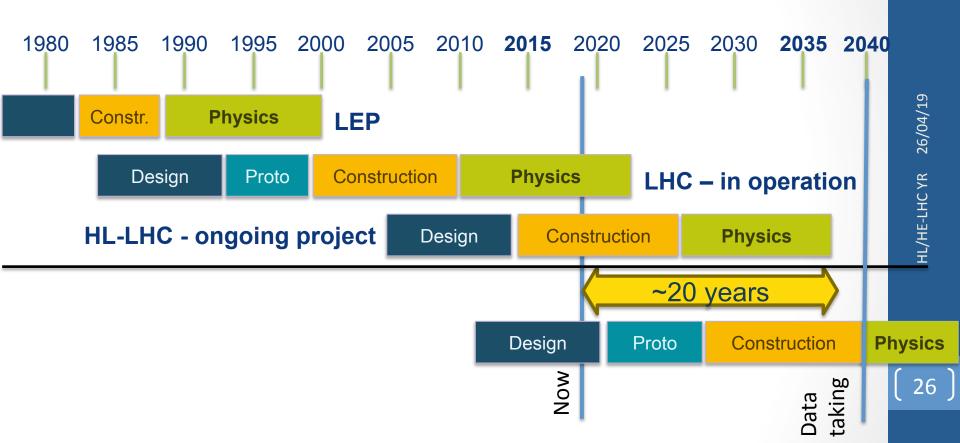
- We have been spoiled by the immense success of the LHC machine and CMS and ATLAS results in the recent past.
- The HL-LHC is a high value flagship program for the HEP scientific community: we will redefine yet again the knowledge of precision physics at a proton collider.
- Performing the careful studies and projections for TDRs and the Yellow Report we have realized:
 - we have designed amazing detectors that will be able to fully mitigate the 200PU
 - we can expand the knowledge of the SM with improved precision and the observation of new processes that become accessible
 - we can expand the search for BSM physics with tools that allow to probe new and unusual processes
- HE-LHC might bring in the extra energy and open up the possibility for direct production of new particles.
- As a last reminder, once the real data become available experiments have always done much better than any projection. Looking forward an exciting program!

The European Strategy Update

- Strategy Symposium in Granada 13-16 May
- Encouraged by CERN DG to join and speak up
- 160 contributions submitted:
 - The Physics potential of HL-LHC
 - The Physics potential of HE-LHC
 - The High-Energy LHC (HE-LHC)
- The contributions will be summarized by "neutral" people and discussed

A 100km circular collider as next the step

27km tunnel


The next step: 100km tunnel

LEP (e⁺e⁻)
1989 - 2000
2009 - 2035?

The FCC design study is establishing the feasibility of an ambitious set of colliders after LEP/LHC, at the cutting edge of knowledge and technology

Both FCC-ee and FCC-hh have outstanding physics cases We are ready to move to the next step, as soon as possible

FCC C(Should) Start Next Year

