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 MLIA is the Machine Learning team at the computer science lab of
Sorbonne

* Main research topics
 Machine learning
* Representation learning and Deep Learning

* Transversal activity, models and algorithms, several application
domains

e Structured data
e e.g. Xtreme classification, sequences, graphs, spatio-temporal data,

e Application domains
* Computer Vision
» Classification, detection, segmentation, Visual QA, ...
e Natural Language Processing and Information Retrieval

* Information extraction, interactive IR, language grounding, language
generation

e Complex data analysis
* Social data, mobility data, interaction traces, recommendation, etc
e Data models for climate
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Outline

e Panorama of the evolution of the domain
e 1960 - Early Days —Fundamendal concepts of Machine Learning
e 1990 - Non Linear Machines — Statistical Learning Theory

e 2010 - Deep Learning — Large Size Industrial Applications
* NN bricks
e Convolutional Neural Networks
e Recurrent Neural Networks
* Unsupervised learning
* Generative models

e Some examples from MLIA



1960 — Early days -

Fundamendal concepts of Machine Learning



Neural Networks inspired Machine Learning

* Artificial Network Networks are an important paradigm in Statistical Machine
learning and Artificial Intelligence

 Human brain is used as a source of inspiration and as a metaphor for developing
Artificial NN

* Human brain is a dense network 10'* of simple computing units, the neurons. Each
neuron is connected —in mean- to 10* neurons.
e Brain as a computation model

* Distributed computations by simple processing units
* Information and control are distributed

* Learning is performed by observing/ analyzing huge quantities of data and also by trials
and errors
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Formal Model of the Neuron
McCulloch — Pitts 1943

Dendrites
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A synchronous assembly of neurons is capable of universal
computations (aka equivalent to a Turing machine)
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Perceptron:
inspiration from perception (1958 Rosenblatt [,
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ﬁft Association cells Decision cell (Figure from Perceptrons, Minsky and Papert 1969)

e The decision cell is a threshold function (McCulloch — Pitts neuron)
o F(x) =sgn(Qimqwix; +wy)
* This 1 neuron-perceptron can perform 2 classes classification
error

* Sample an example
* If badly classified, update the neuron weights
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Perceptron:
properties - convergence and generalization bounds

e Convergence theorem (Novikof, 1962)
e LetD = {(x}, 1), ..., (xN,y")} a data sample. If
+ R = max |
1SLSN_ _
e sup min d‘(w. x‘) > p
w l
e The training sequence is presented a sufficient number of time

: : R? :
e The algorithm will converge after at most [?] corrections

e Generalization bound (Aizerman, 1964)
* |f in addition we provide the following stopping rule:

* Perceptron stops if after correction number k, the next m;, =
data are correctly recognized

e Then

e the perceptron will converge in at most1 <

1+2Ink-Inn
—In(1-¢€)

1+4InR/p-Inn
—In(1-€)

[R?/p?] steps
e with probability 1 — n, test error is less than €
Link between training and generalization performance
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Adaline (widrow - Hoff 1959)

- ADAPTIVE
Pll':enl :- SIGNAL
il PROCESSING

Desired Response Input
e Conte (training signal)

* Adaptive filtering, equalization, etc.

e « Least Mean Square » LMS algorithm
2
* Loss function : euclidean distance: ||target - computed output”

e Algorithm: stochastic gradient (Robbins — Monro (1951)) i
* Workhorse algorithm of adaptive signal processing ]
e Simple, robust Nidrow-Science in Action - YouTut
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Summary

 Many of the main concepts of statistical Machine Learning are
already present in the early days
e Learning machine as alternative model of computations
* Inspired by animal perception
e Stochastic algorithms for optimizing loss functions
e Stochastic Gradient Descent (SGD)
e Target applications

e Pattern recognition (speech, image, etc), control, signal processing,
games, broom balancing ...

* A few performance guaranties assessed by generalization bounds
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fx) = o)
Multi-layer Perceptron pinton - sejnowski- witiams 1986 06 /

0,47+
/2 T
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* Neurons arranged into layers s 432101234053
e Each neuron is a non linear unit, e.g. f(x),= th(x)

f(w.x) .

0O

w: cell weight vector _/'“/
1

http://playground.tensorflow.org/

Note: © is a pointwise operator fO(xq,x3) = (f(x1), f(x3))
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Algorithmic differentiation

e Training algorithm
e Stochastic Gradient Descent
e Same as Widdrow-Hoff —LMS- rule
e The MLP implementation is called Back-Propagation

* Back-Propagation is an instance of automatic differentiation /
algorithmic differentiation - AD
* A mathematical expression can be written as a computation graph

* i.e. graph decomposition of the expression into elementary
computations

e AD allows to compute efficiently the derivatives of every element in
the graph w.r.t. any other element.

e AD transform a programs computing a numerical funtion into the
program for computing the derivatives



Algorithmic differentiation
Multi-layer Perceptron Training

e Computation graph
l(x;,y): loss

Forward propagation:
Sp = WnXn_q
Xn = 0(Sp)

y: target

N

B
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Algorithmic differentiation
Multi-layer Perceptron - Training

e Forward pass L(xy,y): loss

Sn = Wnxy_q

y: target Xn = 0(Sn)

N

B
ORORORORORY
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Algorithmic differentiation
Multi-layer Perceptron - Training

e Back Propagation: Reverse Mode Differentiation
l(x,,y): loss

y: target

N
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Algorithmic differentiation
Multi-layer Perceptron - Training

e Back propagation: Reverse Mode Differentiation
l(x,,y): loss

y: target

ar  al
ow, ds,

dl dl

—  — T
oW,  ds,
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Multi-layer Perceptron — Approximation Properties

e Universal Approximation

* e.g. Cybenko 89: Let fbe a continuous saturating function. The space of
functions of the form g(x) = ;-‘=1 Vjf (Wj..X) is dense in the space of
continuous functions on the unit cube C(/).i.e.Vh € C(I1)et Ve > 0,3 g :
lg(x) — h(x)| < €onl.

* Not a « constructive » result

e e.g. number of hidden neurons or hidden layers for a given problem?
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Generalization and Model Selection

e Complex models sometimes perform worse than simple linear

{:] in
m O d e | S Knowledge Experience ‘ g;s;;::ﬂtgyh
0

e QOverfitting/ generalization problem
0 oo Oo
e %, _EO

D (o}
e O\ ,:TO
e Empirical Risk Minimization is not sufficient

e The model complexity should be adjusted both to the task and to
the information brought by the examples

 Both the model parameters and the model capacity should be
learned

e Lots of practical method and of theory has been devoted to this

problem: regularization, ensemble methods, ...., Vapnik ERM/SRM,
PAC framework, ...
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Summary

Non linear machines

Fundations for modern statistical machine learning

Fundations for statistical learning theory

Real world applications

Industrial
Applications of

Neural Netwarks

Ware Ecterats

Also during this period
e Convolutional Neural Networks
e Recurrent Neural Networks
e Extension of back propagation
e Reinforcement Learning
e Early work mid 80ies
e Sutton — Barto Book 1998, including RL + NN

2018-11-16 Panorama of NN and Deep Learning
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2010 Deep Learning

Interlude
Convolutional Neural Networks
Recurrent Neural Networks
Unsupervised learning with generative models



Interlude: new actors — new practices

* GAFA (Google, Apple, Facebook, .
Amazon) , BAT (Baidu, Tencent,
Alibaba), ..., Startups, are shaping the
data world

. Resea.rch | Q DeepMind
e Big Tech. actors are leading the

research in DL
e Large research groups

2o
. . 020
* Google Brain, Google Deep Mind, Baid®IDL
Facebook FAIR, Baidu Al lab, Baidu S
Institute of Deep Learning, etc

* Standard development platforms, A | TErRnine
dedicated hardware, etc NVIDIA. | INSTITUTE
* DL research requires access to
ressources
« sophisticated libraries Facebook Al Researct

* large computing power e.g. GPU
clusters

* large datasets, ...

Tencent Al Lab

Make Al Everywhere
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Interlude — ML conference attendance growth
* Nips attendance (T. Sejnowski) e CVPR attendance

PedVin oW ad o Ta TV aal
6000 \.-VIIR GRVYY LT

Original slide

5000 Number of attendees at CVPR S

4000
3000
2000
III - il
0
-

2010 2011 2012 2013 2014 2015 2016 FFEE S S SO
year

e 2017 sold out 1 week after
registration opening, 7000
participants

e 2018, 2k inscriptions sold in 11
mn!

attendances
B E B8
B E B

=
=
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Interlude — Deep Learning platforms

e Deep Learning platforms offer ¢ Among the most populars

e Classical DL models platforms:

e Optimization algorithms * TensorFlow - Google Brain - <+

e Automatic differentiation Python, C/C++ e
» Popular options/ tricks * PyTorch — Facebook- PythonPYToreH
e Pretrained models e Caffe — UC Berkeley / Caffe2

Facebook, Python, MATLAB
e Higher level interfaces
e e.g. Keras for TensorFlow m

e CUDA/ GPU/ CLOUD support

e Contributions by large open
source communities: lot of

. . _
code available And also:

. _ * PaddlePaddle (Baidu), MXNet
e Easy to build/ train (Amazon), Mariana (Tencent),
sophisticated models PAl 2.0 (Alibaba), ..... Dnet
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Interlude — Hardware

e 2017 - NVIDIA V100 — optimized for
Deep Learning

3X Faster on Deep Learning Training
8xXVvioo —
s

8X P100

8X K80 S —
s

2X CPU -

Time to Salution [in Hours|

e “With 640 Tensor Cores, Tesla V100 is
the world'’s first GPU to break the 100
teraflops (TFLOPS) barrier of deep
learning performance. The next
generation of NVIDIA
NVLink™ connects multiple V100 GPUs
at up to 300 GB/s to create the world’s
most powerful computing servers.”

e 2017 - Google Tensor Processor Unit

2018-11-16 Panorama of NN and Deep Learning
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Deep Learning Bricks

Convolutional Neural Networks

Recurrent Neural Networks

2018-11-16 Panorama of NN and Deep Learning
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Convolutional nets

e ConvNet architecture (Y. Le Cun since 1988) — (inspired from Huber-
Wiesel model of visual cortex — 1962 and Fukushima -Neocognitron 1980)

e Deployed e.g. (Bell Labs -> NCR) in 1989-90 for zip code recognition

e Character segmentation and recognition
e Convolution with learned filters: non linear embedding in high

dimension
. Layer 3
e Pooling: average, max o .
Layer | V56 @ | x Output
| 6ax75x75  LAyer2 meai 101
i 64@ 14x 14
83x83

=

0x9
10x10 pooling,  convolution

convolution N S , I6x65p00hng
5x5 subsampling (4096 kernels) .
(64 kernels) X4 subsamp
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Convolutional nets (krizhevsky et al. 2012)

* Alandmark in object recognition - AlexNet

* ImageNet competition
e Large Scale Visual Recognition Challenge (ILSVRC)
e 1000 categories, 1.5 Million labeled training samples
* Method: large convolutional net
* 650K neurons, 630M synapses, 60M parameters
 Trained with SGD on GPU '
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Very Deep Nets trained with GPUs

Deeper Nets with small filters — training time several days up to 1 or 2 weeks _°
on ImageNet

Oxford, [Simonyan 2014],
Parameters 138 M

VGG, 16/19 layers, 2014
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Google, [Szegedy et al. 2015], Parameters
24M

GoogleNet, 22 Iaye;s, 2014

a0
ResNet. 152 Iayers 2015 MSRA, [He et al. 2016] , Parameters 60 M
e S L
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Convolutional Nets
ILSVRC performance over the years

Classification Localization
0.26 o )
g © 04
(@) o 0.34
c 0.2 c 0.3
2 0.16 & 03 0.25
_S 0.12 ﬁ 0.2
= 0.1 =
N 0.07 ©
S 0.036 S 0.1 009  o.077
(._> . 0.03 |
0 | i | 0
2010 2011 2012 2013 2014 2015 2016 2011 2012 2013 2014 2015 2016
ILSVRC year ILSVRC year
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CNNs — Transfer learning -Images from different

nature,M2CAIl Challence
(R. Cadene 2016 @ Sorbonr

* Endoscopic videos (large intestine)

e resolution of 1920 x 1080, shot at 25 frame per second at the IRCAD research center in Strasbourg,
France. 27 training videos ranging from 15mn to lhour, 15 testing videos

e Used for: monitor surgeons, Trigger automatic actions

* Objective: classification, 1 of 8 classes for each frame

e TrocarPlacement, Preparation, CalotTriangleDissection, ClippingCutting, GallbladderDissection,
GallbladderPackaging, CleaningCoagulation, GallbladderRetraction

* Resnet 200 pretrained with ImageNet -> reaches 80% correct classification

| Model | Input | Param. | Depth | Implem. | Forward (ms) | Backward (ms) |
Vggl6 224 138M 16 GPU 185.29 437.89
InceptionV32 | 399 24M 42 GPU 102.21 311.94
ResNet-2003 | 224 65M 200 GPU 273.85 687.48
InceptionV3 399 24M 42 CPU 19018.82 23010.15

Table 1: Forward4+Backward with batches of 20 images.

InceptionV3 Extraction (repres. of ImageNet) 60.53
. InceptionV3 From Scratch (repres. of M2CAl) 69.13
InceptionV3 Fine-tuning (both representations) 79.06
ResNet200 | Fine-tuning (both representations) 79.24
2018-11-16 31

Table 2: Accuracy on the validation set.



CNNs — Transfer learning - Images from different
nature, Plant classification (Y. zhu- 2017 @ Sorbonne)

* Digitized plant collection from Museum of Natural History — Paris
e Largest digitized world collection (8 millions specimens)

e Goal
e |dentify plants characteristics for automatic labeling of worlwide plant collections

e 0(1000) classes, e.g. opposed/alternate leaves; simple/composed leaves;
smooth/with teeth leaves, ....

* Pretrained ResNet
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CNNs for Object detection
Case study: YOLO (Redmon 2015) - Design and Training

e Pretrained on ImageNet 1000 class

 Remove classification layer and replace it with 4 convolutional
layers + 2 Fully Connected layers

e Activations: Linear for the last layer, leaky reLu for the others

e Requires a lot of know-how (design, training strategy, tricks, etc)
* Not described here — see paper...

* Improved versions followed the initial paper

e Generalizes to oth¢ g

2018-11-16 Figure 6: Qualitative Results. YOLO running on artwork and natural images. It is mostly accurate although it does think one person in
an image is an airplana.



CNNs for Image Semantic Segmentation

e Obijective
* |dentify the different objects in an image

e Deep learning
* handles segmentation as pixel classification

e re-uses network trained for image classification by making them fully
convolutional

e Currently, SOTA is Deep Learning

e Main datasets
* Voc2012, http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
e MSCOCO, http://mscoco.org/explore/

2018-11-16 Panorama of NN and Deep Learning
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Deep Learning Bricks

Convolutional Neural Networks

Recurrent Neural Networks

2018-11-16 Panorama of NN and Deep Learning
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Recurrent neural networks - RNNs

e Basic architecture: state space model

v

memory " W

U

 Up to the 90s RNN were of no practical use, too difficult to train
 Mid 2000s successful attempts to implement RNN
e e.g. A. Graves for speech and handwriting recognition
 Today
 RNNs SOTA for a variety of applications e.g., speech decoding, translation,
language generation, etc — today alternatives based on attention models

2018-11-16 Panorama of NN and Deep Learning 36



Recurrent neural networks
Language models

e Objective:
* Probability models of sequences (x1,x2, ..., x%)
* |tems may be words or characters
* Estimate:

- p(xt|xtY L x

prEdiCtiOI’] /I\ W
w

1

yE = g(Vst) st=f(Wst~1 + Ux?)

e Example

e « S’il vous plait... dessine-moi ...» what next?

o «xIx2x3 i x®y whatis xt?

N'OUBLIEZ Pff\s |
LES PAROLES |
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Language models — example: text generation

(Karpathy 2015- https://karpathy.github.io/2015/05/21/rnneffectiveness/)

* Training on Tolstoy’s War and Peace a character language model
e Stacked recurrent networks (LSTM)

tyntd-iafhatawiaoihrdemot 1ytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng

[ train more

"Tmont thithey" fomesscerliund

Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

\ train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort

how, and Gogition is so overelical and ofter.

l train more

"Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.
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Google Neural Machine Translation System

(Wu et al 2016)

https://research.googleblog.com/2016/09/a-neural-network-for-machine.html

e General Architecture

Encoder: 8 stacked LSTM RNN
+ residual connections

Encoder LSTMs

. ; ; _.é;_j -7 o.;toue Lsm;—,-

Attention
| mechanlsm

“%2

<js> —» y, —>

| layers
GPU3

GPU2

GPUZ |

GPUL |

e NMT seminal papers: Cho et al. 2014, Sutskever et al. 2014

Figure from Wu et al. 2016

e Comparison and evaluation of NMT RNNs options (Fritz et al. 2017)

e 250 k-hours GPU ->a 250 kS paper !

2018-11-16 Panorama of N and Deep Learning
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Unsupervised learning

e Example: Generative Adversarial Networks — GANs (Goodfellows
2014)

e 1750 GAN papers on Arxiv at 2018-11-15

2018-11-16 Panorama of NN and Deep Learning
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Generative models intuition

* Provided a sufficiently powerful model F(z)

* |t should be possible to learn complex mappings from latent space
to real world spaces such as:

F(z)

L, e

>

A

o\

o
’ F(z)
Latent.z space

F(z)
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Generative models intuition

e Given a probability distribution on the latent space p,(z), G
defines a probability distribution on the observation space

e Objective: sample from p,.(x) viap,(z) and G
s

p,(z) °® - Px(X)

® latent z space Real x space

2018-11-16 42



GANs examples Deep Convolutional GANS (Rradford 2015) -

Image generation

LSUN bedrooms dataset - over 3 million training examples

Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual

under-fitting via repeated noise textures across multiple samples such as the base boards of some of
the beds. Fig. Radford 2015

2018-11-16 Panorama of NN and Deep Learning
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Conditional GANs example

Generating images from text (Reed 2016)

e Objective

* Generate images from text caption
 Model: GAN conditionned on text input

e Compare different GAN variants on image generation

Image size 64x64 Fig. from Reed 2016
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MG O ORaG BUfas™
Figure 4. Zero-shot generated flower images using GAN, GAN-CLS, GAN-INT and GAN-INT-CLS. All variants generated plausible
images. Although some shapes of test categories wem not seen during training (e.g. columns 3 and 4}, the color information is preserved.
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Conditional GANs example — Pix2Pix
Image translation with cGANs (Isola 2016)

e Objective
e Learn to « translate » images for a variety of tasks using a common
framework
* i.e. no task specific loss, but only adversarial training + conditioning
* Tasks: semantic labels -> photos, edges -> photos, (inpainting)
photo and missing pixels -> photos, etc

Edges to Photo Input Ours

memmm ﬂﬁ
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Cycle GANs (Zhu 2017)

e Objective
e Learn to « translate » images without aligned corpora

e 2 corpora available with input and output samples, but no pair
alignment between images

e Examples

Input Output Input Output

apple — oane orange — a ple o ol

Figure 7: Results on several translation problems. These images are relatively successful results — please see our website for more comprehensive results.
Input Monet Van Gogh Cezanne Ukiyo-e

Fig (Zhu 2017)
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Summary

 Unprecedented developments in ML in general

e Conjonction of several factors

* Data deluge, Computing power, Free software ML libraries by major IT
actors

* Big players and fast « prototype to industrial deployment »

 NNs are today at the heart of this development

Powerful models

Modularity allows to build complex systems, trainable end to end
e Gradient everywhere

State of the art in many domains

Research driven by big IT companies!

Theory still to be developed!



Some examples from
MLIA@Sorbonne
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Gan

Multi-View data generation without view supervis

(Chen 2018)
e Objective

* Generate images by disantangling content and view
e Eg. Content 1 person, View: position, illumination, etc

* 2 |latent spaces: view and content
e Generate image pairs: same item with 2 different views
e Learn to discriminate between generated and real pairs

Column = view

l
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L take pair

> real pair

Column = view
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GANs
Unsupervised Adversarial Image Reconstruction
(de Bezenac & Pajot 2018 - submitted)

e Objective
e Infer an underlying signal

from incomplete/ noisy
observations

Convolve-Noise

e Context

e Unsupervised learning

e No access to (signal, lossy
observation) pairs

* No access to underlying
signal samples

:
* No hypothesis on the form -
f h . I nsuper ed, upervis ' upervised, uperv

t t t t
ot the signa el WERE SR ewaem

samples samples samples

Patch Band

Figure 2: Reconstuction capability for each of the models. Each row correspond to a kind of mea-

® Ava i | a b | e i nfo r m atio n S surement, and each columns to a different model
e Lossy observations

e Access to the corruption
process distribution
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Physico-statistical systems

* Context
e Develop the synergy between model based physically inspired
models and data science paradigm

* Model based approach developed in physics rely on an extensive
knowledge of the underlying phenomenon

» still open challenges, e.g. imperfect knowledge, specification of
functional relations impossible, etc

* Data science approaches offer a complementary/ alternative approach
when data characterizing the phenomenon is available

e Objective

e Develop the synergy between the two paradigms (physical and data
science)
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Physico-statistical systems

e |nstance

e PDE guided NN for space time dynamics

e Can we learn the dynamics of complex phenomena via a data based
approach?

* How can we take benefit of prior physical knowledge?

* Setting
e Spatio-temporal dynamical systems obeying:
o St = F(X,, DyX,) with DX, = (VX, V%X, ..)
* Questions

* How to forecast the evolution of X, from an initial state X|,

* |f we measure many temporal paths of X, is it possible to infer the
functional F?

 How to make F physically plausible?
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Incorporating prior knowledge
Physical model for fluid transport
Advection — Diffusion equation

e Describes transport of I through advection and diffusion

i

a—+ (W \7)] = DVZ

e [:quantity of interest (Temperature Image)

A : e -
s W= A—: motion vector, D diffusion coefficient

* There exists a closed form solution
o Iine(x) = (kxI)(x —w(x))

 If we knew the motion vector w and the diffusion coefficient D we could
calculate I,z (x) from I;
e wand D unknown
e ->Llearnwand D
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Prediction Model
Objective: predict I} 1 from past I, I;_4, ...

* 2 components: Convolution- Deconvolution NN for Warping Scheme
estimating motion vector w; Implements discretized
Advection-Diffusion
lution
Maod 1 Supervision 1
Past Images j:t+l t+1 Target image

 Endto End learning using only I;, 4 supervision
e Stochastic gradient optimization
2018-11-16 e Performance-on:par:with.-SOTA assimilation models



Physico-statistical systems
(Ayed et al. 2018 — submitted)

e General framework for learning spatio temporal dynamics
characteristics of PDEs
* Model
g * Infer current state from past observations
Xt = eu(Ye—kt1,--5 Ye) Y:_;, e,, problem dependent NN, here U-net
! )’ft+1 _ fg({rt) e Learn the system .dynamics sto as to i.nfer
R N next state, fy NN implementing a multi-step
11 = H(X¢g1) finite difference approximation of a PDE
o o e Predict next observationY;,;, Hisa
* Training criterion predefined mapping function
min £y,

B e ,...,Yk+1)eData [d(H(fg(Qw(}rl 4 =y }}\)))* }}14—1 )]

e Tnis Tramework potentially allows us TO learn the dynamics ot quite
general dynamical systems described by PDEs

e Different instances of the general framework

\
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Physico-statistical systems

e Example
e Euler Equations and Navier Stokes for incompressible fluids

& F 4 F 4 - -
il.
’ . r S S

- - - e -

Simulation : densities

Simulation : velocities

JT : densities

JT : state representation

PT : densities

PT : state representation
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e Thanks
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References and links

e Videos used in the talk

e Demo of LeNet — Early Convolutional Neural Network
http://yann.lecun.com/exdb/lenet/index.html

* NYU Semantic Segmentation with a Convolutional Network (33
categories)

https://www.youtube.com/watch?v=2JMtDRbgH40&feature=youtu.

be
e NYU Pedestrian Detection

https://www.youtube.com/watch?v=MnZNSZGNGyc
https://www.youtube.com/watch?v=UPVvd8WNUks

 Hand gesture Recognition
https://www.youtube.com/watch?v=GhqOMJIHD8A

2018-11-16 Panorama of NN and Deep Learning 58



General References

e The 1960s - Early days of Neural Networks

* Widrow B., Stearns S.D., Adaptive signal processing, Prentice-Hall,
1985

* Minsky M., Papert S.A., Perceptrons: An Introduction to
Computational Geometry, Expanded Edition, 1987

e The 1990s — many books were published at that time:

e Hertz J.A., Krogh A.S., Palmer R.G. Introduction To The Theory Of
Neural Computation (Santa Fe Institute Series), 1991, introduces a
variety of NN models developed in the 80es

e Bishop C.M., Neural Networks for Pattern Recognition, Oxford
University Press, 1995 ( you may also have a try at: Bishop C.M,
Pattern Recognition and Machine Learning, Springer 2006)

* Introduction to Statistical Learning Theory: Vapnik V., The Nature of
Statistical Learning Theory, Springer-Verlag New York, 2000

e The 2010s

* Many courses are available on line, for a book, you may have a look at
Goodfellow I., Bengio Y. Courville A., Deep Learning ,An MIT Press
book, http://www.deeplearningbook.org/
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