

Top quark mass measurement in $t\bar{t}$ events using a $J/\psi \rightarrow \mu^+\mu^-$ in the final state (Run2 and HL-LHC)

Jad Zahreddine (LPNHE - Sorbonne Université)

Supervisor: Frédéric Derue

Top LHC France - Grenoble, 24-26 April 2019

ATLAS experiment at CERN

Large Hadron Collider (LHC) is a particle collider with a center-of-mass energy of $\sqrt{s} = 13$ TeV for Phase I. These collisions occur every 25 ns.

ATLAS (A Toroidal Lhc ApparatuS):

- Onion-like detector: inner detector, electromagnetic and hadronic calorimeters, muon spectrometer
- Integrated luminosity for Run2: 2015+2016 (36fb⁻¹), 2017 (86.3fb⁻¹), 2018 (148.5fb⁻¹)
- HL-LHC: $\sqrt{s} = 14$ TeV; integrated luminosity till 2035 (3000 fb⁻¹)

Top quark mass

- The top quark mass is a fundamental parameter of the standard model
 - <u>Relation with the W and H masses</u>: test the coherence of the standard model
 - Relation with the vacuum instability: possible that the Higgs potential is in a meta-stable state after the symmetry breaking, and is going to stable phase via a tunnel effect.

What are we really measuring?

Because of the radiative corrections, the mass that we measure is still a matter of debate, is it the pole mass (calculated from cross sections measurements) or a MC mass (defined in the top quark decay of the Monte Carlo generator) ?

Experimental measurements

- m_t = 173.34 ± 0.36 (stat.) ± 0.67 (syst.) GeV (World Comb. 2014)
- σ(syst.) limited by our knowledge of the Jet Energy Scale (JES)
- σ(syst.) is also limited by some modeling uncertainties
- Solution: Use alternative methods (non-jet based direct reconstruction measurement) and calculate the invariant mass M_{lepton+X}, X being inside a b-jet:
 - soft muon
 - J/ ψ mesons
 - D mesons
- → less sensitive to the JES, but sensitive to the modeling of the b quark disintegration

Top quark production and decay modes

- ► The most massive elementary particle → important coupling to the Higgs boson
- Very short lifetime ($\tau \sim 5 \ge 10^{-25} = s$) \rightarrow decays before hadronization ($\tau \sim 2 \ge 10^{-24} = s$) \rightarrow possibility of studying this quark as a bare quark
- ▶ 2 production modes: tī pairs (~ 75 %), single top (~ 25 %)
- ► t → Wb ~100%, decay channels: fully hadronic (46%), leptons+jets (44%), dileptons (10%)

Final state considered : $J/\psi, BR(b \to J/\psi \to \mu^+\mu^-) \sim 7 \cdot 10^{-4}$ $D^0, BR(b \to \mu D^0 \to \mu K\pi) \sim 5.9 \cdot 10^{-3}$ $D^*(2010)^+, BR(b \to D^*(2010)^+ \to D^0\pi) \sim 2.2 \cdot 10^{-2}$

Reconstruction of charmed mesons (Run2)

We select lepton+jets events in data and in MC (tt, single top, and other backgrounds)

```
2 soft \mu with opposite electric charges
1 cand. in 2.9 < m(\mu\mu) < 3.3 GeV
p\tau(J/\psi) > 8 GeV
\tau(J/\psi) > 0 ps
1523 J/\psi
```


A soft μ with three leading p_T tracks μ and K the same electric charge Permutations for K and π candidates $p_T(trk_1)$, $p_T(trk_2) > 3$ GeV 1 cand. in 1.7 < m($trk_{1,2}$) < 2.1 GeV $p_T(D^0) > 8$ GeV 3544 D⁰

Reconstruction of charmed mesons

- CERN yellow report for the beginning of 2019, it gathered all the analyses (ATLAS/CMS/theorists) projected with the HL-LHC data at 14 TeV (luminosity 3000 fb⁻¹)
- Only ATLAS top quark mass uncertainty projection prepared for the Yellow Report

arXiv:1902.04070v2 [hep-ph]

Preselection:

Leptons: pT>25 GeV and $|\eta| < 4$ Jets: pT>25GeV and $|\eta| < 4.5$

First selections:

2 soft μ with opposite electric charges no refit to a common vertex 6×10^6 dimuon pairs at this level

Final selections:

1 cand. in 2.9 < m($\mu\mu$) < 3.3 GeV $\Delta R(\mu, jet) < 0.5, \Delta R(\mu, \mu) < 0.8$ $p_T(J/\Psi) > 8$ GeV, $\tau(J/\Psi) > 0$ ps 2 x 10⁵ candidates

Event rate: ~70 events per fb⁻¹ at 14 TeV.

Increase in events:

18% higher (due to higher cross-section) 10% more events (due to increase in $|\eta|$ coverage)

- The mass of the system (isolated lepton+charmed meson) is sensitive to the top quark mass
- Build templates each one having a different m_{top} prediction + calibration

- Systematic uncertainties:
- modeling : MC tt samples: generator + hadronization + b-fragmentation + b-production
- detector: ~100 variations of the analysis by changing energy, resolution, efficiencies, etc...

"Standard Model Physics at the HL-LHC and = HE-LHC" arXiv:1902.04070v2 [hep-ph]

Projection to 3000 fb⁻¹ based on preliminary results from 2015+2016 studies with a J/ ψ or a soft muon in the final state (*ATL-COM-PHYS-2017-1116*)

Statistical uncertainty: 0.14 GeV

Systematic uncertainty: 0.48 GeV

modeling : dominated by b- fragmentation and production

experimental : dominated by JES

Total syst. uncertainty ~0.5 GeV :

→ dominated by systematics

→ trade some of statistical uncertainty with syst. uncertainty to get a lower syst.

Source of uncertainty	$\sigma(m_{\rm top})$ [GeV]
Statistical uncertainty	0.14
Method uncertainty	0.11
Signal modelling uncertainties	
$t\bar{t}$ NLO modelling	0.06
$t\bar{t}$ PS and hadronisation	0.05
$t\bar{t}$ b-production	0.24
$t\bar{t}$ b-fragmentation	0.11
Initial- and final-state radiation	0.04
Underlying event	0.02
Colour reconnection	0.02
Background modelling uncertainties	0.10
Experimental uncertainties	
Jet energy scale (JES)	0.31
<i>b</i> -jet energy scale (<i>b</i> -JES)	0.06
Jet energy resolution (JER)	0.13
Jet vertex fraction	0.02
Electrons	0.03
Muons	0.09
Pile-up	0.04
Total Systematic uncertainty	0.48
Total	0.50
	-

Top quark mass is an important parameter of the standard model

 $m_t = 173.34 \pm 0.36$ (stat.) ± 0.67 (syst.) GeV (World Comb. 2014)

Alternative methods: Select a soft- μ , a J/ ψ or D mesons in the final state — not sensitive to the JES, but to the b-quark disintegration

Full Run 2 analysis is in progress \rightarrow end of thesis 2020

Projection of uncertainties done for the Yellow Report:

- Done using soft- μ and J/ ψ analyses
- dominated by systematics related to b (as expected)
- σ(total) = 0.5 GeV; σ(stat.) = 0.14 GeV; σ(syst.) = 0.48 GeV
- CMS results:

 σ (total) = 0.58 GeV; σ (stat.) = 0.24 GeV; σ (syst.) = 0.53 GeV