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o Domain Knowledge (ATLAS Calorimeters);
o Reconstruction of Physics Objects.
o Data fusion and deep learning:
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o Cell Energy Estimation with ML;
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Mitigating statistical dependencies in Likelihood;
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Big science = data

S Qe
%ﬂ_ X Domain knowledge

Results
Data Science

World
a movement in the direction of intensifying the exchange of data

solutions between different fields (or services, products)!

Information on different domains can be represented in similar ways (time-series, images,
distributions, fuzzy functions);
Similar tasks (examples for calorimeter readings):

* Classify: physics object type;

* Regress: physics object energy;
* Transcript: “a shower with symmetric and narrow energy deposition up to the second calorimeter

layer. Mainly electromagnetic.”.
Common set of tools to manipulate/model/visualize data, i.e.:

» Statistics (Inference, ICA, NMF etc.);
* Machine Learning (SVM, NN, SOM).

Tools capable of doing that are not new, what changed? 5




Domain Knowledge: Calorimetry

Particle shower: process resulting
from the interaction of some physics
objects with the calorimeter;
Culminates in a successive
multiplication of the number of
particles with lower energy in an
approximately conic geometry;

The calorimeter is instrumented to
collect signals that are, as much as
possible, directly proportional to the
energy lost by the physics object in
sensitive regions (cells);

These signals are collected in pulses
(time-series) that are used to
perform many tasks, mainly:

* Regression of the physics object
4-moments; https://cds.cern.ch/record/1096081

* C(lassification of the physics
object type. 6



Domain Knowledge: ATLAS Cal. Instrumentation

Tile barrel

Tile extended barrel
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* Up to 7 longitudinal (physics object travel
direction) samplings: 4 electromagnetic (EM, with
one pre-sampler: not always considered as EM) +
3 hadronic (HAD);

» Different technologies/materials employed in the
instrumentations (precision calorimeters);

» Different granularity (cell size)/samplings;

* The calorimeter instrumentation is symmetric (but
with some non-uniformities) in any plane slicing
ATLAS in a normal direction to the beam-axis and
passing through it;

* But not if we slice it in planes parallel to the end-
caps:

e Changes in granularity;
* Amount of material in the instrumentation.
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ume we have some expert

owledge about all the details on how

we collected data in an HEP

experiment;

And we want to search for new physics;

ATLAS calorimeter systems have 200k

‘readout cells + information from many

(\J other systems (data fusion);

. One could process all readout
information directly to search for a

/’é’ hysics process:

* |.e.search for the Higgs boson
processing the pulses from 200k
readout cells...

Would require a lot of resources :
* High-dimensional representation;
Rare observation of the Higgs
boson decays:
-
e ATLAS estimated 200 H->gg
observations in its discovery.
* High-input rate: recorded data
contained 2.2 trillion bunch-
crossing events;
e Bigdata (2.6 PB).

ATLAS

EXPERIMENT



OATLAS

EXPERIMENT

* However, we can consider:

* Readings are sparse;

* We have a set of physics object

(electrons, photons, jets, taus,

muons) that we know

beforehand how they should
behave;

These physics objects can be

part of our interesting new

physics;

» Signatures left by physics
process can be grouped
together;

Make our analysis easier: we

reconstruct physics in steps,

generating objects of gradual
higher level of abstraction!




Domain Knowledge: Reconstruction of Physics Objects

reconstruction

Detector level

Calorimeter Tracking

Energy pulse Hits

Physics object

Topo-clusters

Reconstruction (Se'ecttomlustersJ

of electrons GSF refit tracks loosely | ..........cceesuneen -

an d p h OtO ns matched to clusters H

Match tracks to to E

( clusters D F :

ch conversion y

vertices t0 topo-  lgeesunes ( Buld ﬁ?venim )
clusters y Ll
Seed electron superclusters g Seed photon
from track-matched topo-  presssssssssssnsnsanas superclusters
clusters from topo-clusters

Add satellite secondary
clusters to electron
SUDEeI( SLEIS

) ( Match conversion J

(Match tracks again vertices again

Ambiguity-resolve .
electron and photon
L superclusters

Build and calibrate
final electrons and
photons

Calculate particle ID

Cell energy *ié\l:/:?

Add satellite seconda D F
clusters to photon

Apply calibration Apply calibrations/
corrections corrections

Low-level
information

High-level

information

Data fusion: combining
data to estimate or
forecast a state of an
entity.

TR

Regression: predict a
continuous numerical
value given input;

£aE

Classification: predict
which of k categories the
input belongs.
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.
.

OATLAS

EXPERIMENT

3 b-tag jets, 6 non b-tag jets,
2 electrons

Make our analysis easier:
reconstruct physics in steps,
generating objects of gradual
higher level of abstraction;
e Analysis can be performed
using expert solution at each
one of the tasks without

needing to do it yourself!
. No&:ed to be a complete

expe rtin{rv task;

Run: 300571
Event: 905997537

2016-05-31 12:01:03 CEST
11



Deep Learning: New set of tools

What changed?

Patterns e
Shower shapes
. . T
Energy pulse Cell energy Topo-clusters Super-clusters - —eThood =
CaloRings VILP Enerey
I I BDT

| Low- eve High-level
information information

C1: feature maps

INPUT 6@28x28

32x32

S2: f. maps
6@14x14

Convolutions Subsampling Convolutions  Subsampling

C5: layer "
120 ':8?1 layer ?BJTPUT

Full connection

LeNet
Foun d ways to Low-Level| |Mid-Level| |High-Level| | Trainable
Feature Feature Feature Classifier
4 4 | N

improve learning
process;

Extract
subsequently
higher level of
information
abstraction.

ImageNet (Zeiler & Fergus, 2013)

Gaussian
connections

Full connection

l.e.: In convolution
neural networks (CNNs):
* Parameter sharing:
use same parameters
for several inputs;
Sparse
representation:
consider only a small
set of the inputs at a
time; 5

* Also: 1D, 3D etc.




Approaching the Problem as a Data Scientist

Patterns

Tag

Energy pulse Cell energy

Energy

T

) High-level
information information

How would a data scientist (with no feedback from
domain knowledge) probably approach the problem:

BT > T T <

Energy

If performance is better, then set to
operate and publish!

But, what are the drawbacks?

13



Domain Knowledge Matters

But, what are the drawbacks? (and many more)

 Domain knowledge is lost:
* Probably the main reason for the feeling of using a black box solution!
* Fully counting on the operations computed by the model and the set of rules used for
it to update its parameters;
e The rules are updated using measurements that may not consider all nuances involved
in the final goal (physics analysis);
* Complex models are more plastic w.r.t. simpler ones:
* Cross-validation can help to mitigate overfitting at where we have plenty of data;
* But, in HEP, models can be (and are) set to operate where we lack data...
* Risky to extrapolate model with no domain knowledge (operate it on other conditions
then it was trained/evaluated data), specially plastic models.

P (or adventure through
How to approach the problem?- R,

Add data value architect(s) and domain expert(s) to the team!

ations ano Evaluate using proper
ode perf. measures

2D/3D shower pecialized NI
representation efelc Energy 14




Deep Learning is not a One fit All Solution

* Alot of data is required to be able to * Learning process requires a lot of
successfully build the patterns with Deep computational power;
learning; * Demand specific hardware.
» le.: regression task with 7- R o H

- ATLAS Tile Calorimeter

dimensional input space for the o o cotna Out-of-time pile-
ATLAS TileCal; ot | Up @ +50 ns
« Domain knowledge: task does ’

not require fusing too much R RS R,

Time [ns]

information. ectronic Noise Signal pile-up

shaper Gaussian perturbation g Q Non-Gaussian perturbation

Energy pulse Current approach:
If only electronic noise: G e Considers pile-up contribution as
* Shaper: makes the signal to have fixed—— = additional noise using the same
size length; approach;
* Remaining task: estimate amplitude; * However: non-linear
* Optimum filter: Define a weighed contributions (need to access
sum that corresponds to the high-order stats.)

minimum variance under electronic
noise only conditions;
15



Cell Energy Estimation with ML

“Nonlinear Correction for an Energy Estimator Operating at Severe Pile-Up Conditions” (2017)

2 12

Arbitrary unit

l.e.: regression task with 7-
dimensional input space for
the ATLAS TileCal;

T T T T T
[ Mustration of out-of-time pile-up (+ 50 ns)
ATLAS Tile Calorimeter

- Tile Calorimeter

Out-of-time pile-
up @ +50 ns

= Ol \le =

Gaussian perturbation g

L L L L L
B0 60 -40 -20 0 20 40 60 80

Time [ns)]

Signal pile-up

QNon-Gaussian perturbation

Energy pulse

2

Use Maximum Likelihood
Estimation (MLE);

Linear estimation G

Cell Energy

g Estimate non-linearities with
machine learning methods
(shallow learning MLP)

g @ Q « ML only learns to correct non-

linearities and high-order stats;

Allows access to linear estimation.

Cell Energy

Further improvements could be achieved
if proper handling data fusion strategy

allows online operation (faster)
and possibly near optimal perf.;

e MLP does not need to be dense:

2

Cell energy estimation may consider
neighboring cells to improve estimation

16



Electron Energy Calibration

ATL-PHYS-PUB-2017-022 Run 2

Run 1

Calibration of EM particles: Super-clusters

+ . .
3 5 All &%, y: Electrons only:
. . ini Add all clusters within 3 x 5 window Seed, secondary cluster
simulation lt\;laénll)ng 0‘; R rei?luetiin around seed cluster. match the same track.
-pbase b F—
X . . v
ely calibration smearing H -

] &

EM MC-based calibrated 3 e

X x

cluster ely energy ely 4 © o

energy calibration energy
2 longitudinal 4 3x0025 5x0.025
data ongitudinal - . Z2>ee
——> Jlayerinter- [~ | uniformity Lo e > Converted photons only:
calibration corrections calibration Add topo-clusters that have the same conversion  Add topo-clusters with a track match that is part of
vertex matched as the seed cluster. the conversion vertex matched to the seed cluster.
BDT 6 Jp>ee Z3lly
data-driven scale validation -
A

Expert knowledge to handle
asymmetric shower development

Select topo-clusters
GSF refit tracks loosely |, ... ..ceuvennneees -
matched to clusters H
Match tracks to topo- :
clusters H
- v
Match conversion Buid -
vertices to topo-  fguesnssas
clusters

Track-based

Seed electron superclusters : Seed photon
from track-matched topo- ~ fe=sssssssssuannannnns superclusters
clusters from topo-clusters
o et o Add satellite secondary Add satellite secondary
7 h . h I I * e, . clusters to electron clusters to photon
- H H H H lust lusts
Igh-level™ quantities * High-level information in a context of superdusior suparcysor

data fusion, i.e. require many sensors to corrections corrections
be obtained. ((ateh tracks agai _ (Meneorvene )

A olve ),
electron and photon
superclusters

Build and calibrate j
final electrons and  |****" ' Calculate particle ID '

photons

Super-cluster asymmetric
shower improves quantities
used on calibration

Tee




ATLAS Trigger System: 2017 Challenges

“Neural second-level trigger system based on calorimetry” (1996)
Hardware Software

25 Us 550 ms
A 1

o Calorimetric information plays an
important role for online
reconstruction:

o Fast readout and data
manipulation (w.r.t.
computing vision methods in
tracking);

o In 2017, reprocessings showed an
urgent need to reduce HLT
processing demands (otherwise s==&==

1.7 MB per event

[T|=~1kHz | ORGSR
T<1,5 kHz
~1.7 GB/s

Precise
2<ms/event> 41+18+5<T5/eent> 11<ms(event> 26+...<mf/eve >

- —
N
&V

great impact to physics analyses); x
, Early 2017 nominal electron HLT
Electron chain: B

o One of most relevant opportunities was at the FastCalo step (first HLT decision,
calo-only):
o NeuralRinger: Use of Machine Learning to reduce its processing rate!

18
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Er Ratios
- 15000 e
E32, ® Widths 37 oawowrmn ]
R¢) S2 > [ 1 Non-diffractive minimum bias MC )
Bz n S SETRE ;‘é_’ [ ATLAS Preliminary i
5 = LA t i L _
Wy, 2 ZEZ ZEl ) 100007 ]
E%a Width in a 3x5 (AnxA) region H E
Second Layer RHad — 5 of cells in the second layer. nN—— @ [ ]
T a N |
Hadronic w. — Z Ez (Z — 7:lna,x)2 r 7
\ s — -~ . -
Strips ESl 2o E; L i
1= Vo | | ws3 = w, uses 3 strips in n; L i
wstot is defined similarly, RS ST AR IR IR RN Dt e
E?l — E351 Tot. ...-IIII |I.|... but uses 20 strips. 2 035707 005 0 005 01 015 02
side — ESl E_rFad/E$M (L2)
3
Electrons Fakes

Electrons

(EM.2)

6000

Fakes (EM.2)

5000

4000

3000

2000

1000

New

o Ringer Shape:
o Concentric rings are built for all
layers;
o Compact cell information used
to describe the event throughout
of the calorimeter
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Ringer Reconstruction

o Explore approximately conic structure of the
shower;

o Ringer

reconstruction setup in

Calorimeter Reconstruction:
o Built from all calorimeter layers, centered in a

PS

©)

window from the cluster barycenter,

the

First ring in each layer is the cell closest to

cluster barycenter,;

The next ring is the collection of cells around

the previous one; ring value is the sum Et of

all cells composing the ring.

Total number of Rings per layer
(covering 0.4 x 0.4 region in n x ¢)

EM1 EM2 EM3 HAD1 HAD2 HAD3

64 8 8 4 4 4

Total: 100 rings

0’

Electrons

L1 selects a window of:

~1000-1200 cells

1 2 3 4 5 6 7 8
Rings

0

1 2 3 4 5 6 7 8

Rings

Fast

Efficient

Fast Track Reconstruction
Fast Electron Reconstruction

Efficient Electron
Pre-selection

Precision

Precise Calorimeter
Reconstruction
Energy Calibration

Calibrated E;
Selection

Precise Track Reconstruction
Precise Electron Reconstruction

Precise Electron
Selection

20




Rings: Machine Learning Point of View

Approx. conic shower
development

Hypothesis
testing

o wlods -
|
I$ knowledge C‘I$ Hoee I$ Tag

Advantages: ;. |
2 ﬁ
v’ Data compaction: typical 1000-1200 Rol i | Yo
: p S > s
cells to 100 rings; R
v Dimension reduction using specialist o
knowledge: middle-term patterns are Limitations:

understood (when compared to pattern
engineering obtained from deep learning):
O May be helpful to understand deep
learning patterns/model behavior;

v’ Keeps the physics interpretation: explores
lateral/longitudinal information of shower
developments, as standard shower shape
guantities;

v' Really fast computation (~100us).

O Currently, it does not account for
granularity changes w.r.t eta;

L Compaction comes with a cost:
asymmetries in the shower development
and other unknown discriminating features
that could be built through deep learning
are lost.

21



* Single-layer (tanh) fully

NeuralRinger Ensemble
connected MLP models

o Domain knowledge (physics analysis): deal E; [GeVi= 115, 20, 30, 40, 50, ] 20 MLPS

. ) * n=[0,0.8,1.37,1.54,2.5]
with changes in the detector response

* Event outside bins use

according to energy/position of the nearest MLP to extrapolate; U, |
incident physics object by folding them in Ensemble Composition
bins;
o Pseudorapidity: Detector granularity, * Single Output node (tanh):
X0 etc; * Electrons: +1;

* Background: -1.
o Energy: Affects shower development;

o Rings are also subject to distortions as the
standard shower shapes: « Use of shallow learning MLP
o Use an ensemble of neural networks: (1 single layer)

natural way for approaching the Triggfc:lr Operati‘z” W;tr?o‘;f‘n
. an oTTline counter usi . .
problem (offline ID); P & MLP Training

. . similar method;
o Fast decision computation: (~10us);

o Other motivation: deal with big data, = educe problems when

extrapolating to higher * More difficult to evaluate
energy operation; systematic effects on
rejected samples.

22



Tuning Procedure/(Hyper)Params

* Use specialist knowledge:
normalization by the absolute sum Pre_processing
of the rings energy;

e Keeps shower shape
lateral/longitudinal profile
easy to understand;

e Simple, efficient and
aparametric approach;

Decision Making

weights

o Set the non-linear transfer function inputs
(tanh) in the output neuron as linear

for operation. 74 R
o Then: MLP can be used to apply pile-

._. transfer
function Transfer
up correction by computing the xn‘@/ e

threshold as a linear function of a f

global pile-up estimation (mean
number of collisions); This was set to a linear function

23



I

I

Fast Shower Shapes Ringer Reconstruction |
reconstruction |

I

Cut-Based Selection

Track reconstruction

L

/ Selection
T

Fast Calorimeter Reconstruction

Efficient

Fast Track Reconstruction

Fast Electron Reconstruction

Efficient Electron
Pre-selection

Track cuts

Precise Shower Shapes Reconstruction

Energy Calibration
Precise Et cut

Precise track reconstruction

I
q
Electron Identification based on the Likelihood at I
L relevant quantities (calo+track) + Pileup correction I\Ig\

Precision

Precise Calorimeter
Reconstruction
Energy Calibration

Calibrated E;
Selection




Trigger Efficiency

Operation (2017 collision data):

e28_lhtight_nod0_noringer
o Used a backup trigger with the previous cut-
based selection to assess:
o Efficiencies changes;
o Impactin the offline (T&P systematics).

o Clean unbiased samples given by the tag &
probe method,;
o Kept HLT signal efficiency unchanged after the
switch in early 2017:

o Estimated primary chain latency

reduction: ~200 ms to ~100 ms;

o Higher rejection power (~2-3X);
o Estimated electron + photon slice: ~1/4
latency reduction;

Trigger Efficiency

1.4

1.2

0.8

0.6

0.4

0.2

ATLAS Preliminary 201 7 TI erO

Data 2017, Is = 13TeV, ILdt =287 v without Ringer
HLT_e28_lhtight_nod0_ivarloose_L1EM24VHIM O  with Ringer
W ®
"

Without Ringer
¥ With Ringer

N -

-

PR B oo o by oo by o by by by by
Q70" 20™ 30 40 50 60 70 80 90 100

Offline isolated electron E. [GeV]
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/Egamma

TriggerPublicResults#tPerformance of Ringer in Trigger
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Trigger as a Hybrid Method

All algorithms must be
consistent: offline is the
reference for analysis

Precise

Offline

Ensemble of Neural Networks
(2017 for E; > 15 GeV): reduces
HLT farm processing demands

Final HLT decision (2015): major
determinant for the output rate

HLT Farm @ electron + photon slice oo Output rate:
;3 ATLAS Trigger Operation - - Physics stream MET
2 2500 HLT Physics Group Rates (with overlaps) - ;I:z:on o ::zmn
_ 2 5 % | 5 pp Data June 2017, vs=13 TeV -t B-physics
O a . b-jet s Combined
© 2000
o
=
5 1500
T

1000} "RY

500

008:25 09:15 10:05 10:55 11:45 12:35

13:25 26
Time [h:m]



Offline Impact

Probe profile due to changes in Z Tag systematics [ To Verify impact on the offline

3
x10
o 1407 E e
b FE, >40GeV ATLAS Prellmlnary
5 © without Ringer
o 120* Vs =13TeV — with Ringer
(&) - 0.00 <n<0.60 4
100 r Data 2017, ILdt =1541b
~ 450 T
C 400 . .
80| 350 Without ringer
t 300
F 250 . )
601 200 With ringer
[ 150
405100
L 50
20 %
0 Ll Il
w5 0.2 e T T T
bg-) E ) o 4 %S%Oeoo & ° :o 007
o o1 e R -
g of 2l
c E g 250 0BTR
8 —01; o % @%@om(’o 09"“)(980 ‘bé%voo?
B o8 o ° o o E
o -02fF ° e =
< 0 01 02 03 04 05 06 07 08 09 1

Eratlo

Eratio = (E1max1 - E1max2)/(E1max1 + E1max2)

systematics after the introduction of
the ringer in the trigger sequence:
v We assess the A(counts)/o (~chi
residuals in black markers)
where the ringer histogram is
used as a model to the baseline
histogram (experimental
outcome).
m Residuals are small and oscillate
freely around zero, which suggests

absence of bias.
https://cds.cern.ch/record/2629408/files/ATL-COM-
DAQ-2018-120.pdf
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Pre-processing

Rings are statistically dependent: we could further

compact our dimensional input through pre-processing: One way of obtaining PCDs using MLPs

— Pre-processings can make the feature space more
discriminant. x

Well-known procedure is to use Principal Component wi
Analysis (PCA) to decorrelate information and keep only ™
a fraction of the original variance;

— Optimal for Gaussian processes;

Principal Components of Discrimination (PCD) X
concentrate information based on their discrimination
power;

— More suitable for classification tasks;

Toy with two 2D gaussians

Original base All PCAs projection Original base

01

All PCDs projection

O Class A
2of | Class B

——
JF [0l A 0 Clost A
/ [ Class B o o TN
Aol g Sier]
‘F g .
34 1 L. es
i
Ly 2

8 3 B P
T T T T

13 3 o 2 3
T T T

s 8 8 5 & 3

T  phdd T | hhdd |
3 % 8 3 3 8 3 8
' ' T T T ] ' L)

3 & % u ¥ =
L Mdd Al M M |

1st PCA projection o an PCA prOjection 1st PCD prOjection

27d PCD projection
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Pre-processing

Independent Component Analysis (ICA) seeks statistical independence rather
than data uncorrelation:

* |.e.:retrieve the independent sources that can generate the rings (or

shower shapes) by mixing them;

Considers higher order statistics, being more suitable than PCA for non-
gaussian processes;
Variants consider the separation of independent sources non-linearly (NLICA)
mixed, i.e.: use self-organizing maps (SOM) lattice positions;
Another approach NMF (Non-negative Matrix Factorization) is to optimize new
basis divergence value at some non-negative measure.

SOM 2D lattice grid
Observed — aitesmiosssnssssa o

signals
X1 I> o) 0O o) 'e) Can use SOM lattice
X2 | o P P P ] GRIDs > 2D if suitable;

Independent
components

29



Mitigating Dependencies in Likelihood

Remove associated
variab.lo.s

probability

Kernel 2D made
using associated
variables

How to evaluate dependency:

Using mutual information

I(X;Y)=H(X)-H(X/Y)
¥ i

IEntropv I ICondItlonal Entropy I

* Considering effects on AUC

—
‘Joint’

-

Joint’

PDF

N
Marginal

.

AUC

=

Y
Marginal

PDF

AUC
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Increasing TileCal Granularity with ML

Under severe pile-up conditions,
detector granularity can be essential to
successfully perform the required tasks;
Increase granularity without changing
the mechanical structure of the
detector;
Use a multianode 8x8 signals;
NMF+MLP and CNN with very near
efficiency (dataset with ~120 samples); IO == iBerpan.. 108 D(@) - $E- log(1 - D(G(2)
Use GAN to increase statistics; I
Results (evaluated CNN only) suggest
that a 2x granularity is feasible: - ~
* 4xin the barrel? To be investigated. / N

D: Discriminator

G: Generated Data R: Real Data 31



Data fusion using Expert Neural Networks

“Particle Discrimination using Matched Filters and Expert Neural Networks” (1999)

* The concept of considering sparse connections may take advantage of construction
frontiers;
e ATLAS TileCal discrimination capabilities was considered using a prototype;
* Prototype had 2 longitudinal samplings:
* Input space are the cells of the prototypes;
* Use one expert MLP to each sampling (input dim: 200, 46);
* Fuse their information using the hidden layers outputs with another MLP;
* Objective is to extract expert features and then to make classification upon this
features.

Expert Neural Networks Fusion Neural Networks

Output Layer
Removal

Initialization Tuning

Initialization

Tuning
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ML in Code Assertion for ATLAS TileCal

TileCal has its own web-based collaboration development tool:

* Integrates data-quality, calibration, developments;
To avoid overloading the main server, the jobs are sent to other servers;
These jobs can contain flaws that could waste resources:

* j.e. make serves unavailable for essential services;
The system uses a BDT upon a set of code quality factors to indicate whether
the code is executable or not executable;
Improve results w.r.t. static code assertion (pylint).

ReadSkimmedNtuple
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Anomaly Detector

* Aonamly dteetcion;

« Japanese ancient proverb: % #1 |& $Tf- L 5;
* Or: Nails that stand out are hammered;

* Examples of special nails (subjective):

“Pile-up”: same class

34

Novelty: new class



Anomaly Detector

Convolution

* Simple but efficient approach: add a threshold
to every known class;

* Ifinput does not pass all-class thresholds,
then it may be a anomaly/novelty.

Classifier E> Novelty Detection

T -

Novelty
Threshold

Known
Classes

Pooling

I ——-
Feature u Feature | |
|| Maps

Maps

\4
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Fault Detection

Failures produce a negative impact on the
safety of any process plant;
The consequences of a gross accident are
even more serious (Himmelblau, 1978);
l.e. (Sutherland, 2016):

* Eleven workers lost their lives.

e Sinking of the Deepwater Horizon rig.

e Massive marine and coastal damage.

* One of the largest environmental

disasters in US history;

Problem: traditional Fault detection and
diagnosis (FDD) methods are unable to
consume the huge amount of the data
available nowadays;
Common phenomenon: Large volumes of
data with very little information (Dai, 2013);
Opportunity: Investigate the use of Long
Short-Term Memory (LSTM) recurrent neural
network in FDD applications.

* Inputis considered as sequential data
(usually causal relationship);

* Parameter sharing (same weights
applied to every input);

e Add paths to make learning gradients to
flow for long durations by using a
dedicated unit: allow time-scale (range)

integration to be adjusted dynamically.
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Conclusions

o HEP Experiments, Data fusion and Deep Learning:
o Physics reconstruction builds objects of gradual higher level of abstraction by
sequentially fusing more information together:
o No need to handle all information at once, makes process easier;
o Deep learning models usually proceeds in similar fashion, making learning
process easier and more likely to be successful:
o One key element is parameter sharing (but beware, not always a
reasonable priori);
o LHC upgrades with severe signal pile-up conditions may require to revisit how
we perform data fusion.
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Conclusions

o Use of Machine Learning:
o Domain knowledge cannot (or shouldn't) be replaced:

o Never forget model extrapolation;

o A more powerful approach can be formulated if considering particular
information already known (no need to approximate it);

o Machine learning should approximate what is needed: think of ways to add
prior information to the model learning process and you will probably end
up with a less complex model (more reliable) and eventually more efficient;

o Build a multidisciplinary team and collaborate -> benefit of collective
knowledge:

o Other field solutions may be pretty useful for the problem and eventually
domain experts might not even know that it exists (that's what the data
scientist and data value architect are there for);

o But usually other field solutions will need to be adapted to your needs,
that's where a good teamwork takes place.
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