
Multivariate Techniques for tt̄H → bb̄ Analysis in
ATLAS

Ziyu GUO
Supervisors: Yann COADOU, Thierry ARTIERES

Top LHC France @ LPSC Grenoble

April 25, 2019

1 / 24



1. tt̄H → bb̄ analysis

2. MVAs in the analysis with 36.1 fb−1 in Run 2

3. Exploring deep learning in tt̄H → bb̄ analysis
Recurrent neural networks
Parse tree
Adversarial training
Multiclassification

2 / 24



tt̄H → bb̄ analysis with 36.1 fb−1 in Run 2 PhysRevD.97.072016

I Analysis challenges and strategy:
I The systematic uncertainty is dominated by the uncertainty in the

tt̄ + b-jets modeling
I region categorization including tt̄ + b-jets enriched CR, simultaneous fit

I Low tt̄H signal x-section, and large irreducible background of tt̄+jets
I a BDT to separate signal from bkg, used as the discriminant for the profile

likelihood fit in signal-enriched regions
I Multiple jets and b-jets in the final state, difficult to be matched to

partons correctly
I using MVAs to reconstruct tt̄H

I This study: 1l channel, resolved events
I Pre-selection for training: (5jets, ≥ 4b-jets), (≥ 6jets, ≥ 4b-jets)@85%

3 / 24

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.072016


MVAs in the analysis with 36.1 fb−1 in Run 2

I Reconstruction step: find the correct association between jets and
partons which originate from H/top decays

I Reco. BDT: pick the combination with the highest BDT score as the
correct matching among all possible combinations on tt̄H (see next slide)

I Likelihood discriminant (LHD): build probability distribution function
under the signal/background hypotheses using 1D variable distributions
from all possible combinations

I MEM: exploit the full matrix element calculation to separate the signal
from the background.

I Classification step

I Such method
applied in regions
with 5 and ≥ 6
jets separately

4 / 24



Reconstruction BDT

I Goal: find the correct association between jets and partons which
originate from H/top decays

I Try all possible jet-parton matches, leading to multiple possible
combinations

I Train on tt̄H sample only
I Signal: correct matches up to 1 jet from W mis-matched. Bkg: all other

improper combinations

I Train two different BDTs:
I BDT: using vars uncorrelated to Higgs
I BDT withH: adding Higgs information, e.g. ∆R(b, b) from Higgs

candidate

I Some input variables in ≥ 6j region:

5 / 24



Reconstruction BDT

I To reduce number of combinations, b quarks are only associated to b-jets.

I Previously, b-jets are tagged if passing a tighter fixed b-tagging efficiency
threshold (WP: Working Point) → low stats, light quark often mis-tagged

I Using the pseudo-continuous (PC) b-tagging, and starting from loose
WP, give more correct matchings

I Sorting jets w.r.t. b-tagging weight, the leading 4 jets are considered as
b-jets, and the leading 4 jets cannot be used as light jets.

Reco BDT with Higgs, PC vs. the
fixed b-tagging:

I 42%, two b-jets from Higgs were
truth matched

I 5% improvement with PC
b-tagging

I Almost 10% improvement for all
b-jets truth matching.

Figure: Reco BDT performance

6 / 24



Classification BDT

I 2 BDTs are trained for events having 5 and ≥ 6 jets, both with
≥ 4 b-jets @85% WP, across CRs and SRs

I Signal: tt̄H , Bkg: tt̄

I Input variables:
I Global event kinematics
I PC b-tagging of jets
I Variables from reconstruction BDT: the

vars built based on the combination
with the highest Reco BDT score.

I Outputs of reco BDT, LHD, MEM
(where available)

7 / 24



Classification BDT

I Inclusive training: in 4b@85%
I Dedicated training: in 4b@60%, a dedicated BDT is trained with MEM

as additional input variable
I Using the PC b-tagging, the inclusive training gives similar performance

to the dedicated training. Thus the inclusive training is used in all SRs
except in 4b@60%

I Intermediate MVAs output variables are dominant discriminants

AUC improve (%)
Kinematics 0.738 -

Kins +
RecoBDT

0.756 2.4%

Kins +
LHD

0.763 3.4%

Kins +
RecoBDT

+ LHD
0.768 4.1%

I Adding MEM gains a little bit, correlated with
LHD

8 / 24



RNN motivation

I Reconstruction step: use similar information but from different aspects
I MEM: super computationally expensive to run, so only built in one signal

rich region.
I Reco. BDT: takes into account variable correlations. But only use the

combination with the highest score, and the truth matching rate is limited.
I Likelihood discriminant (LHD): use all combinations, but not the

correlations between variables.

I Classification step: a BDT using info from these reco-level MVAs, classify
tt̄H and tt̄

I Goal: take into account both variable correlations, and more possible
combinations

9 / 24



RNN for tt̄H → bb̄

I Classify tt̄H and tt̄ events

I Each event is a sequence, using combinations as frames

I Each frame is represented by the input features of the corresponding
combination

I Same input features as reconstruction BDT + classification variables

I This way, RNN takes into account more info than reco BDT and LHD:
more combinations and proper feature correlations.

10 / 24



Training setup

I Machine learning tools:
I Keras, Tensorflow, scikit-learn, etc: data science libraries
I uproot: stream ROOT data into ML libraries
I Trained on GPU

I Train, validation, test splitting

even odd

val 20% learning 80% test

I To avoid over-fitting, monitor
the AUC during the training,
pick the training epoch with
the largest validation AUC.

11 / 24



RNN performance

I Models optimized: input → 1 RNN layer with 60 cells (dropout
values=0.4) → output layer with 1 neuron

I Same inputs as Reco BDT (with Higgs info) and classification BDT, w/o
intermediate MVAs. Listed in backup .

I RNN (0.790) as good (even slightly better) AUC perf. as BDT (0.789)

I Statistical effect: not much to gain with larger tt̄ sample, same for tt̄H

ROC AUC vs. training size

I In 1 step, RNN achieves equivalent performance to 2-step MVAs
consisting of various techniques, using the same info.

12 / 24



Parse tree: motivation

I Goal: exploring models trained with low level features

I Combining our domain knowledge + neural networks.
I Inspired by QCD-Aware Recursive Neural Networks for Jet Physics

I Analogy between parse tree and Feynman diagram
I Design a tree structure analogous to physical process
I Use 4-vector and b-tagging of 8 objects as input: 6 jets + lepton and

neutrino
I Go through from the leaves to the collision node, embedding the input

space to another n-dimensional space.

collision

tlep

Wlep

l ν

b

thad

Whad

q q

b

Higgs

b b

... ...

... ...
[px, py,

pz, E,

btag]

...

[px, py,

pz, E,

btag]

...

13 / 24

https://arxiv.org/abs/1702.00748


Parse tree model

I Use the tree embedding representation for each combination, making up
the sequence input for RNN.

I Also add in high-level inputs: calculated features without combination
info, used by BDT: ∆Rarg

bb ,∆Rmax,pT
bb ,∆ηmax∆η

jj , mmin∆R
bb ,NHiggs

30 ,H1,
Aplanarity

c1 c2 ... c12

tree

RNN

classifier

output

...

c1 c2 ... c12

tree

RNN

classifier

output

evt-level input

...

14 / 24



Tree+RNN performance

I Previous BDT and simple RNN are trained with high level features (e.g.
combination based and global kinematics)

I Comparable AUC: BDT (0.789), simple RNN (0.790)

I RNN with (4-vectors, PC b-tagging), worse AUC (0.781)
I Tree+RNN could learn useful info from low level features, almost no

gains from high level vars
I Tree+RNN (0.788) with (4-vectors, PC b-tagging) as good as BDT/RNN
I Tree+RNN (0.789) with (4-vectors, PC b-tagging, global kinematics), as

good as BDT/RNN.

I Replace the tree embedding with
a classical DNN. AUC:

I 0.776 with (4-vectors, PC
b-tagging)

I 0.783 with (4-vectors, PC
b-tagging, global kinematics)

I Tree performance is always better
than DNN: tree structure helps to
learn from low level features.

15 / 24



Adversarial training

I Dominant impact on µ is from tt̄ + ≥ 1b
shape difference of nominal and
systematic samples.

I Difference exists in the nominal and syst
samples, but small (but quite large
compared to tt̄H presence):

AUC Separation

trained on nominal only
rnn nominal 0.787± 0.001 184.416± 0.426

rnn syst. 0.778± 0.001 222.155± 0.895
trained on nominal+syst.

rnn nominal 0.784± 0.001 184.965± 0.697
rnn syst. 0.778± 0.001 221.890± 2.102

I Goal: train a classifier insensitive to the
difference between nominal and
systematic samples. (Following paper: Learning

to Pivot with Adversarial Networks )

bdt with nominal

rnn with nominal

tree+rnn with nominal

16 / 24

https://arxiv.org/pdf/1611.01046.pdf
https://arxiv.org/pdf/1611.01046.pdf


Adversarial training

I Idea: train a discriminator adversarially to restrict the classifier to have
similar outputs for two different samples:

I Minimax solution: θ̂c, θ̂d = argmin
θc

max
θd

(
Lc(θc)− λLd(θc, θd)

)
I L: loss function, measuring inconsistency between the prediction and label
I θ: networks connection weights, λ(> 0): to be tuned

I Alternative training:
I Train classifier θc , θd fixed: tt̄H vs tt̄ , nominal to be close to syst output
I Train discriminator θd , θc fixed: nominal vs syst output.

I Repeated till the θd unable to discriminate two samples.

17 / 24



Adversarial training

Experience we learn from lots of experiments with our analysis:
I The shape difference between samples is hard to be separated by discriminator.

I The performance metric we use before likelihood fits, AMS11sum
I Take into account both signal presence and nominal-systematic difference.

I Unstable value, even after rebinning to have more stats in each bin. Even
sensitive to GPU randomness.

AMS1 vs training evolution AUC vs training evolution

1See the reference
18 / 24

http://proceedings.mlr.press/v42/cowa14.pdf


A robust RNN with adversarial networks?

I Not completely clear how much improvement this brings:
I Output distributions show no clear evidence. Plots below are the RNN

output w/ and w/o adversarial training.
I AMS1 is improved, but with large uncertainty
I BDT (trained on nominal only) AMS1: 0.752, AUC:0.789

AUC AMS1

nominal 0.771± 0.004 0.993± 0.189
syst. 0.762± 0.005

w/ adversarial training

c

AUC AMS1

nominal 0.784± 0.001 0.942± 0.149
syst. 0.778± 0.001

w/o adversarial training

19 / 24



Event categorization

I To improve the significance, events are categorized into orthogonal
regions: signal regions (SR) and control regions (CR)

I Latest publication:
I Splitting events into subsets w.r.t to jets pseudo-continuous b-tag score
I Examining the bkg composition manually
I Merge the subsets with similar bkg

20 / 24



Multi-output classification

I Neural network classifier: a natural way to have multi-output
I 1 RNN layer (50 cells) + Fully Connected (FC) layers + 4 output nodes

(tt̄H, tt̄b, tt̄l , tt̄c)

I Model structure not optimized

I Balancing the tt̄H, tt̄b, tt̄c , tt̄l for training

I Could split further the tt̄b category

21 / 24



Usage of multi-output

More studies are needed to find an optimal way to use the multi-output.

I Multi-dimensional cut

I Foam approach

I Following CMS strategy:
I Categorize the event as ttH if the ttH node gives the highest score. Same

for tt̄b, tt̄c, tt̄l
I Using the output cells as region definition:

I tth cell: signal rich region
I ttb cell: ttb rich region
I ...

I Use output node associated to category for simultaneous fit

22 / 24



Background decomposition (ATLAS simulation work in
progress)

I Region definition based on multiclass output

I Default definition
Comparing two methods:

I The tth node gives
similar number of tt̄H
events, better s/b, s/

√
b

w.r.t to default inclusive
SR

I SR1 and SR2 give less
ttc & ttl constituents.

I Less events in CR2 (ttc).

23 / 24



Summary

In the analysis with 36.2fb−1 of data, two-step MVAs are used

I Event reconstruction step and signal/bkg classification

I PC b-tagging variables are used in both steps

Exploring deep learning techniques for the full Run 2:

I Binary classification:
I RNN: better explore reconstruction combinatorics due to recurrent

structure, one-step classification
I Parse tree: include physics domain knowledge while designing the neural

networks, more efficient to learn from low level features

I Systematic uncertainty reduction:
I Use an adversarial network that discriminates between tt̄ models, to

reduce modeling systematics. AUC pays the price, but AMS1 sum gains

I Region definition:
I More flexible and natural with neural networks to have multi-outputs

I Complete fit studies with these new models are underway, preliminary
results of simple RNN and multiclass are promising.

24 / 24



Backup



Reconstruction BDT inputs

26 / 24



classification BDT inputs

PhysRevD.97.072016

27 / 24

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.072016


LSTM and multiclassification inputs for 6j case

28 / 24



AMS1 and AUC stability

I Trials with 100 random seeds
I 100 times of experiments. train, val, test fixed, or train and val shuffled

for each trial.
I AMS1 of BDT: 1.397.

Table: TransfoD AMS1 (mean/std(%))

Fixed Shuffled

train .756±.146(19.3) .840±.211(25.1)
val 1.080±.136(12.6) .918±.187(20.4)
test 1.765±.304(17.2) 1.849±.300(16.2)

Table: Old transform AMS1 (mean/std(%))

Fixed Shuffled

train .616±.109(17.7) .654±.126(19.3)
val 1.035±.146(14.1) .840±.241(28.7)
test 1.635±.365(22.3) 1.670±.433(25.9)

Table: TransfoD: AMS2 diff (mean/std(%))

Fixed Shuffled

train .115±0.016(13.9) .108±.020(18.5)
val .017±.016(94.1) .027±.041(152)
test .029±.009(31.0) .026±.009(34.6)

Table: Old transform: AMS2 diff
(mean/std(%))

Fixed Shuffled

train .084±0.015(17.9) .080±.018(22.5)
val .009±.013(144) .015±.035(233)
test .019±.006(31.6) .019±.007(36.8)

Table: AUC0 (mean/std)

Fixed Shuffled

train .814±.005 .813±.006
val .793±.001 .792±.004
test .789±.001 .788±.001

Table: AUC1 (mean/std)

Fixed Shuffled

train .792±.002 .792±.003
val .789±.002 .788±.007
test .778±.001 .778±.001

29 / 24


	tHb analysis
	MVAs in the analysis with 36.1 fb-1 in Run 2
	Exploring deep learning in tHb analysis
	Recurrent neural networks
	Parse tree
	Adversarial training
	Multiclassification


