

ttH Combination in ATLAS

Merve Nazlim Agaras

Top LHC France

25 April, 2019

Top Yukawa Coupling at LHC

In the SM is the only quark with a "natural mass"

Motivation

- Impact on theory:
 - destabilizes the weak scale (m_H² corrections)
 - $^{\triangleright}$ destabilizes our vacuum (λ corrections)
 - controls the birth (gg→h) and the death (h→YY) of the Higgs

- Can be determined:
 - Indirect Higgs gluon fusion production & Higgs diphoton decay
 - Direct measurement possible through ttH production

Gluon fusion (88% @13TeV pp)

Signature depends on: Top Pair Branching Fractions

ttH in ATLAS

Overview of the input channels & combination

H->bb Analysis Strategy

- Largest Higgs BR, but:
 - ◆ Complex final state with large jet and b-jet multiplicity → challenging object (b- tagging) and event reconstruction
 - ttbb background large and difficult to model with associated theory uncertainty

Biggest challenge: good and precise modelling of the $t\bar{t}+HF$ ($\geq Ib$, $\geq Ic$) background

- Nominal sample: 5-flavour scheme;
- Relative contribution of tt+≥ Ib subcomponents reweighted to tt+bb predictions by Sherpa+OpenLoops (4-flavour scheme);

H->bb Analysis Strategy

- Largest Higgs BR, but:
 - ◆ Complex final state with large jet and b-jet multiplicity → challenging object (b- tagging) and event reconstruction
 - ttbb background large and difficult to model with associated theory uncertainty

Categorisation

Split into jet and b-jet multiplicity/quality, merge regions with similar background content (1 & 2 ll , # of jets, b-tag score)

Reconstruction

To reconstruct Higgs and top candidates from high combinatorics of (b-)jets (RecoBDT, LHD, MEM)

ClassificationBDT

- Fit performed on classification BDT output
- inputs: reconstruction MVA, kinematics, b-tagging info

H->bb Results

 Signal extraction: Combined binned profile likelihood fit of classification BDT output in SRs(9) and CRs(10)

▶ Signal strength: $\mu = \sigma/\sigma_{SM}$

Free-floating normalisation factors for tt+HF

b tt+≥1b: 1.24±0.10

b tt+≥1c: 1.63±0.23

 systematic uncertainty on tt+≥1b simulatio (Esp.SherpavsPP8) and limited MC stat.

H->yy Analysis Strategy

- Events are selected requiring two isolated photons (pt>25GeV,35GeV), and split into two regions, hadronic and leptonic, based on the decay of the top quark.
- 2 signal regions targeting ttH production:
 - ▶ Leptonic: ≥11, bjet (semi-leptonic topquark decay) (3)
 - ▶ Hadronic: ≥3jets, ≥1bjet 0 isolated leptons (hadronic top decay) (4)
- 2 BDTs trained to discriminate the ttH signal from the main background (XGBoost)
 - \triangleright $\chi\chi$, tt+ $\chi\chi$ (data in control regions)
 - non-ttH production (from simulation)
 - ▶ Input vars: 4-vector information of photons (p_T/m_{yy}), jets, E_T^{miss} (both cat), lepton(s) (lep cat), and b-tag (had cat);
 - Cut on BDT output to veto backgrounds

H -> γγ Results

- Background estimation and signal extraction performed by simultaneous ML unbinned fit of $m_{\chi\chi}$ (105-160 GeV) in all 7 categories
 - ▶ The shape of the signal and background m_w distributions is described with analitical functions
 - Signal (DSCB): A Gaussian core (model signal peak) and power-law curves (model outer tails of signal)
 - ▶ Background (one par. func.) background from simulation (Lep) and a dedicated data a control region (Had);

Dominant uncertainties

- Statistical (~29%);
- ttH parton shower model (8%);
- photon isolation, energy resolution
 & scale (8%);
- Jet energy scale & resolution (6%);

Significance: 4.1 σ (expected 3.7 σ)

H -> γγ Update

- Update on 2019 Moriond at 139 fb⁻¹
 - The analysis utilizes the same event selection and categorization
 - The photon identification and efficiency measurements, as well as energy calibration, have been updated

ZZ -> 4I

Extremely low rate, Clean final state w/ high S/B

3 Analysis regions

▶ 115 GeV < m4l < 130 GeV</p>

Categorisation:

Extremely statistically limited:

- no events observed in signal region
- 1.1 events expected (0.6 ttH)
- Expected sensitivity: 1.2σ

		Observed			
Bin	$t\bar{t}H$ (signal)	Non- $t\bar{t}H$ Higgs	Non-Higgs	Total	Total
Had 1	0.169(31)	0.021(7)	0.008(8)	0.198(33)	0
${\rm Had}\ 2$	0.216(32)	0.20(9)	0.22(12)	0.63(16)	0
Lep	0.212(31)	0.0256(23)	0.015(13)	0.253(34)	0

Multilepton Analysis Strategy

- ∘ Targets Higgs decays to WW, ZZ and $\tau\tau$ with ≥ 2 (1light) lepton in their final state
- Analysis channels are defined wrt light leptons (I) and hadronic taus (τ_{had}) multiplicity (7 orthogonal channels)
- MVA in lepton definitions to reject fakes/non-prompt lepton
- Event classified in the different regions using MVA

(*)for m(4l) != Higgs mass window

Multilepton Background Composition

- Non-prompt lepton in mainly tt
 - semileptonic b-decay
 - γ conversions
- Fake τ from light/b-jets

DATA-DRIVEN (DD): MATRIX METHOD (MM), FAKE FACTOR (FF)

FF ~ matrix method except prompt background is taken from MC

- Misidentified charge lepton
 - trident electrons (Bremsstrahlung) and track curvature
 - using 3D likelihood method [pT, η, Tight/Loose]

DATA-DRIVEN (DD): LIKELIHOOD FIT

Irreducible backgrounds with prompt-leptons (ttZ, ttW, VV)

Multilepton Analysis Strategy

- Challange: which type of method we should use for reducible background and which type of fakes will be most dominant
 - Object definition
 - Lepton MVA-based isolation (PromptLeptonIso) to reject non-prompt I from semileptonic bdecay (track jets properties, lepton track/calorimeter isolation variables)
 - Lepton MVA to reduce charge misidentification background (QMisID)
 - Analysis strategy
 - Event MVA discriminant used in the final fit for the most sensitive channels
 - Need a data-driven method that provides a correct modelling of the shape of the fakes contribution
- With more data
 - Smaller statistical unc.
 - Flaws of assumptions / simplifications in the DD methods become a problem

	2ℓSS	3ℓ	4ℓ	1ℓ + $2\tau_{\rm had}$	2ℓ SS+ $1\tau_{had}$	2ℓ OS+ $1\tau_{had}$	3ℓ + $1\tau_{\rm had}$
BDT trained against	Fakes and $t\bar{t}V$	$t\bar{t}, t\bar{t}W, t\bar{t}Z, VV$	$tar{t}Z$ / -	$t\bar{t}$	all	$t\bar{t}$	-
Discriminant	2×1D BDT	5D BDT	Event count	BDT	BDT	BDT	Event count
Number of bins	6	5	1 / 1	2	2	10	1
Control regions	-	4	-	-	-	-	-

0-tau Channels

- Signal extraction: fit or cut on BDTs (boosted decision tree)
- Input variables: system reconstruction, pseudo-continuous b-tagging, kinematics... (Backup)
- 2ISSOτ: combination of two BDTs (ttH vs. ttbar; ttH vs. ttV)
- 3ΙΟτ: 5-dimensional multinominal BDTs mapped to 5 categories (ttH, ttW, ttZ, ttbar, VV)
- 4I (Z-enriched): ttH vs. ttZ

Multilepton Results

Observed significance over background-only hypothesis: 4.1σ (exp. 2.8σ)

- Systematic uncertainties already important for some multilepton channels
- JES
 - Largest experimental uncertainty
 - ▶ Flavour composition: can be improved by taking into account predicted flavor composition
- Non-prompt light lepton estimates uncertainties ranked as 3rd group of systematics with the largest impact on the signal strength measurement

$\Delta \mu$	
+0.20	-0.09
+0.18	-0.15
+0.15	-0.13
+0.11	-0.09
+0.10	-0.09
+0.08	-0.07
+0.08	-0.07
+0.08	-0.06
+0.08	-0.04
+0.07	-0.07
+0.05	-0.04
+0.04	-0.04
+0.01	-0.01
+0.39	-0.30
	+0.20 +0.18 +0.15 +0.11 +0.10 +0.08 +0.08 +0.08 +0.07 +0.05 +0.04 +0.01

Multilepton at 79.9 fb⁻¹

Semileptonic b-decay

Photon conversions

- Soon to be public
- Many improvements/changes
 - Light lepton fake estimates
 - SR/CR & lepton definitions

- Further improvements
 - Matrix Element Method (MEM)
 - Assign probability density value based on theory

Combination

- Combination of ttH searches in H→ γγ and H→ 4I (79.8 fb⁻¹) with H→ bb and H→ multi lepton (36.1 fb⁻¹)
- Profile likelihood method, based on simultaneous fits to the signal regions and control regions of the individual analyses
- The overlap between the selected events in the different analyses is found to be negligible

	*			-
Analysis	Integrated	$t\bar{t}H$ cross	Obs.	Exp.
	luminosity [fb ⁻¹]	section [fb]	sign.	sign.
$H \rightarrow \gamma \gamma$	79.8	710^{+210}_{-190} (stat.) $^{+120}_{-90}$ (syst.)	4.1σ	3.7σ
$H \rightarrow \text{multilepton}$	36.1	$790 \pm 150 \text{ (stat.)} ^{+150}_{-140} \text{ (syst.)}$	4.1σ	2.8σ
$H o b ar{b}$	36.1	400^{+150}_{-140} (stat.) ± 270 (syst.)	1.4σ	1.6σ
$H \to ZZ^* \to 4\ell$	79.8	<900 (68% CL)	0σ	1.2σ
Combined (13 TeV)	36.1-79.8	$670 \pm 90 \text{ (stat.)} ^{+110}_{-100} \text{ (syst.)}$	5.8σ	4.9σ
Combined (7, 8, 13 TeV)	4.5, 20.3, 36.1–79.8	_	6.3σ	5.1σ

Run 2 data alone: Observation of ttH!

Combination

- $ttH(\gamma\gamma)$ and ttH(4l) statistically limited;
- ttH(bb) and ttH(ML) limited by systematic uncertainties, mostly theoretical uncertainties
- Difference between two releases are studied
- Correlation scheme studied in detail
 - Theory uncertainties (QCD scale, BR uncertainties, PDF uncertainty) correlated
 - Experimental uncertainties largely uncorrelated (Due to changes in object reconstruction and systematic calc. in releases)
 - Other Higgs production modes fixed to SM

-	
Uncertainty source	$\Delta \sigma_{t\bar{t}H}/\sigma_{t\bar{t}H}$ [%]
Theory uncertainties (modelling)	11.9
$t\bar{t}$ + heavy flavour	9.9
$t\bar{t}H$	6.0
Non-ttH Higgs boson production	1.5
Other background processes	2.2
Experimental uncertainties	9.3
Fake leptons	5.2
Jets, $E_{\mathrm{T}}^{\mathrm{miss}}$	4.9
Electrons, photons	3.2
Luminosity	3.0
au-leptons	2.5
Flavour tagging	1.8
MC statistical uncertainties	4.4

Combination

Combination with measurements @7TeV (4.5 fb⁻¹) and @8TeV (20.3 fb⁻¹)*:

 6.3σ (exp 5.1σ)

* Eur. Phys. J. C 76 (2016) 6

Analysis	Integrated	$t\bar{t}H$ cross	Obs.	Exp.
	luminosity $[fb^{-1}]$	section [fb]	sign.	sign.
$H \to \gamma \gamma$	79.8	710^{+210}_{-190} (stat.) $^{+120}_{-90}$ (syst.)	4.1σ	3.7σ
$H \to \text{multilepton}$	36.1	$790 \pm 150 \text{ (stat.) } ^{+150}_{-140} \text{ (syst.)}$	$4.1~\sigma$	2.8σ
$H o b ar{b}$	36.1	400^{+150}_{-140} (stat.) ± 270 (syst.)	$1.4~\sigma$	$1.6~\sigma$
$H \to ZZ^* \to 4\ell$	79.8	<900 (68% CL)	0σ	$1.2~\sigma$
Combined (13 TeV)	36.1 - 79.8	$670 \pm 90 \text{ (stat.)} ^{+110}_{-100} \text{ (syst.)}$	5.8σ	4.9σ
Combined (7, 8, 13 TeV)	4.5, 20.3, 36.1 - 79.8	-	6.3σ	5.1σ

Conclusion

- Search for ttH production performed in ATLAS with 36.1 79.8 fb⁻¹ of data at 13 TeV
- Challenging analyses:
 - very low cross section and high combinatorics of final state particles
 - heavy use of MVA techniques to efficiently discriminate signal from large backgrounds
 - large systematics uncertainties on modelling of signal and irreducible backgrounds ttbb and ttV
- First ATLAS observation of ttH production at 6.3σ (expected 5.1σ) \rightarrow direct observation of Higgs to top Yukawa coupling
 - ttH(bb) already systematics-limited. Requires some breakthrough to make significant progress from here.
 - ttH multilepton currently most sensitive analysis and mostly stat-limited
 - With the additional data, ttH(yy) become the single most sensitive channel.

$$f_{\text{DCB}}(m_{\gamma\gamma}) = N \times \begin{cases} e^{-t^2/2} & \text{if } -\alpha_{low} \leq t \leq \alpha_{high} \\ \frac{e^{-\frac{1}{2}\alpha_{low}^2}}{\left[\frac{1}{R_{low}}(R_{low} - \alpha_{low} - t)\right]^{n_{low}}} & \text{if } t < -\alpha_{low} \\ \frac{e^{-\frac{1}{2}\alpha_{high}^2}}{\left[\frac{1}{R_{high}}(R_{high} - \alpha_{high} + t)\right]^{n_{high}}} & \text{if } t > \alpha_{high} \end{cases}$$

Category	σ_{68} (GeV)	σ_{90} (GeV)
"Had" Category 1	1.39	2.48
"Had" Category 2	1.58	2.84
"Had" Category 3	1.65	2.96
"Had" Category 4	1.67	3.00
"Lep" Category 1	1.56	2.80
"Lep" Category 2	1.75	3.13
"Lep" Category 3	1.85	3.30

68 (90) means the smallest window containing 68 (90)% of signal events

- Di-photon trigger requirement
 - \triangleright 2015+2016: 2 photons passing loose ID, leading E_T ≥ 35 GeV, sub-leading E_T ≥ 25 GeV
 - \triangleright 2017+2018: 2 photons passing medium ID, leading E_T ≥ 35 GeV, sub-leading E_T ≥ 25 GeV
- Both photons passing tight ID and isolated with $|\eta|<2.37$ (excluding 1.37 < $|\eta|<1.52)$
- Leading (sub-leading) photon $p_T/m_{yy} > 0.35$ (0.25)
- m_{yy} is required to be within (105, 160) GeV
- Events passing pre-selection are sorted into two ttH-enriched regions: hadronic region (≥1 b-jet, ≥3 jets, o leptons) and leptonic region (targetting leptonic/semi-lep. top decays; ≥1 b-jet, ≥1 leptons)
 - \triangleright Jets: p_T > 25 GeV, |η| < 4.4
 - ▶ b-jet: MV2c10 tagger, 77% working point
 - \triangleright Leptons: $p_T > 10$ GeV, isolated
- Afterwards events in these two regions are further categorized based on XGBoost BDT discriminant

- Training samples:
 - ➤ Signal: ttH signal simulated with Powheg+Pythia8
 - ➤ Background: data events in NTI region
 - ❖NTI: one or both photons fail tight ID or isolation requirement
 - Major continuum background in ttH categories coming from γγ+jets and ttγγ contributions
 - For bkg. model, only one-parameter functions considered due to the low statistics in data spectra
 - \triangleright Exponential function: $f(m_{\gamma\gamma}) = e^{c \cdot m_{\gamma\gamma}}$
 - Power Law function: $f(m_{\gamma\gamma}) = m_{\gamma\gamma}^c$
 - Choices are made based on the spurious signal test (using S+B pdf to fit the pure bkg. templates)
 - ➤ Hadronic templates: NTI data events without b-jet cut
 - > Leptonic templates: ttγγ MC events (Madgraph) without photon ID and isolation requirements

Uncertainty source	$\Delta \sigma_{\rm low}/\sigma$ [%]	$\Delta \sigma_{\rm high}/\sigma$ [%
Theory uncertainties	6.6	9.7
Underlying Event and Parton Shower (UEPS)	5.0	7.2
Modeling of Heavy Flavor Jets in non- $t\bar{t}H$ Processes	4.0	3.4
Higher-Order QCD Terms (QCD)	3.3	4.7
Parton Distribution Function and α_S Scale (PDF+ α_S)	0.3	0.5
Non- $t\bar{t}H$ Cross Section and Branching Ratio to $\gamma\gamma$ (BR)	0.4	0.3
Experimental uncertainties	7.8	9.1
Photon Energy Resolution (PER)	5.5	6.2
Photon Energy Scale (PES)	2.8	2.7
$ m Jet/\it E_{ m T}^{miss}$	2.3	2.7
Photon Efficiency	1.9	2.7
Background Modeling	2.1	2.0
Flavor Tagging	0.9	1.1
Leptons	0.4	0.6
Pileup	1.0	1.5
Luminosity and Trigger	1.6	2.3
Higgs Boson Mass	1.6	1.5

- Relative contributions of sys. unc. to total error on $(\sigma \times Br)_{obs}$
- This channel is still stat. unc. dominated for now

Modelling of $t\bar{t}$ is crucial to the analysis, $t\bar{t}+\mathrm{HF}$ has large theory uncertainty

- Split into $t\bar{t} + \text{light}$, $t\bar{t} + \geq 1c$, $t\bar{t} + \geq 1b$
 - ▶ Further split $t\bar{t}+\geq 1b$ by number of additional b-hadrons in jets
- Nominal $t\bar{t}$ sample uses 5FS prediction
 - Use dedicated Sherpa 4FS $t\bar{t} + b\bar{b}$ prediction to improve modelling
 - Both additional b-quarks to NLO precision in QCD
 - Takes *b*-quark mass into account
 - Reweight relative $t\bar{t}+\geq 1b$ subcomponents to 4FS values

$t\bar{t}$ modelling is dominant contribution to total systematic uncertainty

Compare nominal prediction of Powheg+Pythia8 to alternate MC predictions for each of $t\bar{t} + {\rm light},\ t\bar{t} + {\geq} 1c\ t\bar{t} + {\geq} 1b$

Systematic	Comparison	$tar{t}$ component
ME generator	Powheg+Pythia8 vs Sherpa (5FS)	all
Parton Shower	Powheg+Pythia8 vs Powheg+Herwig7	all
Additional radiation	Comparison of Powheg+Pythia8 tunings	all
4FS vs 5FS	Powheg+Pythia8 vs Sherpa+OpenLoops (4FS)	$t ar{t} + \geq 1b$

Systematic source	Description	$t\bar{t}$ categories
$t\bar{t}$ cross-section	Up or down by 6%	All, correlated
$k(t\bar{t} + \geq 1c)$	Free-floating $t\bar{t} + \ge 1c$ normalization	$t\bar{t} + \geq 1c$
$k(t\bar{t} + \geq 1b)$	Free-floating $t\bar{t} + \ge 1b$ normalization	$t\bar{t} + \ge 1b$
Sherpa5F vs. nominal	Related to the choice of NLO event generator	All, uncorrelated
PS & hadronization	Powheg+Herwig 7 vs. Powheg+Pythia 8	All, uncorrelated
ISR / FSR	Variations of μ_R , μ_F , h_{damp} and A14 Var3c parameters	All, uncorrelated
$t\bar{t} + \ge 1c$ ME vs. inclusive	MG5_aMC@NLO+Herwig++: ME prediction (3F) vs. incl. (5F)	$t\bar{t} + \geq 1c$
$t\bar{t} + \ge 1b$ Sherpa4F vs. nominal	Comparison of $t\bar{t} + b\bar{b}$ NLO (4F) vs. Powheg+Pythia 8 (5F)	$t\bar{t} + \geq 1b$
$t\bar{t} + \ge 1b$ renorm. scale	Up or down by a factor of two	$t\bar{t} + \ge 1b$
$t\bar{t} + \ge 1b$ resumm. scale	Vary $\mu_{\rm Q}$ from $H_{\rm T}/2$ to $\mu_{\rm CMMPS}$	$t\bar{t} + \ge 1b$
$t\bar{t} + \ge 1b$ global scales	Set μ_Q , μ_R , and μ_F to μ_{CMMPS}	$t\bar{t} + \ge 1b$
$t\bar{t} + \ge 1b$ shower recoil scheme	Alternative model scheme	$t\bar{t} + \ge 1b$
$t\bar{t} + \ge 1b \text{ PDF (MSTW)}$	MSTW vs. CT10	$t\bar{t} + \geq 1b$
$t\bar{t} + \ge 1b \text{ PDF (NNPDF)}$	NNPDF vs. CT10	$t\bar{t} + \ge 1b$
$t\bar{t} + \geq 1b \text{ UE}$	Alternative set of tuned parameters for the underlying event	$t\bar{t} + \ge 1b$
$t\bar{t} + \ge 1b \text{ MPI}$	Up or down by 50%	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 3b$ normalization	Up or down by 50%	$t\bar{t} + \ge 1b$

Reco BDT BDT trained to solve jet-parton assignment for $t\bar{t}H$ hypothesis. Invariant masses, angular separation of jets/leptons, score per combination https://indico.cern.ch/event/727396/

LHD Sig and bkg probabil AS_TVS.pdf nplates of reconstructed variables, combines all permutations

MEM Sig and bkg probabilities calculated at particle level.

Transfer functions map detector level quantities to parton level

contributions/3014588/attachments/

Variable	Definition	$SR_1^{\geq 4j}$	$SR_2^{\geq 4j}$	$SR_3^{\geq 4}$
General kinema	tic variables			
$m_{bb}^{ m min}$	Minimum invariant mass of a b-tagged jet pair	✓	\checkmark	-
$m_{bb}^{ m max}$	Maximum invariant mass of a b-tagged jet pair	-	-	\checkmark
$m_{bb}^{ ext{min }\Delta R}$	Invariant mass of the <i>b</i> -tagged jet pair with minimum ΔR	✓	-	\checkmark
$m_{\rm ij}^{ m max} p_{ m T}$	Invariant mass of the jet pair with maximum p_T	✓	-	-
$m_{bb}^{\max p_{\mathrm{T}}}$	Invariant mass of the <i>b</i> -tagged jet pair with maximum p_T	✓	-	✓
$\Delta\eta_{bb}^{ m avg}$	Average $\Delta \eta$ for all <i>b</i> -tagged jet pairs	✓	\checkmark	✓
$\Delta\eta_{\ell,\mathrm{j}}^{\mathrm{max}}$	Maximum $\Delta \eta$ between a jet and a lepton	_	✓	✓
$\Delta R_{bb}^{\max p_{\mathrm{T}}}$	ΔR between the <i>b</i> -tagged jet pair with maximum $p_{\rm T}$	_	✓	✓
$N_{bb}^{ m Higgs~30}$	Number of <i>b</i> -tagged jet pairs with invariant mass within 30 GeV of the Higgs-boson mass	✓	✓	-
$n_{\rm jets}^{p_{\rm T}>40}$	Number of jets with $p_{\rm T} > 40 {\rm GeV}$	_	✓	✓
Aplanarity _{b-jet}	$1.5\lambda_2$, where λ_2 is the second eigenvalue of the momentum tensor [100] built with all <i>b</i> -tagged jets	-	✓	-
$H_{ m T}^{ m all}$	Scalar sum of p_T of all jets and leptons	-	-	✓
Variables from	reconstruction BDT			
BDT output	Output of the reconstruction BDT	✓**	✓**	√
$m_{bb}^{ m Higgs}$	Higgs candidate mass	√	_	√
$\Delta R_{H,tar{t}}$	ΔR between Higgs candidate and $t\bar{t}$ candidate system	√ *	-	-
$\Delta R_{H,\ell}^{ m min}$	Minimum ΔR between Higgs candidate and lepton	✓	\checkmark	✓
$\Delta R_{H,b}^{ m min}$	Minimum ΔR between Higgs candidate and b -jet from top	✓	\checkmark	-
$\Delta R_{H,b}^{ m max}$	Maximum ΔR between Higgs candidate and b -jet from top	-	✓	-
$\Delta R_{bb}^{ m Higgs}$	ΔR between the two jets matched to the Higgs candidate	-	✓	-
Variables from	b-tagging			
$W_{b\text{-tag}}^{\mathrm{Higgs}}$	Sum of <i>b</i> -tagging discriminants of jets from best Higgs candidate from the reconstruction BDT	-	✓	-

Variable	Definition	SR _{1,2,3} ≥6j	$SR_{1,2}^{5j}$
General kinen	natic variables		
$\Delta R_{bb}^{\mathrm{avg}}$	Average ΔR for all <i>b</i> -tagged jet pairs	✓	✓
$\Delta R_{bb}^{\max p_{\mathrm{T}}}$	ΔR between the two b-tagged jets with the largest vector sum p_T	✓	_
$\Delta \eta_{ m ii}^{ m max}$	Maximum $\Delta \eta$ between any two jets	✓	\checkmark
$m_{bb}^{\min \Delta R}$	Mass of the combination of two b-tagged jets with the smallest ΔR	✓	_
$m_{\rm jj}^{{ m min}~\Delta R}$	Mass of the combination of any two jets with the smallest ΔR	_	✓
$N_{bb}^{ m Higgs~30}$	Number of <i>b</i> -tagged jet pairs with invariant mass within 30 GeV of the Higgs-boson mass	✓	✓
$H_{ m T}^{ m had}$	Scalar sum of jet $p_{\rm T}$	_	\checkmark
$\Delta R_{\ell,bb}^{\rm min}$	ΔR between the lepton and the combination of the two <i>b</i> -tagged jets with the smallest ΔR	_	\checkmark
Aplanarity	$1.5\lambda_2$, where λ_2 is the second eigenvalue of the momentum tensor [100] built with all jets	✓	✓
H_1	Second Fox-Wolfram moment computed using all jets and the lepton	✓	\checkmark
Variables from	n reconstruction BDT		
BDT output	Output of the reconstruction BDT	✓*	✓*
$m_{bb}^{ m Higgs}$	Higgs candidate mass	✓	\checkmark
$m_{H,b_{ m lep\ top}}$	Mass of Higgs candidate and b-jet from leptonic top candidate	✓	_
$\Delta R_{bb}^{ m Higgs}$	ΔR between b-jets from the Higgs candidate	✓	✓
$\Delta R_{H,t\bar{t}}$	ΔR between Higgs candidate and $t\bar{t}$ candidate system	✓*	✓*
$\Delta R_{H, \text{lep top}}$	ΔR between Higgs candidate and leptonic top candidate	✓	_
$\Delta R_{H,b_{ m had\ top}}$	ΔR between Higgs candidate and b -jet from hadronic top candidate	_	✓*
Variables from	n likelihood and matrix element method calculations		
LHD	Likelihood discriminant	✓	\checkmark
MEM_{D1}	Matrix element discriminant (in $SR_1^{\geq 6j}$ only)	✓	-
Variables from	n <i>b</i> -tagging (not in $SR_1^{\geq 6j}$)		
$w_{b\text{-tag}}^{\mathrm{Higgs}}$	Sum of b-tagging discriminants of jets from best Higgs candidate from the reconstruction BDT	✓	✓
$B_{\rm jet}^3$	3 rd largest jet <i>b</i> -tagging discriminant	✓	\checkmark
$B_{\rm jet}^4$	4 th largest jet <i>b</i> -tagging discriminant	✓	\checkmark
$B_{\rm jet}^5$	5 th largest jet <i>b</i> -tagging discriminant	✓	✓

 Regions built using 5 b-tagging working points and Niets

2

3

1

Discriminant value

Process	Event generator	ME order	Parton Shower	PDF	Tune
$t\bar{t}H$	MG5_AMC	NLO	Рутніа 8	NNPDF 3.0 NLO [70]	A14
	$(MG5_AMC)$	(NLO)	(Herwig++)	(CT10 [71])	(UE-EE-5)
tHqb	MG5_AMC	LO	Рутніа 8	CT10	A14
tHW	MG5_AMC	NLO	Herwig++	CT10	UE-EE-5
$tar{t}W$	MG5_AMC	NLO	Рутніа 8	NNPDF 3.0 NLO	A14
	(SHERPA 2.1.1)	(LO multileg)	(SHERPA)	(NNPDF 3.0 NLO)	(Sherpa default)
$t\bar{t}(Z/\gamma^* \to ll)$	MG5_AMC	NLO	Pythia 8	NNPDF 3.0 NLO	A14
	(SHERPA 2.1.1)	(LO multileg)	(SHERPA)	(NNPDF 3.0 NLO)	(Sherpa default)
tZ	MG5_AMC	LO	Рутніа 6	CTEQ6L1	Perugia2012
tWZ	MG5_AMC	NLO	Рутніа 8	NNPDF 2.3 LO	A14
$t\bar{t}t,t\bar{t}t\bar{t}$	MG5_AMC	LO	Рутніа 8	NNPDF 2.3 LO	A14
$t\bar{t}W^+W^-$	MG5_AMC	LO	Рутніа 8	NNPDF 2.3 LO	A14
$tar{t}$	Powнеg-BOX v2 [72]	NLO	Рутніа 8	NNPDF 3.0 NLO	A14
$tar{t}\gamma$	MG5_AMC	LO	Рутніа 8	NNPDF 2.3 LO	A14
s-, t-channel,	Powheg-BOX v1 [73–75]	NLO	Рутніа 6	CT10	Perugia2012
Wt single top					
$VV(\rightarrow llXX),$	Sherpa 2.1.1	MEPS NLO	SHERPA	CT10	Sherpa default
qqVV, VVV					
$Z \rightarrow l^+ l^-$	Sherpa 2.2.1	MEPS NLO	Sherpa	NNPDF 3.0 NLO	Sherpa default

	Ī							
	e μ		u					
	L	L^\dagger	L*	T	T^*	L	L^{\intercal}	L*/T/T*
Isolation	No		Y	es		No		Yes
Non-prompt lepton BDT	No			Yes		N	o	Yes
Identification	Loose		;	T	ight	Loose		
Charge misassignment veto BDT		No Y		Yes	No			
Transverse impact parameter significance, $ d_0 /\sigma_{d_0}$								
Longitudinal impact parameter, $ z_0 \sin \theta $				<	< 0.5 n	nm		

	2ℓSS	3ℓ	4ℓ	1ℓ + $2\tau_{\rm had}$	2ℓ SS+ $1\tau_{had}$	2ℓ OS+ $1\tau_{had}$	$3\ell+1\tau_{\rm had}$
Light lepton	2T*	1L*, 2T*	2L, 2T	1T	2T*	$2L^{\dagger}$	1L [†] , 2T
$ au_{ m had}$	0M	0M	_	1T, 1M	1 M	1 M	1 M
$N_{\rm jets}, N_{b-{\rm jets}}$	$\geq 4, = 1, 2$	$\geq 2, \geq 1$	$\geq 2, \geq 1$	$\geq 3, \geq 1$	\geq 4, \geq 1	$\geq 3, \geq 1$	$\geq 2, \geq 1$

Channel	Selection criteria
Common	$N_{\rm iets} \ge 2$ and $N_{b-{\rm iets}} \ge 1$
2ℓSS	Two very tight light leptons with $p_{\rm T} > 20 {\rm GeV}$
	Same-charge light leptons
	Zero medium $\tau_{\rm had}$ candidates
	$N_{\rm jets} \ge 4$ and $N_{b-\rm jets} < 3$
3ℓ	Three light leptons with $p_T > 10$ GeV; sum of light-lepton charges ± 1
	Two same-charge leptons must be very tight and have $p_T > 15 \text{ GeV}$
	The opposite-charge lepton must be loose, isolated and pass the non-prompt BDT
	Zero medium $\tau_{\rm had}$ candidates
	$m(\ell^+\ell^-) > 12$ GeV and $ m(\ell^+\ell^-) - 91.2$ GeV $ > 10$ GeV for all SFOC pairs
	$ m(3\ell) - 91.2 \text{ GeV} > 10 \text{ GeV}$
4ℓ	Four light leptons; sum of light-lepton charges 0
	Third and fourth leading leptons must be tight
	$m(\ell^+\ell^-) > 12 \text{ GeV}$ and $ m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV}$ for all SFOC pairs
	$ m(4\ell) - 125 \text{ GeV} > 5 \text{ GeV}$
	Split 2 categories: Z-depleted (0 SFOC pairs) and Z-enriched (2 or 4 SFOC pairs)
1ℓ + $2 au_{ m had}$	One tight light lepton with $p_T > 27 \text{ GeV}$
	Two medium τ_{had} candidates of opposite charge, at least one being tight
	$N_{\rm jets} \ge 3$
2ℓ SS+ $1\tau_{had}$	Two very tight light leptons with $p_T > 15 \text{ GeV}$
	Same-charge light leptons
	One medium τ_{had} candidate, with charge opposite to that of the light leptons
	$N_{\rm jets} \ge 4$
	m(ee) - 91.2 GeV > 10 GeV for ee events
2ℓ OS+ $1\tau_{\text{had}}$	Two loose and isolated light leptons with $p_T > 25$, 15 GeV
	One medium $\tau_{\rm had}$ candidate
	Opposite-charge light leptons
	One medium $ au_{ m had}$ candidate
	$m(\ell^+\ell^-) > 12 \text{ GeV}$ and $ m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV}$ for the SFOC pair
	$N_{\rm jets} \ge 3$
3ℓ + $1\tau_{\rm had}$	3ℓ selection, except:
	One medium τ_{had} candidate, with charge opposite to the total charge of the light leptons
	The two same-charge light leptons must be tight and have $p_T > 10 \text{ GeV}$
	The opposite-charge light lepton must be loose and isolated

Variab	le	2ℓSS	3ℓ	4ℓ
Leadin	g lepton p_{T}		×	
Second	l leading lepton $p_{\rm T}$	×	×	
Third l	epton $p_{\rm T}$		×	
g Dilepto	on invariant mass (all combinations)		$\times *$	
Three-	lepton invariant mass		×	
E Four-le	epton invariant mass			×
Three- Four-le Best Z Other Scalar	-candidate dilepton invariant mass			×
5 Other	Z-candidate dilepton invariant mass			×
Scalar	sum of all leptons p_T			×
$ \eta $ of t	he more forward leptons	×		
Lepton	flavour	$\times *$	$\times *$	
Lepton	charge		×	
Numbe	er of jets	××	X*	
Numbe	er of b-tagged jets	$\times *$	$\times *$	
	l leading jet $p_{\rm T}$		×	
Leadin	g b -tagged jet $p_{\rm T}$		×	
Scalar Scalar	sum of all jets $p_{\rm T}$		×	
Scalar Leadin Second Di-tau	$g \tau_{had} p_T$			
Second	l leading $\tau_{\rm had} p_{\rm T}$			
诺 Di-tau	invariant mass			
_	ton 0–lepton 1	×	×	
ΔR lep	ton 0–lepton 2		×	
ΔR lep	ton 0-closest jet (any)	×	×	
ΔR lep	ton 0–leading jet (any)		×	
$\delta = \Delta R \text{ lep}$	ton 0–closest <i>b</i> -jet		×	
Ξ ΔR lep	ton 1–closest jet (any)	×	×	
$\Delta R \text{ lep}$	ton 1–closest <i>b</i> -jet		×	
\succeq ΔR lep	ton 2–closest jet (any)		×	
$\Xi_0 \qquad \Delta R \text{ lep}$	ton 2–closest <i>b</i> -jet		×	
ΔR lep	ton-closest light jet		×	
,	um ΔR between all jets			
g Missin	g transverse energy $E_{\rm T}^{\rm miss}$	×		×
A1	thal separation leading jet- $\overrightarrow{p_T}^{\text{miss}}$		×	
Transv	erse mass leptons (H/Z decay) - $\overrightarrow{p_T}^{\text{miss}}$			×
	o-Matrix-Element			×

Channel	Region	Selection criteria
2ℓSS		$2 \le N_{\rm jets} \le 3$ and $N_{b\text{-jets}} \ge 1$
(3ℓ)		One very tight, one loose light lepton with $p_T > 20$ (15) GeV
		Zero $\tau_{\rm had}$ candidates
	$\epsilon_{ m real}$	Opposite charge; opposite flavor
	ϵ_{fake}	Same charge; opposite flavor or $\mu\mu$
4ℓ		$1 \le N_{\rm jets} \le 2$
		Three loose light leptons; sum of light lepton charges ±1
		Subleading same-charge lepton must be tight
		Veto on 3ℓ selection
	Either	One SFOC pair with $ m(\ell^+\ell^-) - 91.2 \text{ GeV} < 10 \text{ GeV}$
		$E_{\rm T}^{\rm miss} < 50 {\rm GeV}, m_{\rm T} < 50 {\rm GeV}$
	or	No SFOC pair
		Subleading jet $p_T > 30 \text{ GeV}$
2ℓ SS+ $1\tau_{\rm had}$		$2 \le N_{\rm jets} \le 3$ and $N_{b-\rm jets} \ge 1$
		One very tight, one loose light lepton with $p_T > 15 \text{ GeV}$
		A SFSC pair
		m(ee) - 91.2 GeV > 10 GeV
		Zero or one medium $\tau_{\rm had}$ candidate, opposite in charge to the light leptons
1ℓ + $2\tau_{\rm had}$		$N_{\rm jets} \ge 3$ and $N_{b-\rm jets} \ge 1$
		One tight light lepton, with $p_T > 27 \text{ GeV}$
		Two $\tau_{\rm had}$ candidates of same charge
		At least one τ_{had} candidate has to satisfy tight identification criteria
2ℓ OS+ $1\tau_{\rm had}$		Two loose and isolated light leptons, with $p_T > 25$, 15 GeV
		One loose $\tau_{\rm had}$ candidate
		$ m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV} \text{ and } m(\ell^+\ell^-) > 12 \text{ GeV}$
		$N_{\rm jets} \ge 3$ and $N_{b\text{-jets}} = 0$

Data-driven non-prompt/fake leptons and charge misassignment		
Control region statistics	SN	38
Light-lepton efficiencies	SN	22
Non-prompt light-lepton estimates: non-closure	N	5
γ -conversion fraction	N	5
Fake $\tau_{\rm had}$ estimates	N/SN	12
Electron charge misassignment	SN	1
Total (Data-driven reducible background)	_	83

$t\bar{t}H$ modeling		
Cross section	N	2
Renormalization and factorization scales	S	3
Parton shower and hadronization model	SN	1
Higgs boson branching fraction	N	4
Shower tune	SN	1
$t\bar{t}W$ modeling		
Cross section	N	2
Renormalization and factorization scales	S	3
Matrix-element MC event generator	SN	1
Shower tune	SN	1
$t\bar{t}Z$ modeling		
Cross section	N	2
Renormalization and factorization scales	S	3
Matrix-element MC event generator	SN	1
Shower tune	SN	1
Other background modeling		
Cross section	N	15
Shower tune	SN	1
Total (Signal and background modeling)	_	41

37

Best-	Significance		
Observed	Expected	Observed	Expected
$1.7^{+1.6}_{-1.5}$ (stat.) $^{+1.4}_{-1.1}$ (syst.)	$1.0^{+1.5}_{-1.4}$ (stat.) $^{+1.2}_{-1.1}$ (syst.)	0.9σ	0.5σ
$-0.6^{+1.1}_{-0.8}$ (stat.) $^{+1.1}_{-1.3}$ (syst.)	$1.0^{+1.1}_{-0.9}$ (stat.) $^{+1.2}_{-1.1}$ (syst.)	_	0.6σ
$-0.5^{+1.3}_{-0.8}$ (stat.) $^{+0.2}_{-0.3}$ (syst.)	$1.0^{+1.7}_{-1.2}$ (stat.) $^{+0.4}_{-0.2}$ (syst.)	_	0.8σ
$1.6^{+1.7}_{-1.3}$ (stat.) $^{+0.6}_{-0.2}$ (syst.)	$1.0^{+1.5}_{-1.1}$ (stat.) $^{+0.4}_{-0.2}$ (syst.)	1.3σ	0.9σ
$3.5^{+1.5}_{-1.2}$ (stat.) $^{+0.9}_{-0.5}$ (syst.)	$1.0^{+1.1}_{-0.8}$ (stat.) $^{+0.5}_{-0.3}$ (syst.)	3.4σ	1.1σ
$1.8^{+0.6}_{-0.6}$ (stat.) $^{+0.6}_{-0.5}$ (syst.)	$1.0^{+0.6}_{-0.5}$ (stat.) $^{+0.5}_{-0.4}$ (syst.)	2.4σ	1.5σ
$1.5^{+0.4}_{-0.4}$ (stat.) $^{+0.5}_{-0.4}$ (syst.)	$1.0^{+0.4}_{-0.4}$ (stat.) $^{+0.4}_{-0.4}$ (syst.)	2.7σ	1.9σ
$1.6^{+0.3}_{-0.3}$ (stat.) $^{+0.4}_{-0.3}$ (syst.)	$1.0^{+0.3}_{-0.3}$ (stat.) $^{+0.3}_{-0.3}$ (syst.)	4.1σ	2.8σ
	Observed $1.7^{+1.6}_{-1.5} \text{ (stat.)} \stackrel{+1.4}{_{-1.1}} \text{ (syst.)}$ $-0.6^{+1.1}_{-0.8} \text{ (stat.)} \stackrel{+1.1}{_{-1.3}} \text{ (syst.)}$ $-0.5^{+1.3}_{-0.8} \text{ (stat.)} \stackrel{+0.2}{_{-0.3}} \text{ (syst.)}$ $1.6^{+1.7}_{-1.3} \text{ (stat.)} \stackrel{+0.6}{_{-0.2}} \text{ (syst.)}$ $3.5^{+1.5}_{-1.2} \text{ (stat.)} \stackrel{+0.9}{_{-0.5}} \text{ (syst.)}$ $1.8^{+0.6}_{-0.6} \text{ (stat.)} \stackrel{+0.6}{_{-0.5}} \text{ (syst.)}$ $1.5^{+0.4}_{-0.4} \text{ (stat.)} \stackrel{+0.5}{_{-0.4}} \text{ (syst.)}$	$1.7^{+1.6}_{-1.5} \text{ (stat.)} ^{+1.4}_{-1.1} \text{ (syst.)} \qquad 1.0^{+1.5}_{-1.4} \text{ (stat.)} ^{+1.2}_{-1.1} \text{ (syst.)}$ $-0.6^{+1.1}_{-0.8} \text{ (stat.)} ^{+1.1}_{-1.3} \text{ (syst.)} \qquad 1.0^{+1.1}_{-0.9} \text{ (stat.)} ^{+1.2}_{-1.1} \text{ (syst.)}$ $-0.5^{+1.3}_{-0.8} \text{ (stat.)} ^{+0.2}_{-0.3} \text{ (syst.)} \qquad 1.0^{+1.7}_{-1.2} \text{ (stat.)} ^{+0.4}_{-0.2} \text{ (syst.)}$ $1.6^{+1.7}_{-1.3} \text{ (stat.)} ^{+0.6}_{-0.2} \text{ (syst.)} \qquad 1.0^{+1.5}_{-1.1} \text{ (stat.)} ^{+0.4}_{-0.2} \text{ (syst.)}$ $3.5^{+1.5}_{-1.2} \text{ (stat.)} ^{+0.9}_{-0.5} \text{ (syst.)} \qquad 1.0^{+1.1}_{-0.8} \text{ (stat.)} ^{+0.5}_{-0.3} \text{ (syst.)}$ $1.8^{+0.6}_{-0.6} \text{ (stat.)} ^{+0.6}_{-0.5} \text{ (syst.)} \qquad 1.0^{+0.6}_{-0.5} \text{ (stat.)} ^{+0.5}_{-0.4} \text{ (syst.)}$ $1.5^{+0.4}_{-0.4} \text{ (stat.)} ^{+0.5}_{-0.4} \text{ (syst.)} \qquad 1.0^{+0.4}_{-0.4} \text{ (stat.)} ^{+0.4}_{-0.4} \text{ (syst.)}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

M.Nazlim Agaras

2ℓ**SS/3**ℓ**+0τ:** Matrix Method

$$I_{TT}^{f} = w_{TT}N^{TT} + w_{TT}N^{TT} + w_{TT}N^{TT} + w_{TT}N^{TT}$$

$$f(\epsilon_{r}, \epsilon_{f})$$

via tag&probe method in tt events

electrons and muons ε_r:
 1D (p_T) parametrisation

events in pre-MVA signal region with SS **loose** leptons (in 3ℓ , lep_0 (OS to SS pair) is prompt in 98% of the times)

Channel	Region	Selection criteria
2ℓSS		$2 \le N_{\rm jets} \le 3$ and $N_{b-{\rm jets}} \ge 1$
(3ℓ)		One very tight, one loose light lepton with $p_T > 20$ (15) GeV
		Zero τ_{had} candidates
	ϵ_{real}	Opposite charge; opposite flavour
	ϵ_{fake}	Same charge; opposite flavour or $\mu\mu$

- electrons ε_f : 2D (Nb-tags, pT) parametrisation
- muons ε_f : 2D (min $\Delta R(\mu,j)$, p_T) parametrisation

EXPERIMEN

- * Estimate QMisID background from data using SS electrons under Z-peak
- ***** Using **3D likelihood method** [p_T, η, Tight/Anti-tight]

high p_T → straighter track → higher chance of QMisID

high $\eta \rightarrow$ more material \rightarrow more trident electrons

needed to provide input to
Matrix Method (QMisID
subtraction) + increase statistics
(consider tight+antitight events)

- Obtain QMisID rates ε_{mis-id} by minimising a global likelihood function in a sample of Z→ee events reconstructed as SS or OS pairs
 - The background is subtracted using a sideband method
- Scale OS data events by this rate
- Total systematic uncertainty ~30 %
 - Dominated by closure test uncertainty at low p_T and by statistical uncertainties at high p_T

* Treatment of conversions

- $\mathbf{\epsilon}_{f,\chi}$ significantly higher than $\mathbf{\epsilon}_{f,hf}$
- Account for the change of photon conversion fraction between the CR and SR from simulation
- Use to correct $\varepsilon_{\rm f}$

• Systematic uncertainties: 40%

- 15% from modelling of conversions in MC
- 20% from measurement of tī

 √
- 50% from modelling of semileptonic b-decays

* Non-closure

- Apply Matrix Method on tt MC, compare to tt MC prediction
- (11 ± 8)% and (9 ± 18)% non-closure in 2ℓ SS and 3ℓ , respectively
- Include non-closure as systematic uncertainty source

Data-driven non-prompt/fake leptons and charge misassignment			
Control region statistics	SN	38	
Light-lepton efficiencies	SN	22	
Non-prompt light-lepton estimates: non-closure	N	5	
γ -conversion fraction	N	5	
Fake $\tau_{\rm had}$ estimates	N/SN	12	
Electron charge misassignment	SN	1	
Total (Data-driven reducible background)	_	83	

* Light lepton efficiencies:

• real eff (1), fake eff (6 μ , 2 el, 3 prompt background subtraction theory uncertainties), 4ℓ fake rate (1), 2ℓ SS1 τ (10)

*Y conversion fraction and non-closure uncertainties:

• Uncorrelated across channels (ee, eµ, Xee, Xeµ, 2ℓ SS1 τ), affecting only normalisation

***** Electron charge miss assignment:

Anti-correlated among background in SR and subtraction from fake rate calculation

ATLAS \sqrt{s} = 13 TeV, 36.1 fb⁻¹ ttH signal strength -0.7 -26.3 -11.0 2.8 -2.0 ttH cross section (scale variations) -26.3 -0.1 : -0.0 : -0.0 : 0.0 : 0.0 tZ cross section -0.7 0.0 -2.9 -24.5 3ℓ Non-prompt closure 0.0 -2.9 Non-prompt stat. in $3\ell t\bar{t}$ CR -0.0 -24.5 Fake $\tau_{\rm had}$ stat. in 1st bin of $1\ell + 2\tau_{\rm had}$ -0.1 -0.2 -0.0 0.0 Fake τ_{had} modeling $(1\ell + 2\tau_{had})$ 0.0 -0.4 0.9 -0.3 -58.9 100.0 0.5 Fake τ_{had} low p_{T} (2 ℓ OS+1 τ_{had}) -2.0 Fake τ_{had} comp. tt $(2\ell OS + 1\tau_{had})$ -0.1 -0.0 0.1 30.4 0.1 Fake τ_{had} comp. Z (2 ℓ OS+1 τ_{had}) VV modeling (shower tune) 1.7 -0.0 0.2 -1.7 -0.4 61.4 100.0 -1.3 24.9 VV cross section 4.0 -0.0 0.1 0.0 -21.1 -9.4 4.2 -2.4 -0.4 Jet energy scale (pileup subtraction) -22.4 1.2 Jet energy resolution ttH signal strength 3€ Non-prompt closure Non-prompt stat. in 3€ tt̄ CR Fake $au_{\sf had}$ stat. in 1st bin of 1ℓ+2 $au_{\sf had}$ Fake τ_{had} low ρ_τ (2ℓ0S+1τ_{had}) modeling (shower tune) Jet energy scale (pileup subtraction) Fake τ_{had} modeling (1ℓ+2τ_{had}) Fake τ_{had} comp. tt (2 €0S+1 τ_{had}) Fake t_{had} comp. Z (2ℓOS+1t_{had})

Channel	Significance		
	Observed	Expected	
2ℓ OS+ $1\tau_{had}$	0.9σ	0.5σ	
1ℓ + $2\tau_{\rm had}$	-	0.6σ	
4ℓ (*)	-	0.8σ	
3ℓ + $1\tau_{\rm had}$	1.3σ	0.9σ	
$2\ell SS+1\tau_{had}$	3.4σ	1.1σ	
3ℓ	2.4σ	1.5σ	
2ℓSS	2.7σ	1.9σ	
Combined	4.1σ	2.8σ	

Statistical Model

 \circ A maximum-likelihood fit is performed on all bins in the 25 categories simultaneously to extract the ttH signal strength (free parameter) (µ)

$$\mu_{t\bar{t}H} = \sigma/\sigma_{SM}$$

o The statistical analysis of the data uses a binned likelihood function L(μ, θ), which is constructed from a product of Poisson PDFs (the number of observed events in a given bin (n))

Systematics and Profile Likelihood

- $^{\rm o}$ Nuisance parameters (NPs, θ), which encode all the uncertainties on quantities that can affect the model for signal and background (knowledge)
- \circ NP probability density functions (Gaussian) are constrained by the auxiliary measurements of the parameters (unlike $\mu)$
- N-dimensional likelihood maximisation

 \circ Therefore total number of expected events in a given bin depends on μ and θ

Testing Model

- What values to use when defining the hypotheses ? \rightarrow H(μ =0, θ =?) Answer: let the data choose the best-fit values
- Significance is given by the profile-likelihood ratio:

Profile likelihood ratio only dependent on μ $\lambda(\mu) = \frac{\mathcal{L}(\mu,\hat{\hat{\theta}}_{\mu})}{\mathcal{L}(\hat{\mu},\hat{\theta})} \quad \text{Maximize L for a given } \mu \text{ 'conditional' likelihood only dependent on } \mu$ $\lambda(\mu) = \frac{\mathcal{L}(\mu,\hat{\hat{\theta}}_{\mu})}{\mathcal{L}(\hat{\mu},\hat{\theta})} \quad \text{Maximize L for a given } \mu \text{ 'conditional' likelihood only dependent on } \mu$

Construct Test statistics (how well the observed data agrees with the background-only hypothesis)

$$q_0 = \left\{ \begin{array}{ll} -2ln\lambda(0) & \quad \hat{\mu} \geq 0 \\ 0 & \quad \hat{\mu} < 0 \end{array} \right. \quad \text{reject background-only}$$

∘ In particle physics, the rejection of the background-only hypothesis to claim for a discovery is achieved for a significance of $Z \ge 5$, corresponding to $p \le 2.87 \times 10^{-7}$

$$p_0 = \int_{q_{0,\text{obs}}}^{\infty} f(q_0|0) dq_0$$

$$Z_0 = \Phi^{-1}(1 - p_0)$$

of incompatibility