Constraining BSM with 4 tops

[L. Darmé, B. Fuks and MDG, 1805.10835]

Mark D. Goodsell

Overview

- BSM models with four tops
- ... Dirac gaugino models
- Recasting CMS $35.9 \mathrm{fb}^{-1}$ search
- Prospects for HL-LHC

Four top signature in SM

Four-top production in SM dominated by QCD,

but also Higgs associated production:

Four top signature in BSM models

Many BSM models predict a four-top signature. Essentially from decay of two heavy particles:

- Scalar/vector
- Singlet/octet under SU(3)
but also associated production:

E.g.
- Singlet scalars produced from decay of heavier state (e.g. in 750 GeV models)
- Composite (Higgs/top) models \rightarrow all contain octet resonance, usually predicted to be lightest heavy state (like ρ meson of QCD)
- \leftrightarrow KK gluon in Randall-Sundrum
- Colour octet scalars ubiquitous in Seiberg dual theories
- ... required in Dirac gaugino models/N $=2$ SUSY

Dirac gauginos

- In SUSY, we add a gaugino for every gauge group.
- But when we break SUSY it needs to get a mass.
- In the MSSM we take Majorana mass:

$$
\mathcal{L} \supset-\frac{1}{2} M_{\lambda} \lambda \lambda
$$

- BUT: this isn't the only choice!
- One very interesting alternative is to take Dirac masses instead (or as well). This was the original option proposed by Fayet in '78!
- To allow Dirac masses for the gauginos, must add chiral adjoint field for each group:

$$
\boldsymbol{\Sigma}=\Sigma+\sqrt{2} \theta^{\alpha}(\chi)_{\alpha}+(\theta \theta) \mathrm{F}_{\Sigma}+\ldots \rightarrow \mathcal{L} \supset-\mathrm{m}_{\mathrm{D}} \chi \lambda
$$

- \rightarrow Adjoint superfields will contain fermions to partner gauginos, but scalars too.
- So add S (singlet), T (triplet), O (octet) - each are initially complex scalars, so two real scalars.

Superfield	Scalars, $\mathrm{R}=0$	Fermions, $\mathrm{R}=-1$	$\left(\mathrm{SU}(3), \mathrm{SU}(2), \mathrm{U}(1)_{\mathrm{Y}}\right)$
$\mathbf{0}$	$\mathrm{O}^{\mathrm{a}}=\frac{1}{\sqrt{2}}\left(\mathrm{O}_{1}^{\mathrm{a}}+\mathfrak{i O _ { 2 } ^ { a })}\right.$	$\chi_{\mathrm{O}}^{\mathrm{a}}$	$(\mathbf{8 , 1}, 0)$
\mathbf{T}	$\mathrm{T}^{0}=\frac{1}{\sqrt{2}}\left(\mathrm{~T}_{\mathrm{P}}^{0}+\mathfrak{i} T_{M}^{0}\right), \mathrm{T}^{ \pm}$	$\tilde{W}^{\prime 0}, \tilde{W}^{\prime \pm}$	$(\mathbf{1 , 3}, 0)$
\mathbf{S}	$\mathrm{S}=\frac{1}{\sqrt{2}}\left(\mathrm{~S}_{\mathrm{R}}+\mathfrak{i} \mathrm{S}_{\mathrm{I}}\right)$	$\tilde{\mathrm{B}}^{\prime 0}$	$(\mathbf{1 , 1}, 0)$

Motivation for Dirac gauginos

The study of Dirac gaugino masses is an ongoing large research project with many motivations:

- Dirac gauginos allow to relax LHC search bounds as production of squarks is suppressed since no chirality flip is possible. Gluino production is enhanced a little relative to MSSM, but this is greatly suppressed when $m_{\tilde{q}_{1,2}}>\mathrm{m}_{\tilde{\mathfrak{g}}}$.
- They typically suppress processes such as $B \rightarrow s \gamma$ and $\Delta F=2$.
- They allow for increased naturalness: supersoft masses do not lead to large corrections to stop mass.
- They allow new Higgs couplings, permitting increased Higgs mass \rightarrow compatibility with e.g. light stops.
- There would have been/could soon be clear signals from accompanying adjoint scalars if light (this would have been a surprise)
- If gauginos are found at the LHC, we will have to determine whether they are Majorana or Dirac in nature, and this is very difficult to do directly: maybe only possible at ILC
- (Pseudo-) Dirac dark matter candidate?

Supersafeness

E.g. from recasting done in [Chalons, MDG, Reyes-Gonzalez, Kraml, Williamson, 1812.09293]:

Typical scenarios have heavy gluinos \rightarrow this is natural because of "supersoftness"

Supersoft operator

- Mass term comes from the operator

$$
\int d^{2} \theta 2 \sqrt{2} m_{D} \theta^{\alpha} \operatorname{tr}\left(W_{\alpha}^{a} \Sigma^{a}\right) \supset-m_{D}\left(\lambda^{a} \chi^{a}\right)+\sqrt{2} m_{D} \Sigma^{a} D^{a}
$$

- It doesn't enter RGEs of other masses/lead to large corrections to squark masses
- \rightarrow it is naturally large compared to other soft terms \rightarrow gauginos can be heavy.
- Adjoint scalar masses and B-type masses are modified:

$$
\begin{aligned}
\mathcal{L} \supset & \frac{1}{2} D_{a}^{2}+\sqrt{2}\left(m_{D} O_{a}+\bar{m}_{D} \bar{O}_{a}\right) D_{a}-m_{O}^{2}|O|^{2}-\frac{1}{2}\left(B_{O} O^{2}+c . c .\right) \\
\stackrel{m_{D}}{ } \xrightarrow{\text { real }} & -\left(m_{O}^{2}+4 m_{D}^{2}+B_{O}\right) \frac{1}{4}\left(O^{a}+\bar{O}^{a}\right)^{2}-\left(m_{O}^{2}-B_{O}\right) \frac{1}{4}\left(O^{a}-\bar{O}^{a}\right)^{2} \\
& -\sqrt{2} g\left(O^{a}+\overline{\mathrm{O}}^{a}\right) \sum_{q} \tilde{q}^{*} T^{a} \tilde{q}
\end{aligned}
$$

- Typically B_{O} is large, so $\mathrm{m}_{\mathrm{O}}^{2}-\mathrm{B}_{\mathrm{O}}$ can be small \rightarrow pseudoscalar typically light!
- Also gives a coupling to squarks \rightarrow but only for the CP-even singlet/triplet/sgluon!

Sgluon tree couplings

The octet scalars - sgluons - have the usual gauge couplings and so can be produced in pairs at tree level:
(a)

(b)

Tree level decays

They have trilinear couplings with the squarks and gauginos

$$
\begin{aligned}
\mathcal{L}_{\text {Dirac }} & =-\int d^{2} \theta \frac{m_{D}}{4 \sqrt{2} f^{2}} \bar{D}^{2} D^{\alpha}\left(X^{\dagger} X\right) W_{\alpha}^{a} O^{a} \supset \sqrt{2} m_{D}\left(O^{a}+O^{a *}\right) D_{c}^{a}, \\
& \rightarrow-2 g_{s} m_{D} T_{x y}^{a} \sum_{\tilde{q}_{L}, \tilde{q}_{R}}\left(\tilde{q}_{L x i}^{*} \tilde{q}_{L y i}-\tilde{u}_{R x i}^{*} \tilde{u}_{R y i}-\tilde{d}_{R x i}^{*} \tilde{d}_{R y i}\right)\left(\cos \left(\frac{\phi_{O}}{2}\right) O_{1}^{a}+\sin \left(\frac{\phi_{O}}{2}\right) O_{2}^{a}\right) \\
\mathcal{L}_{G a u g e} & \supset i f{ }^{a b c} \bar{O}^{b} \lambda^{a} x^{c}+\text { h.c. } .
\end{aligned}
$$

These lead to rapid decays if the squarks or gluinos are ligher than half the octet mass \rightarrow but this would mean rather heavy octets anyway.

Octet loop couplings

More interestingly, the above generate couplings at one loop with the quarks and gluons, which provide the conventional decay modes:

(b)

Won't talk about single production ... but it is not very large.

Loop couplings

- The widths to quarks and gluons are parametrised by
$\mathcal{L} \supset g_{8} d_{a b c} O_{1}^{a} G_{\mu \nu}^{b} G^{\mu v c}+\tilde{g}_{8} d_{a b c} O_{2}^{a} G_{\mu \nu}^{b} \tilde{G}^{\mu v c}+c_{1 \bar{t} t} \bar{t} O_{1} t+c_{2 \bar{t} t} i \bar{t} O_{2} \gamma_{5} t$,
- The widths to gluons are given by

$$
\Gamma\left(\mathrm{O}_{1} \rightarrow \mathrm{gg}\right)=\frac{5 \alpha_{\mathrm{s}}^{3}}{192 \pi^{2}} \frac{\mathrm{~m}_{\mathrm{D} 3}^{2}}{\mathrm{M}_{\mathrm{O}_{1}}} \cos ^{2}\left(\frac{\phi_{\mathrm{O}}}{2}\right)\left|\lambda_{\mathrm{g}_{1}}\right|^{2}, \quad \Gamma\left(\mathrm{O}_{2} \rightarrow \mathrm{gg}\right)=\frac{5 \alpha_{\mathrm{s}}^{3}}{192 \pi^{2}} \frac{\mathrm{~m}_{\mathrm{D} 3}^{2}}{M_{\mathrm{O}_{2}}} \sin ^{2}\left(\frac{\phi_{\mathrm{O}}}{2}\right)\left|\lambda_{\mathrm{g}_{2}}\right|^{2} .
$$

- Pseudoscalars do not decay to gluons - they only decay to tops \rightarrow four top events (as suggested in e.g. 1501.07580), provide interesting constraints.
- Surprisingly, scalars can still be light, but we don't necessarily expect them to be.

Rough four-top limits on sgluons

For squarks \sim TeV and gluinos of 2.5 (top) $3,3.5$ (bottom) TeV , rough limits on scalar sgluons from four-top events in 2016 were:

RHS: limit of $\sigma<140 \mathrm{fb}$ for four-top events. For scalars constraint depends on squark/gluino mass, and may vanish.

For pseudoscalars, this gives $\mathrm{m}_{\mathrm{O}_{2}} \gtrsim 880 \mathrm{GeV} \rightarrow$ much more interesting. CMS-TOP-17-009 improved the limit to $\sim 30 \mathrm{fb}^{-1}$. Do these limits better with full recasting and the more recent data ...

Recast

Recast analysis of CMS-TOP-17-009 using FeynRules, NLOCT to generate and NLO UFO for MADGRAPH5_aMC@NLO, analysed with MadAnalysis 5. Generated $\mathcal{O}\left(10^{6}\right)$ events (b/c tiny σ). Validated against total number of events/bin, $\mathrm{H}_{\mathrm{T}}, \mathrm{N}_{\mathrm{jets}}, \mathrm{b}$-jets, $\mathrm{p}_{\mathrm{T}}^{\text {miss }}$. Analysis now publically available in PAD.

New limits

Obtain limits on octet production, c.f. NLO cross-section:

We find $\mathrm{m}_{\mathrm{O}}>1060 \mathrm{GeV}$ at 95% confidence.

Can we do better? the search is not optimised for octets, but for SM 4t signal:

Njets

Number of jets is less skewed:

Projections for HL and HE LHC

We also looked at projections for the HL/HE LHC:

These are terrible! They are certainly too naive (done by simple rescalings), but octet signal is swamped by growth in background.
\rightarrow need a new search strategy!

Conclusions

- Sgluons are ubiquitous in BSM models
- Relatively light pseudoscalar sgluons are natural "predictions" of Dirac gaugino models and decay (mostly) to tops
- We have placed bounds using current data, will improve these with latest searches
- ... but to make a large improvement could develop a new seach.

BACKUP

