Search for $t\bar{t}$ resonance in ATLAS

<u>William BARBE</u> Laboratoire de Physique de Clermont

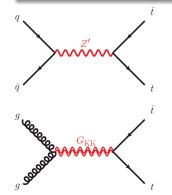
Thursday, April 25th 2019

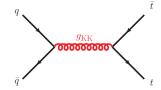
- Introduction
- Results with partial run 2 with 36.1 fb $^{-1}$ data
- Section Functional decomposition
- Strategy to validate FD
- Summary

$t \bar{t}$ l+jets analysis in a nutshell

Search for new resonance decaying into a top quark pair

- * Search for resonances in the $t\bar{t}$ mass spectrum predicted by BSM theories (Z', KK gluon, KK graviton ...)
- \star 1 lepton top-antitop final state $t\bar{t} \to WbWb \to l\nu bqq'b$
- \star Signature with high p_T lepton, large MET and hadronic jets



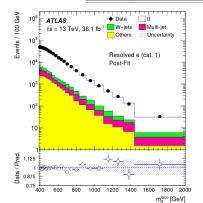


Analysis presented in the last Top LHC France

I will just give a summary of the results using partial run 2 data $(36.1~{\rm fb^{-1}})$ and then show the methods that are being investigated for bkg estimation using full run 2 data

Results with partial run 2 data (36.1 fb^{-1})

	Yields						
Type	Boosted e	Boosted μ	Resolved e	Resolved μ			
$t\bar{t}$	28 500±500	26000±400	231 100±1900	225 300±1700			
W+jets	2200±240	2200±180	9400±1100	10300±800			
Multi-jet	2000±400	780±200	8200±1400	7400±1400			
Others	2880±230	2420±180	13 000±600	12000±500			
Total	35 600±500	31300±300	262 200 ± 1200	254600±1100			
Data	35612	31188	261554	254277			

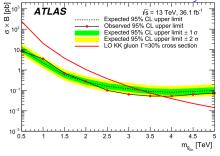


- ★ Search for excesses in the top-antitop mass spectrum
 - good agreement in all the 12 signal regions
 - exclusion limits set on benchmark models

 $\begin{array}{l} \textit{https://arxiv.org/abs/1804.10823} \\ \textit{Eur. Phys. J. C 78 (2018) 565} \end{array}$

Results with partial run 2 data (36.1 fb^{-1})

- * Limits are set on benchmark model productions cross-sections :
 - ightarrow Z', KK gluon (g_{KK}) , KK graviton https://arxiv.org/abs/1804.10823 Eur. Phys. J. C 78 (2018) 565



Summary of 95 % Confidence Level mass exclusion ranges on benchmark models						
Model	Observed excluded mass [TeV]	Expected excluded mass [TeV]				
Z'_{TC2} (1% width)	< 3.0	< 2.6				
$Z'_{\mathrm{DM,ax}}$	< 1.2	< 1.4				
$Z'_{\rm DM, vec}$	< 1.4	< 1.6				
$G_{ m KK}$	[0.45, 0.65]	[0.45, 0.65]				
g _{KK} (15% width)	< 3.8	< 3.5				
g _{KK} (30% width)	< 3.7	< 3.2				

From 36.1 to 150 fb^{-1}

- \star 36.1 fb⁻¹ analysis : backgrounds mostly from MC samples
- ★ W+ jets and multijet contributions were estimated from data :
 - W+ jets → scale factors derived from data, applied to correct the normalization given by MC simulation
 - ullet multijet o estimated using the matrix method (trickier and trickier when the trigger isolation get close to the analysis one)
- \star O(100) systematics, 12 channels with O(20) bins and large statistic
 - ⇒ profiling is very challenging
 - ⇒ more than 6 months to tune the fit
- ★ For full run 2 data : try data-driven bkg estimate → Functional Decomposition (FD)
 - avoid all the above issues
 - using (almost) only the data (MC needed only for the signal and tests)

Functional decomposition (FD)

- Method to fit falling smooth background
- ⋆ Decompose data into moments : use first few moments for bkg estimation
- * Higher moments used to estimate the resonants contributions
- * FD's paper : https://arxiv.org/pdf/1805.04536.pdf

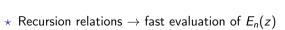
Advantages

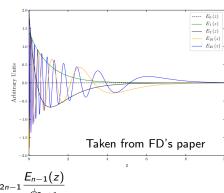
- ⋆ No fake estimate
- * no more need to spend months to tune the fit
- Using (almost) only the data (MC needed only for the signal and to validate the method)
- * Can in principle represent any shape
- * Model full spectra

Basics of FD

- * Based on a set of complete, orthonormal functions
 - orthonormalize $F_n(z) = \sqrt{2}e^{-nz}$
 - Solution :

$$\phi_n = \sqrt{1 - rac{1}{n^2}}$$
 $E_1(Z) = \sqrt{2}e^{-z}$
 $E_{n+1}(z) = (4e^{-z} - rac{2}{\phi_{2n}^2})rac{E_n(z)}{\phi_{2n+1}} + \phi_{2n-1}rac{E_{n-1}(z)}{\phi_{2n+1}}$





Coordinate transform

- ★ We need to ensure that the tail is well modeled :
 - ullet all orthonormal exponentials approach e^{-z} as $z o\infty$
 - hyperparameters adjust the shape of the tail
- * To do that, a coordinate transform is used :

$$z = \left(\frac{x - x_0}{\lambda}\right)^{\alpha}$$

- x is the variable of interest $(m_{t\bar{t}})$
- z is the corresponding dimensionless variable
- dataset $\{x_m\} \Leftrightarrow \{z_m\}$
- ⋆ Hyperparameters :
 - x_0 : lower mass cut (offset)
 - ullet λ : mass scale
 - $oldsymbol{\circ}$ α : dimensionless exponent

Choice of hyperparameters crucial for FD's efficiency

Hyperparameters optimization

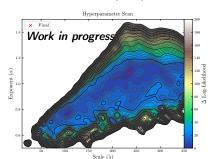
- \star Selection of λ and α can greatly affect the number of terms $\mathcal N$ needed to model the background
- * Hyperparameters are chosen in order to minimize :

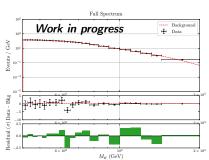
$$\mathcal{L} = \mathsf{LogP}(\mathsf{Data}, \, \mathsf{Model}) + \mathit{In}(\frac{M}{\mathcal{N}e})$$

- LogP : represents the amount of information to encode the data given the model (ie the compatibility of the data with the model)
- Penalty term : amount of information to encode the model

Fit on $m_{t\bar{t}}$

- * Dataset $\{z_m\}$ of M unbinned datapoints : $\Omega(z) = \sum_{n=0}^{N-1} f_n E_n(z)$
 - f_n : coefficients of the background distribution
 - $E_n(z)$: the orthonormal exponentials
- \star Fit on $m_{t\bar{t}}$: pseudo-data made of $t\bar{t}$ and W+jets MC samples
- * FD searches for the best (λ, α) :
 - ullet test various number of moment ${\mathcal N}$ for bkg modeling
 - the couple (λ, α) and $\mathcal N$ that give the minimal $\mathcal L$ are chosen





In all the presentation : FD is used on pseudo-datas

Including signal contributions

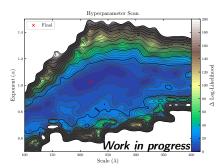
⋆ Dataset $\{z_m\}$ of M unbinned datapoints :

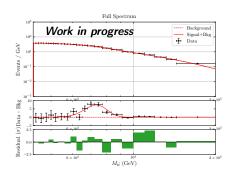
$$\Omega(z) = \sum_{n=0}^{N-1} c_n E_n(z) + \sum_{m=0}^{N_s} s_m S_m(z)$$

- c_n: coefficients of the background distribution
- $E_n(z)$: the orthonormal exponentials
- *s_m* : signal normalization
- $S_m(z)$: number of N_s resonant contributions
- \star First few $\mathcal N$ moments are enough to describe the bkg
 - $c_n = 0$ if $n \geq \mathcal{N}$
- \star Estimating c_n and s_m with the **method of the moments**
 - decompose the data into moments \tilde{f}_n
 - extract the signal contributions
 - bkg coefficients : $c_n = \tilde{f}_n s_m \tilde{S}_{(m)n}$, $n < \mathcal{N}$

Fit on $m_{t\bar{t}} + Z'$

- \star Fit on $m_{t\bar{t}}$:
 - same pseudo-data as before ($t\bar{t}$ and W+jets)
 - ullet a Z' of 750 GeV has been injected in the pseudo-data
- * Knowing where the signal is, possible to fit it (here assuming a gaussian shape for the signal)
- * FD searches for the best (λ, α)

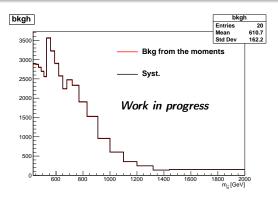




In all the presentation : FD is used on pseudo-datas

Errors on the fit

- * Errors on the fit are accessible
 - → covariance matrix computed by FD
- * These errors can be used as systematics when running BH



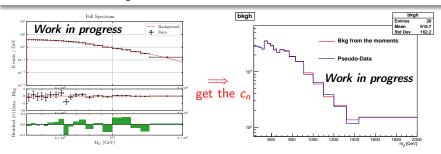
Strategy to validate FD

- ★ Check FD does not produce spurious signal :
 - ullet generate many pseudo-data under B-only hypothesis o estimate bkg shape from FD
 - search for the most significant bump, and evaluate its significance
- * Check FD does not absorb the signal in the fit
 - inject various signal (mass, width, strength)
 - compare FD's performances with MC based analysis

Strategy for the spurious signal study (1)

Get the bkg estimate from FD

- ★ Idea : FD + BumpHunter
- * First, run FD on pseudo-data
- \star Get the moments c_n used by FD to model the bkg
- * Reconstruct the background estimate from the fit
- * Convert it in histogram



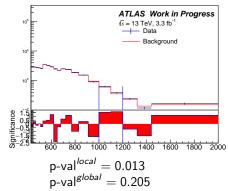
Strategy for the spurious signal study (2)

- ★ We have the bkg estimate and the pseudo-data
- * Run BumpHunter with the bkg estimate from FD (as we would do in the analysis)

BumpHunter returns the intervall with the most significant excess/deficit with a global p-value

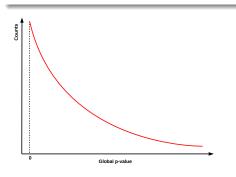
Repeat the procedure for several pseudo-data sets

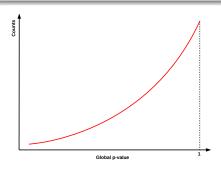
⇒ distribution of global p-values



Strategy for the spurious signal study (3)

- * The shape of the distribution tell us if the fit is creating spurious signal
- \star If the distribution is bias toward $0 \to \text{spurious signal}!!$
- * If the distribution is bias toward $1 \rightarrow FD$ is fitting the fluctuations (and potentially the signal!!)





distributon bias toward 0

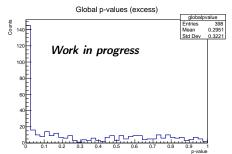
→ BumpHunter found a large discrepency
for a large fraction of pseudo-data

distribution bias toward 1

→ FD is probably using too much moments for bkg estimate

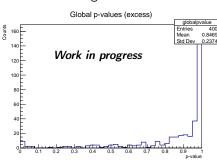
Distributions of global p-values

Using old FD



- * Peak at 0 for the old FD:
 - BH see large discrepencies
 - the old FD creates spurious signal
- * Peak at 1 for the new FD:
 - the new FD is more able to adjust the data when there is no signal
 - but when there is a signal, fit it as bkg

Using new FD



Old and New FD \rightarrow 2 ways of defining the likelihood used for the hyperparameters optimization

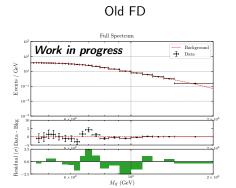
Signal injection studies

- ★ Check FD does not absorb the signal in the fit
 - inject various signal (mass, width, strength)
 - compare FD's performances with MC based analysis

Compare limit sentitivity: MC vs FD

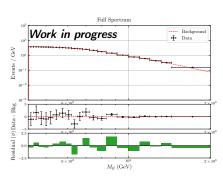
- ★ Compare exclusion upper limit MC vs FD
 - 1) pseudo-data from MC samples \rightarrow "data"
 - 2) Bkg is either:
 - tt and W+jets MC samples
 - FD's bkg estimate
 - ⇒ expected and observed limits for MC and FD
- ★ 2 scenarios for the "data" :
 - SM only
 - SM+Z' signal
- ★ Compare the 2 versions of FD (old and new)

Old vs new FD : fit examples, resolved muon, btag category 3 + Z' of 750 GeV



- * Excess around 700 GeV?
- * Wave structure in the fit :
 - the signal is perturbing the fit

New FD



- * No excess in the fit
- New FD is fitting the signal as bkg

Likelihood definition affect the capability of FD to see or not a signal

Some remarks on FD so far

- ★ Old FD is creating spurious signal
- * The new FD fit the signal as bkg :
 - more difficult to find a minimum (valley less clear in the hyperparameter scan)
 - new FD is more able to adjust the data (good to model the turn-on)
 - high risk to hide the signal
- * Now working on a better definition for the likelihood

Summary

- \star Results with 36.1 fb⁻¹ \to no new physics discovered
 - results were used to set limits on benchmark models production cross-section
- ★ Classical ways for bkg modeling are becoming more and more difficult to use with the increase of statistics
- ⋆ Need to find new ways to model the bkg

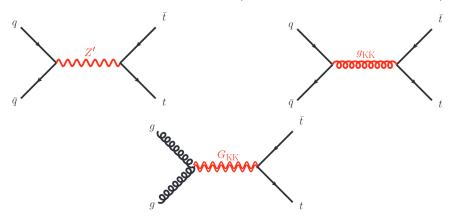
Functional Decomposition

- * FD is a tool to fit data and search for new particles
- * FD has several pros :
 - use only the data
 - can in principle represent any shape
 - no need for MC (except for signal modelization)
- * Currently testing FD in $t\bar{t}$ I+jets:
 - spurious signals
 - signal injection tests

BACK-UP

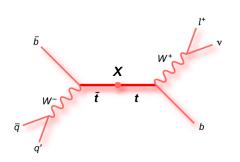
$t\bar{t}$ analysis

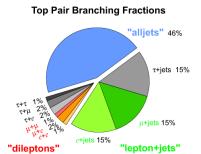
- \star Search for resonances in the $t\bar{t}$ mass spectrum
 - \rightarrow Particles predicted by BSM theories (Z', KK gluon, KK graviton, 2HDM ...)



$t\bar{t}$ analysis

- \star Focus on semi-leptonic top-antitop final state $t \bar t o WbWb o l
 u bqq'b$
 - signature with high transverse momentum lepton, large MET and hadronic jets
- \star 36.1 fb⁻¹ of data at 13 TeV (2015+2016)





Event selection

- * Exactly one electron or muon
- ★ Missing transverse energy (MET)
- * At least 1 jet identified as a jet from a b quark (b-tagged)

Resolved selection

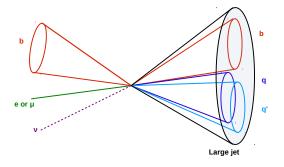
 $\star \geq$ 4 small jets



Event selection

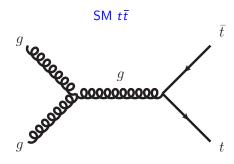
Boosted selection

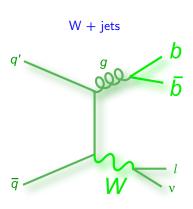
 \star One large-R jet identified as a jet from a top decay (top boosted \to decay collimated)



Analysis backgrounds

- * Background contribution to the analysis:
 - SM $t\bar{t} \rightarrow$ dominant contribution
 - W+ jets
 - Multijet
 - + other backgrounds

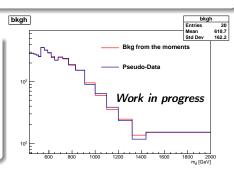




W + jets \rightarrow events with 1 isolated lepton and 1 neutrino from W boson decay

BumpHunter

- * Software to search for excess/deficit in a spectrum :
 - no signal assumption
 - removes the Look eslwhere Effect
- ★ Consider all possible windows (position and width)
- * Count data d_i and bkg b_i in all windows
- Compute the probability that the bkg has fluctuated
 - → local p-value

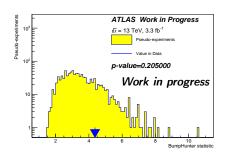


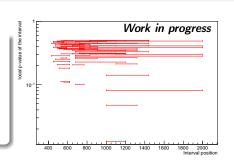
BumpHunter

- ⋆ Distribution of local p-value
- ★ Lowest local p-value is used to compute BH test statistic :

$$t = -\log(p\text{-val}^{\min})$$

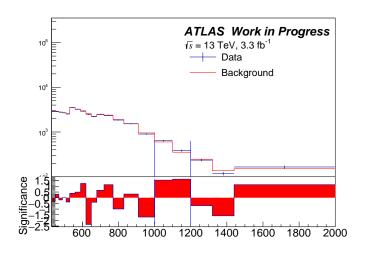
⋆ Observed test statistic compatible with bkg hypothesis?





- ★ Pseudo-experiments (PE) generated by MC simulation
 → p-val^{min} for each PE
- * Compute a global p-value : $p\text{-value}^{\mathsf{global}} = \mathsf{fraction} \ \mathsf{of} \ t_{PE} \geq t_{obs}$

BumpHunter result



Return the intervall with the most significant excess/deficit with a global p-value

Upper limits from TRex Fitter

Work in progress

Upper limit (pb) rmu3 channel only

		SM only	SM+Z' (750 GeV, σ=1.88 pb)
MC	expected	1.88 ^{2.62} 1.35	1.88 ^{2.62}
	observed	1.68	3.34
New FD	expected	1.87 ^{2.62}	1.91 ^{2.67} _{1.38}
	observed	1.80	1.86
Old FD	expected	1.87 ^{2.61} _{1.35}	1.87 ^{2.61}
	observed	1.94	3.76

The new FD can't see the signal The old FD has similar sensitivity to MC based bkg