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ttH — bb analysis with 36.1 fb~! in Run 2 PhysRevD.97.072016

» Analysis challenges and strategy:
> The systematic uncertainty is dominated by the uncertainty in the

tt + b-jets modeling
> region categorization including tt + b-jets enriched CR, simultaneous fit
» Low ttH signal x-section, and large irreducible background of tt-+jets
> a BDT to separate signal from bkg, used as the discriminant for the profile
likelihood fit in signal-enriched regions
> Multiple jets and b-jets in the final state, difficult to be matched to
partons correctly
> using MVAs to reconstruct ttH
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» This study: 1/ channel, resolved events
> Pre-selection for training: (5jets, > 4b-jets), (> 6jets, > 4b-jets)©85%


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.072016

MVAs in the analysis with 36.1 fb™* in Run 2

» Reconstruction step: find the correct association between jets and
partons which originate from H/top decays

> Reco. BDT: pick the combination with the highest BDT score as the
correct matching among all possible combinations on ttH (see next slide)

> Likelihood discriminant (LHD): build probability distribution function
under the signal/background hypotheses using 1D variable distributions
from all possible combinations

» MEM: exploit the full matrix element calculation to separate the signal
from the background.
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Reconstruction BDT

» Goal: find the correct association between jets and partons which
originate from H/top decays
> Try all possible jet-parton matches, leading to multiple possible

combinations
» Train on ttH sample only

> Signal: correct matches up to 1 jet from W mis-matched. Bkg: all other
improper combinations
» Train two different BDTs:
» BDT: using vars uncorrelated to Higgs
» BDT withH: adding Higgs information, e.g. AR(b, b) from Higgs
candidate

» Some input variables in > 6; region:
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Reconstruction BDT

» To reduce number of combinations, b quarks are only associated to b-jets.

» Previously, b-jets are tagged if passing a tighter fixed b-tagging efficiency
threshold (WP: Working Point) — low stats, light quark often mis-tagged

» Using the pseudo-continuous (PC) b-tagging, and starting from loose

WP, give more correct matchings

> Sorting jets w.r.t. b-tagging weight, the leading 4 jets are considered as

b-jets, and the leading 4 jets cannot be used as light jets.

Reco BDT with Higgs, PC vs. the
fixed b-tagging:
> 42%, two b-jets from Higgs were
truth matched
» 5% improvement with PC
b-tagging
» Almost 10% improvement for all
b-jets truth matching.

Figure: Reco BDT performance
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Classification BDT

» 2 BDTs are trained for events having 5 and > 6 jets, both with
> 4 b-jets @85% WP, across CRs and SRs
» Signal: ttH , Bkg: tt

iable: dEtall MaxdEta

» Input variables:

» Global event kinematics

» PC b-tagging of jets

» Variables from reconstruction BDT: the
vars built based on the combination
with the highest Reco BDT score.

» Outputs of reco BDT, LHD, MEM
(where available)
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Classification BDT

» Inclusive training: in 4b@85%

» Dedicated training: in 4b@60%, a dedicated BDT is trained with MEM
as additional input variable

» Using the PC b-tagging, the inclusive training gives similar performance
to the dedicated training. Thus the inclusive training is used in all SRs
except in 4b@60%

» Intermediate MVAs output variables are dominant discriminants

[T L CR O A G RED I ATLAS Simulation work
in progress
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RNN motivation

» Reconstruction step: use similar information but from different aspects
» MEM: super computationally expensive to run, so only built in one signal
rich region.
» Reco. BDT: takes into account variable correlations. But only use the
combination with the highest score, and the truth matching rate is limited.
> Likelihood discriminant (LHD): use all combinations, but not the
correlations between variables.

> using info from these reco-level MVAs, classify
ttH and tt

» Goal: take into account both variable correlations, and more possible
combinations
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RNN for ttH — bb

v

Classify ttH and tt events

v

Each event is a sequence, using combinations as frames

v

Each frame is represented by the input features of the corresponding
combination

» Same input features as reconstruction BDT + classification variables

wH wH WH
by he L - oo - classifier . Anoutput
: in[0,1]
Wy W W,
[ e [ =
Event 1:  best best2:  best3:

combination 1:

Represented by:
(inputl, input2...)

Event 2: bestl best2 best3

» This way, RNN takes into account more info than reco BDT and LHD:

more combinations and proper feature correlations.



Training setup

» Machine learning tools:

» Keras, Tensorflow, scikit-learn, etc: data science libraries
» uproot: stream ROOT data into ML libraries
» Trained on GPU

» Train, validation, test splitting

even odd
val 20% learning 80% | | test
» To avoid over-fitting, monitor e
the AUC during the training, qaze] fet  nprogress
pick the training epoch with oss
the largest validation AUC. osto

3 0.805
0.800
0.795

0.790

0.785

11/24



RNN performance

» Models optimized: input — 1 RNN layer with 60 cells (dropout
values=0.4) — output layer with 1 neuron

> Same inputs as Reco BDT (with Higgs info) and classification BDT, w/o

intermediate MVAs. .
» RNN (0.790) as good (even slightly better) AUC perf. as BDT (0.789)
» Statistical effect: not much to gain with larger tt sample, same for ttH
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» In 1 step, RNN achieves equivalent performance to 2-step MVAs
consisting of various techniques, using the same info.



Parse tree: motivation

» Goal: exploring models trained with low level features

» Combining our domain knowledge + neural networks.
» Inspired by QCD-Aware Recursive Neural Networks for Jet Physics
» Analogy between parse tree and Feynman diagram

> Design a tree structure analogous to physical process
» Use 4-vector and b-tagging of 8 objects as input: 6 jets + lepton and

neutrino
> Go through from the leaves to the collision node, embedding the input

space to another n-dimensional space.

9 TOOBO000000—————— ¢

9900000000000 ——<—— 1
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https://arxiv.org/abs/1702.00748

Parse tree model

> Use the tree embedding representation for each combination, making up
the sequence input for RNN.

> Also add in high-level inputs: calculated features without combination
info, used by BDT: AR, ARLZPT AyTo®1 mminAR  NJTEE H,
Aplanarity

classifier classifier

14 /24



Tree+RNN performance

>

Previous BDT and simple RNN are trained with high level features (e.g.
combination based and global kinematics)
» Comparable AUC: BDT (0.789), simple RNN (0.790)
RNN with (4-vectors, PC b-tagging), worse AUC (0.781)
Tree|-RNN could learn useful info from low level features, almost no
gains from high level vars
> Tree+RNN (0.788) with (4-vectors, PC b-tagging) as good as BDT/RNN
» Tree+RNN (0.789) with (4-vectors, PC b-tagging, global kinematics), as
good as BDT/RNN.

ROC

ATLAS Simulation
work in progress

o

Replace the tree embedding with
a classical DNN. AUC:

> 0.776 with (4-vectors, PC

b-tagging)
» 0.783 with (4-vectors, PC
b-tagging, global kinematics)
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Adversarial training

» Dominant impact on y is from tt + > 1b
shape difference of nominal and
systematic samples.

» Difference exists in the nominal and syst
samples, but small (but quite large
compared to ttH presence):

‘ AUC ‘ Separation

trained on nominal only
0.787 + 0.001 ‘ 184.416 + 0.426

rnn syst. 0.778 +0.001 | 222.155 + 0.895
trained on nominal+syst.

0.784 +0.001 | 184.965 + 0.697

rnn syst. 0.778 4+ 0.001 ‘ 221.890 + 2.102

» Goal: train a classifier insensitive to the
difference between nominal and
systematic samples. (Following paper: Learning
to Pivot with Adversarial Networks )

bdt with nominal

ATLAS Simulation work in progress
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https://arxiv.org/pdf/1611.01046.pdf
https://arxiv.org/pdf/1611.01046.pdf

Adversarial training

» ldea: train a discriminator adversarially to restrict the classifier to have
similar outputs for two different samples:

» Minimax solution: 6,04 = arg n;in max (LC(BC) — AL4(6c, Gd))
c d

> L: loss function, measuring inconsistency between the prediction and label
> 0: networks connection weights, A(> 0): to be tuned

N
Classifier: Cineut) Oy (sdvearalneork fyrt 60 ol Discriminator:
« ttH vs. ttbar ) (adversarial network layerl: 60 cells) * nominal vs. syst.
. Trgin Or[l nornirllal TLSTM layer: 50 cells (o nﬂwo{k e ¢ Fed in with the
and syst. samples output or the
¢ output of LSTM > (adversarial nelwo{k Tayerl: 60 cells) hidd(?l:l layer of
N N ' :,L)Ip/u.t_of adversarial?tw;g::;) classifier

> Alternative training:
» Train classifier 0., 0, fixed: ttH vs tt , nominal to be close to syst output
» Train discriminator 04, 0. fixed: nominal vs syst output.

» Repeated till the 6, unable to discriminate two samples.



Adversarial

training

Experience we learn from lots of experiments with our analysis:

» The shape difference between samples is hard to be separated by discriminator.
> The performance metric we use before likelihood fits, AMS1'sum
» Take into account both signal presence and nominal-systematic difference.

» Unstable value, even after rebinning to have more stats in each bin. Even
sensitive to GPU randomness.

AMS1 = \/Zf" 2((s + bi) In(%50r) — 5 — by + b0;) + B0 N—total

number of bins
opi = |b0; — bl;|

bi

b0; = 3(bi — o, + /(b — 03,2 + 4(si + b))o},)

AMS1 vs training evolution

Tralning epach choke

work in progress

ATLAS Simulation — traln

1See the refe

rence

AUC vs training evolution

Tralning epoch choke

— i ATLAS Simulation work
— :: in progress
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http://proceedings.mlr.press/v42/cowa14.pdf

A robust RNN with adversarial networks?

» Not completely clear how much improvement this brings:
» Output distributions show no clear evidence. Plots below are the RNN
output w/ and w/o adversarial training.
» AMSL1 is improved, but with large uncertainty
» BDT (trained on nominal only) AMS1: 0.752, AUC:0.789

\ AUC \ AMS1 \ AUC \ AMS1
nominal | 0.771 £ 0.004 | 0.993 & 0.180 nominal | 0.784 £ 0.001 | 0.942 & 0.149
syst. 0.762 = 0.005 syst. 0.778 =+ 0.001

w/ adversarial training w/o adversarial training

ATLAS Simulation work in progress
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Event categorization

» To improve the significance, events are categorized into orthogonal
regions: signal regions (SR) and control regions (CR)
» Latest publication:
» Splitting events into subsets w.r.t to jets pseudo-continuous b-tag score
» Examining the bkg composition manually
> Merge the subsets with similar bkg

mzmm oz @00

ATLAS Simulation work in progress

2 &
15 Vs =13TeV,36.1 b =
E w0 Single Lepton, >6jets mgLmm  (errIT) .00
g " @S S
8 @z s
o
S > ~
2 rarn) oamnm) (e
: % S
2 e Pt
£} -
]

s 0 masm) H s T e @m0

(7765 (@89 (©0,100) (70100 (77100) (85,100) (160,100
(3rd,4th) btag WP combination




Multi-output classification

» Neural network classifier: a natural way to have multi-output

> 1 RNN layer (50 cells) + Fully Connected (FC) layers + 4 output nodes
(ttH, ttb, ttl, ttc)

» Model structure not optimized
» Balancing the ttH, ttb, ttc, tt/ for training
» Could split further the ttb category

Confusion matrix

0.7
ATLAS Simulation work in progress th
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Usage of multi-output

More studies are needed to find an optimal way to use the multi-output.
» Multi-dimensional cut
» Foam approach

» Following CMS strategy:

» Categorize the event as ttH if the ttH node gives the highest score. Same
for ttb, ttc, ttl
» Using the output cells as region definition:
> tth cell: signal rich region

> ttb cell: ttb rich region

> Use output node associated to category for simultaneous fit

N
N
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Background decomposition (ATLAS simulation work in
progress)

> Region definition based on multiclass output
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Summary

In the analysis with 36.2fb ! of data, two-step MVAs are used
» Event reconstruction step and signal/bkg classification
» PC b-tagging variables are used in both steps

Exploring deep learning techniques for the full Run 2:
» Binary classification:

» RNN: better explore reconstruction combinatorics due to recurrent
structure, one-step classification

> Parse tree: include physics domain knowledge while designing the neural
networks, more efficient to learn from low level features

» Systematic uncertainty reduction:

» Use an adversarial network that discriminates between tt models, to
reduce modeling systematics. AUC pays the price, but AMS1 sum gains

» Region definition:
» More flexible and natural with neural networks to have multi-outputs

» Complete fit studies with these new models are underway, preliminary
results of simple RNN and multiclass are promising.

™
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Reconstruction BDT inputs

Region

Variable =6 [ 5]

Topological information from 7

<

flep Mass

Thad Mass

Incomplete #p,q mass

Wihag mass

Mass of Wyyg and b from ),

Mass of Wiep and b from fhag
AR(Whag, b from fy,q)

AR(Whad, b from #iep)

AR(lep, b from #i¢p)

AR(lep, b from thaq)

AR(D from #yp, b from ty,q)

AR(g from Wy, g2 from Whag)
AR(b from thaq, g1 from Whaq)

AR(b from thaq, g2 from Whag)

min. AR(b from fp,q, g from Wiaq)
min. AR(b from fhad, ¢ from Whaa) — AR(lep, b from fi¢p)
Topological information from Higgs
Higgs boson mass

Mass of Higgs and g, from W4
AR(b; from Higgs, b, from Higgs)
AR(b; from Higgs, lep)

AR(b from Higgs, b from #p)
AR(b; from Higgs, b from #haa) -

<=
<

P |

R N T N N N NN

<

ENENENEN

R N N

Input variables to the reconstruction BDT in the single lepton channel. The subscript had(lep) indicates
the hadronically (leptonically) decaying W or r and ¢; refers to quarks from W.
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classification BDT inputs

PhysRevD.97.072016

Variable | Definition
Variables from BDT output
General kinematic variables BDT BDT output VR Va
o Average AR for all b-tagged jet pairs s Higgs boson mass v v
AR P AR between the two b-tagged jets with the MH by op Mass of Higgs boson and b-jet from leptonic top v -
e largest vector sum pr ARyjiges b | AR between b-jets from the Higgs boson Vv
A% | Maximum An between any two jets ARyyi AR between Higgs boson and 17 system v v
min AR Mass of the combination of the two b-tagged ARpjep op | AR between Higgs boson and leptonic top v -
"o Jets with the smallest AR AR oy | AR between Higgs boson and b-jet from hadronictop | — | v'*
Jainin AR l\}:Iass ufl llhe Zo;lbinulion of any two jets with _ | [ Variable from Likelihood calculation
u e i invariont " D [ Likelihood discriminant [V [V
umber of b-jet pairs with invariant mass within - -
Niees 30 GeV of the Higas boson mass ¢ | | Variable from Matrix Method calculation
Hbad Scalar sum of jet pr _ | v | MEMp, | Matrix Method [v -
. Variables from b-tagging
ARmin AR AR between the lepton and the combination v — - - —
lep-bb | of the two b-tagged jets with the smallest AR - wll Sum of binned b-tagging weights of jets vl
. . b from best Higgs candidate
Aplanari 1.5, where A5 is the second eigenvalue of the v v d s . . . .
planarity | o dhium tensor [91] built with all jets By 3m 4&( bvmned b—laggvmg wefghl (sorted by wevlghl) v v
Second Fox-Wolfram moment computed using By 4% jet binned b-tagging weight (sorted by weight) oY
H1 all jets and the lepton VY B 5t jet binned b-tagging weight (sorted by weight) v | v

Table 8: Input variables to the classification BDT in the single-lepton channel. For variables from the reconstruction
BDT, those with a * are from the BDT using Higgs boson information, while those with no * are from the BDT
without Higgs boson information. The MEM |, variable is only used in the UPSR, while b-tagging weights are not
used in this region (no information as they are all equal, by construction).
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.072016

LSTM and multiclassification

Reconstruction info

Topological information from i
Hep TRASS
I Mass

Whag mass

Mass of Wiaa and b from fe,
Mass of Wigy and b from fhag
AR(Wig. b from 1,5)

AR(Wiag. b from fiep)

AR(lep, b from 51¢)

AR(lep. b from )

AR(B from fiey, b [rom fa)

AR(q) from Wyug, g2 from Wy)
AR(b from f, 41 from Wha)
AR(b from fq. g2 from W)
min, AR(E from t,g. g from W)
min. AR(b from fg, g from Wiag) = AR(lep, b from riep)

Higgs boson mass

Mass of Higgs and gy from Wiy
AR(b, from Higgs, b, from Higgs)
AR(h| from Higgs, lep)

inputs for 6j case

Global classification
BDT inputs

i General kinematic variables

L

Ll

CARE Average AR Tor all b-tagged jet pairs
: agma e | AR between the two b-tagged jets with the
Faa" largest vector sum py
a4 Maximum A between any two jets
min AR Mass of the combination of the two b-tagged
jets with the smallest AR

Number of b-jet pairs with invariant mass within
30GeV of the Higes boson mass

1545, where 15 is the second eigenvalue of the

¢ APlananity | yomentum tensor [91] built with all jets

Second Fox- Wolfram moment computed using
all jets and the lepton

B-tagging :

weights

IMVAreco_b1Higgs_pseudobtag_Sbins
IMVAreco_bZHiggs_pseudobtag_Shins
IMVAreco_blepTop_pseudobtag_Sbins
IMVAreco_ghadW _pseudobtag_5bins_1
IMVAreco_ghadW_pseudobtag_bins_2

i IMVAreco_bhadTop_pseudoblag_Sbins.
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AMS1 and AUC stability

» Trials with 100 random seeds

» 100 times of experiments. train, val, test fixed, or train and val shuffled
for each trial.

» AMS1 of BDT: 1.397.

Table: TransfoD AMS1 (mean/std(%)) Table: Old transform AMS1 (mean/std(%))

| Fixed | Shuffled |

Fixed | Shuffled |
‘ train ‘ 756+.146(19.3) ‘ .840+.211(25.1) ‘

|
train ‘ .616+.109(17.7) ‘ .654+.126(19.3) ‘

val 1.0804.136(12.6) .918+.187(20.4)
test 1.7654.304(17.2) 1.8494.300(16.2)

val 1.0354.146(14.1) .840+.241(28.7)
test 1.6354.365(22.3) 1.6704.433(25.9)

Table: TransfoD: AMS2_diff (mean/std(%)) Table: Old transform: AMS2.diff

(mean/std(%))

| Fixed | Shuffled | )
train | 11520.016(13.9) | .108+.020(18.5) I Fixed Shuffled |
ol 0174 .016(94.1) 0274 041(15) train | .084L0015(17.9) | .080+.018(22.5)
test 1029+.009(31.0) 1026+.009(34.6) val :009+.013(144) -015:4.035(233)

test 0194.006(31.6) | .019.007(36.8)
Table: AUCO (mean/std) Table: AUC1 (mean/std)
[ | Fixed | Shuffled | | | Fixed Shuffled |

train | 814L.005 | B13£.006 train | 792£.002 | .792£.003

val 7934.001 | .792+.004 val 7804.002 | .788+.007

test | .789+.001 | .788.001 test | .778+.001 | .778.001
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