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DEEP LEARNING IN CDSMDLDGY AT THE
INSTITUT D ASTRDPHYSIDUE DE PARIS [IAP]
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- Alessandro Manzotti for the IAP team™ = "% i, o
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WHERE DOES IAP STAND IN THESE EXCITING PANORAMAS?




ALREADY HARD TO KEEP TRACK OF ALL ASTRO-APPLICATIONS
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Practically use them: to automate/improve thing we do not care to
understand.
Detect GWSs, radio showers, strong lenses. Classify: pulsar or estimate
photo-zs

Extract information when the physics/ statistics is too hard.
Extract information from weak lensing maps, 21 cm, strong lenses.

Debate inference with deep learning: should we add an extra step?
And use canonical approaches for inference.

Sometimes we do learn physics



S0 WHAT SHOULD WE USE MACHINE/DEEP LEARNING FOR?

The typical reactions

< of a cosmologist to
ML

We can not ignhore:

We are entering the big data / accuracy cosmology era.
Hard to keep up with good accurate physical modellng of physics (we care about)
Hard to model the systematics (we probably do not care)

Difference:we can “generate” our datasets.

How not to forget physics?
Can we learn physics? Or just emulator/marginalizator machine?



WHERE SHOULD WE GO?

Meeting like this one should avoid this and
trigger useful exchanges and collaborations



AP [S RIGHLY INVOLVED IN DEEP LEARNING




PLAN OF THE TALK:

- _ e Extracting Information from Cosmic
‘ Microwave data.
: g X e |earn physical parameters from
galaxy images and fluxes
e Trigger radio showers and classify
type and direction of high energy
particles
e Connect dark matter and galaxies

S —

\/

And many more | won’t talk about ...




EXTRACTING INFORMATION FROM THE MICROWAVE SKY WITH NEURAL NETWORKS

The idea is to avoid as many intermediate steps as
possible. Learn directly from microwave
anisotropies in the sky.

Raw data, noisy maps of the sky

We currently have O(10) steps
here

Unlensed images,
—_— parameters of the universe

(dark matter, dark energy) etc
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OPTICAL DEPTH LE. HISTORY OF STARS FROM THE CAB

Learning the reionization history is important per se and crucial in order to
constrain other parameters because of degeneracy (like neutrino mass)

Large scale CMB is very sensitive to the
history of deionisation!
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CONTAMINATED BY SYSTEMATICS, HARD TO MODEL THE CLEANED DATA
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Line radiation from carbon monoxide gas

You have to infer the likelihood using
simulations. A good application for machine
learning.

Also large scale —> low resolution, less
computational power needed



WE CAN GENERATE OUR TRAINING SET: WHAT FORM IS THE BEST? TIME FOR CREATIVITY

A lot can be tweaked in the preprocessing part.
The input/training data can be under various form. For this project we had 300 realisation of
noise (expensive to generate) and we can generate as many signal realisation as we want.

—— tau=0.05
——tau=0.0
——tau=0.1

Fourier power

T

15
/

Flaten pixels

Data live on a sphere.
Convolution on a sphere,
torus or other projections?
You can be really creative
here

2D images in Fourier and real space 1D input



SIMPLE APPROAGH: SIMULATE DATA AND LEARN.

Train the network with simulated (labelled) data for
different value of the parameter of interest
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HOW DO WE GET UNCERTAINTIES:

STANDARD METHOD?
MIXTURE DENSITY NETWORKS
THINK DIFFERENTLY, NN AS AUTO ENCODER
777 BAYESIAN NETWORKS?



PREDICTION IS NOT ENOUGH. UNGERTAINTIES WITH MIXTURE DENSITY
NETWORKS

Mixture density networks (Baysian neural network might work too)

We train the network to learn not a parameter from the data, but a mixture
of density distributions. We are now trying to learn a probability distribution

P(0) instead of the parameter 0 itself.

Learn by the

N
P(r) = aiG(uio0m) 1 His 0if —— " twork
1=0

The last activation layer need to enforce the mathematical constrains of
these parameters.

The Loss Function used is important CRPS vs log-like but we got similar
results.

CM Bishop - 1994



MIXTURE DENSITY NETWORK WORKS BUT ARE THEY ROBUST STATISTICALLY?

disbe&zg\oi‘ B On the test set,
/ distributions are rightly
peaked and width is in
j & agreement with
expectation

Comparable with more
standard techniques. But
faster and more statistically
motivated.

It worked nicely but still the statistical properties of the final distributions
are unclear. More work and research need to be done.



A STEP BACK: APPROXIMATE BAYESIAN COMPUTATION

A step back.
If cannot write the likelihood, the probability of the
data given the model parameters we can apply the
Approximate Bayesian computation (ABC)

HOW does ABC work
1. Simulate data at different @ drawn from p(0).

2. Accept or reject 0 using similarity of simulation and real data.

3. Compare with data and accept or reject

Simulate data given parameters
- i -

The space is too big. O(10"3) pixels x several parameters —> impossible: we need a compressed

Parameter prior
summary statistics.

Not enough for future and in the presence of complex noise



A DIFFERENT APPROACH: NEURAL NETWORK AS A DATA
ENGCODER

Starting from 1073 space (or Fourier equivalent)

v

Find non linear combination of pixels that maximise
the information about the parameter of interest.
From O(1073) pixels to O(1) numbers!

3 parameters you are tryin
l | \ to learn —> 3 summaries
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The 3 summaries maximise

paramEterS 0. the info content/ Fisher

You want your summary statistic to maximally
vary with the variation of the parameter, relative
to the covariance.
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IMNN Charnock et al. 1802.03537 on GitHub



http://arxiv.org/abs/1802.03537
https://github.com/tomcharnock/information_maximiser

OPTIMAL COMPRESSION TO 1 SUMMARY FOR EVERY PARAMETER OF INTEREST

Another way of seeing it:
Data Transformation

Find a non-linear function, f: data = x(summary) which transforms the unknown likelihood into a multivariate gaussian

—2log L(]0) = (x — u(0))C~ (z — u(9))

Training examples

S Y Batch gradient descend:
ean and
«sfa+ | variance of Compute C and mu and
summaries L date
3 input needed to . P
compute derivatives.
We need numerical X2 c, -

s fid+ | 2 JRYe"

differentiation, the
parameter appear only
on the simulation side

Loss Function: the Fisher
e matrix of the summary.

IMNN Charnock et al. 1802.03537 on GitHub



http://arxiv.org/abs/1802.03537
https://github.com/tomcharnock/information_maximiser

LEARN FROM GMB MAPS WITH NN AND ABCG:STEPS W soceer

. Network steps

e Make several simulations of data for 3 values of each parameter dsiid, ds fid-, ds
fid+. We need to compute derivatives

e Train the networks to maximise Fisher information. Test on train and data set
looking for any possible problem before moving to data.

o Compress the real data using the trained network
° Apply the ABC: draw 0 from p(0) and create simulation
o Compress simulation

e Accept or reject proposed sample to build approximate posterior distribution

You have a distribution for the probability of the parameter given the data



Network output

WE CAN CONSTRAIN PARAMETERS! TESTED ON SIMULATIONS.

Still working on best network architecture and preprocessing (1D,2D, 3D ?)
but results look promising.

The summary of the test data

O“-----———------------—-----------~a-uAud&hu4~memm.en-u{ ----------------------------
_1<
The summary of
-2 simulated data in the —
_3 ABC steps
-4
Known true value

T

: /

0.00 0.02 0.04 0.06 0.08 0.10

The summary of simulated
data with parameter=0.6
are closer to the test set.

As expected since true
value fo r test set is 0.6

A new questions for
cosmologist: how to test
a nn based process
before applying to the
data??



SPHERICAL CONVOLUTIONAL LAYER WOULD BE COOL FOR ASTRONOMY!

For satellite images our data naturally lives on a sphere.
While the signal is rotationally symmetric most of the noise is not.

Also every projection of a sphere into 2D lead to distortions that reduce the
performance of the network

The natural way to approach this is too develop a spherical convolutional
networks. Unfortunately the Fourier theorem that helps in 2D does not hold on a
sphere

Hard to learn rotational
/\invariance

Implemented in Tensorflow. Not memory/computational efficient.
Still the future of this field.




Florian Livet, PhD

EXTRAGTING PARAMETER MODELS DIREGTLY FROM A GALAXY FIELD students @ IAP

Can we learn about Luminosity
functions and other physical
properties directly from this?

800 A
- accepted
rejected
700 A
. 600 A
3
©
T 500
©
@

~100 galaxies in it ",

Yes!! with the IMNN we can
. compress the information and

—_— .

use standard ABC approached
on a reduced parameter
space.

—20.5 —20.0
e

IMNN Charnock et al. 1802.03537 on GitHub



http://arxiv.org/abs/1802.03537
https://github.com/tomcharnock/information_maximiser

GRAND PROJECT DETECT NEUTRINOS WITH DEEP
LEARNING: RADIO SHOWER TRIGGER.

G& Giant Radio Array for Neutrino Detection

Cosmic ray

See 1810.09994

— North-South
40 - East-West
* —— Up-Down

ZO_V il *' | | (Y * l
—90 - v | u W ‘\_ + Antenna optimized tor horizontal showers

v ‘ + Bow-tie design. 3 perpendicular arms
— 40 -

- * Frequency range: 50-200 MHz
| * Inter-antenna spacing: JTE\’ NF
108075 108100 108125 108150 108175 108290 108225 108250
Time [ns]

Radio emission

Voltage trace [uV]

10000 antennas

Using recurrent neural networks to learn

when antenna becomes active.
Real event (classification)? 1 At what time?

Accuracy improved by 10% with first attempt.



WE CAN DO MORE! WE CAN CLASSIFY THE INCOMING
DIRECTION AND PARTICLES TYPE.

Near instant classification.
Use recurrent convolutional neural network to detect
particle shower direction, particle type, event energy, etc.

Time Voltage
Infer type
of particles

2l

Incoming
Direction

Cons 2D +fully connected
+ Mixture density
network

1D cons layers + Cons 2D
+fully connected

East-West antenna position

Triggered antennas

North-South antenna position North-South antenna position



NEURAL NETWORKS AS A STEP OF FULL FORWARD SmuLATons 18
e — @-0-8-0-0-8

One of the steps

> Observed Universe

\4

T

Dark Matter structure Actual galaxy distribution

N
S Ag2s Mpdh -

2 approaches:

1. Learning Halo Impainting with Neural nets
2. Use neural nets as a model and sample (with Hamiltonian Monte Carlo) over it



PAINTING HALOS FROM 3D DARK MATTER FIELDS USING GENERATIVE NETWORKS

Save the need to run full particle mesh simulations
Cosmological dependence of matter density field in N-body sim encoded in “cheap” LPT sim

Neural network — deterministic transformation to populate statistically the density field with halos

Density of Dark matter,

. Halo counts
analytical

HOD
simulations

With GAN
Generative
network




RESULTS: THE NETWORK GORRECTLY PREDICTS THE TRUE HALO FIELD.

Investigate performance of network qualitatively
(visual comparison) and via summary statistics

Generative network capable of mapping complex
structures of cosmic web to halo distribution

3D Power spectrum

-------- Reference halo counts

109 5 ——  Generated halo counts

rm/ 1.\

0 10t

And the power

spectrum is right too
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Dark

Matter Galaxies

The network is now your bias model!

The bias model is parametrised by a network. Weights and biases are parameters of the full
HMC process we sample over W, and b.
We are using it as the simplest non linear model we can built. Use symmetries to reduce size
of NN and parameters.

Weight and biases are treated Bayesianly.
We sample on them and we can marginalise.

It Is crucial that network are differentiable



DEEP LEARNING IN COSMO AND @IAP, INTERDISCIPLINARY AND RAPIDLY GROWING

Deep learning is extremely powerful, and cosmologist are still trying to figure
out how to optimally use it.

The feedback from expert and collaboration is crucial at this point, to support
the effort and avoid bad habits to consolidate.

|IAP is becoming quickly a big hub of deep learning development and
application to cosmology.

We use it to extract model’s parameters from data and to emulate automate
part of galaxy simulations and triggering.

Are we using it right? What are other application?



Alessandro Manzotti for the IAP:
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WGAN GENERATIVE NETWORK

1x50°

32x24° _
64x22° 128x10? 256x8° 131072 1
Critic |
L S > » Output
(scalar)
Input ' ]
(3D real/generated flattening + fully connected
halo counts)

20x50° 20x50° 1x50°

Generator o~ B

Input
(3D density field)

Output

4 conv layers (3D halo counts)












TESTING INFORMATION MAXIMISER

Consider an experiment which measures ng = 10
data points which are drawn from a zero-mean Gaussian
where the variance, 9 = ¢°, is not perfectly known,
d = {d;~N(0,9)|i € [1, nq|}. The likelihood is written

I l
E(dlt()) — __LXp —([ :|
l_Il \/_Ih() 29 l 6 -
l l "y c 5 -
— » — o
B (7IT19)""/2 “P1 29 o ] %
“~ . Y =] = 4 -
S
€ 37
@
Best summary|statistics of the data § 2"
v 1 i}
0
~ A T T T T T | T
- Z ds;, 0 100 200 300 400 500 600 700 800
i= | Number of epochs

N\

F=5



