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_ in analysis

_ in reconstruction
_ in simulation
Wrapping up
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Focus on applications rather than details of the
techniques

Deliberately incomplete (sorry...)

No likelihood free inference, no classification without labels,

no review on ML software, no application to distributed analysis, no GAN to

uniformity, no Bayes optimisation, no reinforcement learning, no adversarial example, no probablilstic
programming, no learningwith quantum computing....

ML in HEP , David Rousseau, ILP ML, IHP




ML Basics
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Train on Signal and Background Monte-Carlo
=>learn the separation between S and B distribution
Apply on test sample

Apply on data

Note: instead of classifiying 0 or 1, can regress !

AUC : Area Under the (ROC) Curve
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f Clssmer (2)

i JHEP 04,117 (2015) 1501.04943
Boosted Decision Tree using ~a dozen of high level variables .
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ML on nggs Physms

At LHC, Machine Learnlng used almost since first data taklng (2010) for
reconstruction and analysis

In most cases, Boosted Decision Tree with Root-TMVA, on ~10 variables
For example, impact on Higgs boson sensitivity at LHC:

CMS Hyy 2011-2012 50%
ATLAS HrtT 2011-2012 > 84%
ATLAS VHbb 2011-2012 —_—— 73%
ATLAS VHbb 2015-2016 — 14%
CMS VHbb 2011-2012 125%
ATLAS ttH 2015-2016 > 900%

° 1 2sensmwty > ) O °

=>~50% gain on LHC running

ML in HEP , David Rousseau, ILP ML, IHP
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AIpH/aGo

Google DeepMind

“Artificial Intelligence” not a dirty word anymore!
We (in HEP) have realised we're been left behind! Trying to catch up now...

ML in HEP , David Rousseau, ILP ML, IHP 7



Multltude of HEP-ML evts

May 1o Septomber 2014
nggsML ChaIIenge summer 2014 147c High Enengy Pysic cts Machine Laseming

=>HEP ML NIPS satellite workshop, December 2014
Connecting The Dots, Berkeley, January 2015

Flavour of Physics Challenge, summer 2015
=>»HEP ML NIPS satellite workshop, December 2015

DS@LHC workshop, 9-13 November 2015
Moscou/Dubna ML workshop 7-9th Dec 2015 - WRER
Heavy Flavour Data Mining workshop, 18-21 Feb 2016 St ;‘;;";,,o,‘sm
Connecting The Dots, Vienna, 22-24 February 2016 ﬂ}y,u w '
Hep Software Foundation workshop 2-4 May 2016 at Orsay
Connecting The Dots, LAL-Orsay, 6-9 March 2017 |

LHC Interexperiment Machine Learning group
IML workshop @CERN 20-22 March 2017, 9-12 April 2018 e

DS@HEP workshop @FNAL 8-12 May 2017 P insllgan TR
Hammers and Nails, Weizmann, Jul 2017 o 2O
ACAT conference Seattle, Sep 2017 -
Connecting The Dots, 20-22 March 2018

CHEP, July 2018 (ML now acknowledged in Track name)
Tracking ML challenge, summer 2018 ==
ACAT conference, Saas Ii/ﬁ_

Mareh 2013 Rousseau, ILP ML, IHP

https://ctdwit2017.laliin2p3ife



What does a classmer do"

SCOTIC

The classifier “compresses” the two multidimensional
“blobs” maximising the difference, without (ideally)
any loss of information

ML in HEP , David Rousseau, ILP ML, IHP o
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ML (nor Art|f|C|aI Intelllgence) does

not do any miracles 6
For selecting Signal vs Background ,

and underlying distributions are

known, nothing beats ihihood 2

ratio! (often called "Bayesian

limit”): =
Ls(X)/Ls(x) -2

OK but quite often Ls L are
unknown

+ X is n-dimensional =6

ML starts to be interesting when
there is no proper formalism of the

pdf

=>mixed approach, if you know
something, tell your classifier
instead of letting it guess

ML in HEP , David Rousseau, ILP ML, IHP




Re-welghtmg

Suppose al varlabldlstrlbutlon IS sI|tIyd|fferent

between a Source (e.g. Monte Carlo) and a Target (e.q.
real data)

=>reweight! ...then use reweighted events

Weights : w;

ptarget(vari)/ p source(

Target var) Target

—

var var
What if multi-dimension ?

Usually : reweight separately on 1D projections, at best 2D,

because of quick lack of statistics

Can we do better ?

ML in HEP , David Rousseau, ILP ML, IHP 11



Multidimension reweighting

See demo on Andrei Rogozhmkov glthub and also Kyle Cranmer’s github Related : uBoost

Train on separating
Target from Source

s

T

Weights : w;

Targ et Ptarget(scorei)/ Psour Targ et

ce(SCOI’Gi)

SI\éLOirILé-iEP, David Rousseau, ILP ML, IHP scoid



Multl dlmensmnal rewelghtmg (2)

Reweighting the Source distribution on the score allows multidimensional
reweighting without statistics problem

Usual caveat still hold : Target support should be included in Source
support, distributions should not be too different otherwise unmanageable
very large or very small weights

(Note : “reweighting” in HEP language <==> “importance sampling” in ML
language)

Only use (that I know off) in published analyses in LHCb

Why ?

ML in HEP , David Rousseau, ILP ML, IHP 13



Anomaly detection




Anomaly detection
SRR Sy L St S

Three approaches
Supervised : model for O and N

Semi-supervised : model for N, O 0
is non-N %
Unsupervised : give the full data,

ask the algorithm to cluster N and

find the lone entries : 01, 02, O3 0,

ML in HEP , David Rousseau, ILP ML, IHP 15



Anomalyldetectlon- superv,lsed, |

- ‘» ' '_;;:,:’ /] iy I'.;'? .‘1. ,.;‘5;"—1 ; :; 3 ?.\}__.f.”\ -

Suppose you have two mdependent samples A and B, SU,D,Dosed/y v
statistically identical. E.g. A and B could be:

MC prod 1, MC prod 2
MC generator 1, MC generator 2
Geant4 Release 20.X.Y, release 20.X.Z
Production at BNL, production at Lyon
Data of yesterday, Data of today
How to verify that A and B are indeed identical ?

Standard approach : overlay histograms of many carefully chosen
variables, check for differences (e.g. KS test)

One supervised ML approach (not the only one): askan-artificial
seientist, train your favorite classifier to distinguish A from B,
histogram the score, check the difference (e.g. AUC or KS test)

=>only one distribution to check

Being developped for accelerator monitoring, experiment Data
Quality monitoring
ML in HEP , David Rousseau, ILP ML, IHP 16




Seml-supe : ed DQM application

, ‘ // ,-ﬁg?? Adrian Alan Pol, CHEP 2018
Example appllcatlon CMS muon chamber monitoring
(with Convolutional NN)

H

B
. CMS . Ruln:12.75.310'1 VY: 119' St;: ZI.OI, Sle::: 7.0 120
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1 1 Jo 1 | | | | | | L | | 1 1 L I O
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Seen by standard alg and ML Channal
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Demo on real data. Channel

ML in HEP , David Rousseau, ILP ML, IHP 17



Anomaly detectlon for physms
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ML in HEP , David Rousseau, ILP ML, IHP 18
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ML in analysis
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Deep learning

ILSVRC 2014 Winner
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TyplcaIDeep Learnmg appllcatlon

~

ML in HEP , David Rousseau, ILP ML, IHP 22



Candidat
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LT

o Jr gty
DL EXPERIME

At
Run Number: 182796,

Event Number: 74566644
Date: 2011-05-30, 06:54:29 CET

EtCut>0.3 GeV
PtCut>2.0 GeV
Vertex Cuts:

Z direction <lem
Rphi <lem

Muon: blue a4
Electron: Black - ; ;
Cells: Tiles, EMC s



Deep learning for analy5|s

o B
.IIE 1402.4735 Baldi, Sadowski, Whiteson '// 7 c | | | |
S 1
(&)
g S w W g)_), 0.9 _
%%b o £ . ]
N —;I_U N ;\ ] % 0.7 —
(ﬁ H b ED 0.6~ —— NN lo+hi-level (AUC=0.81) —
, @ 04 — NN hi-level (AUC=0.78) |
0.3 =
0.2l —— NN lo-level (AUC=0.73) B
0 O.|2 O.|4 0.|6 0.|8 1|
Sianal effici
MSSM at LHC : HO-=>WWbb vs tt=>WWbb onal eTeieney
Low level variables: S ]
3-momentum vectors g |
High level variables: .
= L _
Pair-wise invariant masses A
X s
Deep NN outperforms NN, and does not g o4 W]
need high level variables ool TS RS y
DNN learns the thSiCS 2797 oL DN hilevel  (AUC=0.80) : l
0 0.12 0.|4 O.l6 0.|8 1I

ML in HEP , David Rousseau, | Signal efficiency



Deep learning for naly5|s (2)

' 1410.3469 Baldi Sadowski Whiteson Wik

H tautau analysis at LHC: H>tautau vs Z>tautau
Low level variables (4-momenta)

High level variables (transverse mass, delta R, centrality, jet
variables, etc...)

Here, the DNN improved
on NN but still needed
high level features

Both analyses with
Delphes fast simulation

~100M events used for
training (>>100* full G4
simulation in ATLAS)

L Shallow networks Deep networks -

~
o

Discovery significance (o)

RGO 1 | o | | 25



DNN for anaIyS|s (3)

NO pUblIShEd LHC ana|yseS USIng DL (CMS 2018 ttH « DNN » just two layers)

Recent trend is to feed more (up to 20) variables to
classifiers, even low level ones (2/3-vectors of particles)
(see recent ATLAS/CMS ttH papers)

A few NN in top and Higgs physics but no clear
advantage wrt BDT

Not completely clear why: most likely hypothesis : lack
of training MC (Baldi et al papers use >10E6 events,
shile a typical LHC analysis has at most 100K, even less,
after all preselection)

=»DNN, not a drop-in replacement/improvement on BDT
However some promising successes : =»

ML in HEP , David Rousseau, ILP ML, IHP 26



Parameterised Iearnmg

S, |17 PR gy it i ) ) ‘f- '.;;,-,- = ;'\ == I ==

1 1601.07913 Baldi, Cranmer, Faucett, Sadowksi, Whlteson

| === 1 Typical case: looking for
=w-w | a particle of unknown

0.002}

1 100 mass
| L'E.g. here tt decay

Fraction of events/50 GeV

0.001f

0.000
0 500 1000 1500 2000 2500 300

My, [GEV] ° ousseau, |LP ML, IHP 27



S,

X7 C{%iﬁ(xl.x:)
x2 ;

AUC

L[1f < TR

Parameterlsed Iearnmg (2)

6=6;
, o
x; _018%)7 Solx1.x2)
x:—o O/
. f(x1,x2,0)
0.7k X2
0.6l x—< Parameterized NN (mass is a feature) |
/ XX Network trained on all masses
( »* % Network trained at mass=1000 only
0.5 . ' .
500 750 1000 1250 1500
F-N T Mass of signal T S
. test here
train here

-

Train on 28 features
plus true mass

Parameterised NN as
good as single mass
training

=>clean interpolation

(mass just an
example)

Very recently used by

CMS bblvl v search
https://arxiv.org/pdf/1708.0

4188.pdf

and here eau P m, 1P ’g



Deep Learnmg success : NOVA

3D schematic of
NOvA particle detector
/ = /
AN — |
/{ - - ~' - ~
A1 . 4
o1 L4
A
> View from the side Partcie 2
’ 'v~‘
e /
'
B
’
Neutrine
from
Fermddabd
- 1 meter
N Wa'l Particle 3

ML in HEP , David Rousseau, ILP ML, IHP 290



arxXiv 1604.01444 Aurisano et al

Softmax Output

Avg Pooling
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(c) NC interaction.

Neutrino interaction classification
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Inception
Module

Max Pooling
3x3, stride 2

LRN

Convolution
3x3

Convolution
1x1

LRN

Max Pooling
3x3, stride 2

Convolution
7x7, stride 2

X View

ML, IHP

Inception
Module

Inception
Module

Max Pooling
3x3, stride 2

LRN

Convolution
3x3

Convolution
1x1

LRN

Max Pooling
3x3, stride 2

Convolution
7x7, stride 2

Y View
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Aparte on t-SNE

van der Maaten and Hinton. JMLR 9 2008

| Non- Imear dlmen5|naI|ty compression, very popular in ML,
unknown (almost) in HEP, except NOVA:

v, NC

{v, CC

1., cc

v, CC

ML in HEP , David Rousseau, ILP ML, IHP
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Systematlcs-aware training

qf.;:'fe = ‘l— I - // See Victor Estrade CHEP 2018 ;’:';'_,,..-
Our experimental measurement papers typically ends with
measurement = m x o(stat) £ o(syst)
o(syst) systematic uncertainty : known unknowns, unknown unknowns...
Name of the game is to minimize quadratic sum of :
o(stat) £o(syst)
ML techniques used so far to minimise o(stat)

Impact of ML on o(syst) or even better global optimisation of o(stat) +
o(syst) is an open problem

Worrying about o(syst) untypical of ML in industry (... until recently
fake news)

However, a hot topic in ML in industry: transfer learning

E.g. : train image labelling on a image dataset, apply on new images
(different luminosity, focus, angle etc...)

For HEP : we train with Signal and Background which are not the real
one (MC, control regions, etc...)=»source of systematics

ML in HEP , David Rousseau, ILP ML, IHP 32



m Insp1red from 1505.07818 Ganinet al :

Syst Aware Training: adversarial

& JAr

AL,
26,
[ Feature extractor ]
PRelLU PRelLU PRelLU PRelLU
Dense Dense Dense Dense Dropout
(size=70) (size=35) (size=20) (size=10) (p=0.09)
dL 4

MC vs data difference

KS

0.20

018

016

014

012

0.10

0.08

0.06

2 ACAT 2017 Ryzhikov and Ustyuzhanm

N

oz

Label
predictor

Signal vs Background

L, = cross,entropy(
targetsignal, predicted signal)

m L; = —cross entropy(
target domain,predicted domain)

Dense
(size=25)

MC vs data

ing r ((Ibelpdt] 0.01

ch e (domain classifier) = 1000
ch s (I b el predi ct r) = 1000
(label T pr d r batches freq) / (domain classifier batches freq) = 6.0

KS threshold

AUC
Statistical sensitivity

02

Tuning parameter

08

10

ILP ML, IHP 33



ML Iin reconstruction




Jet Images

DarXiv 1511.05190 deOliveira, Kagan, Mackey, Nachman, Schwartzman

Distinguish boosted W jets from QCD
Particle level simulation

Boosted W2qq jet

QCD

[Translated) Azimuthal Angle (¢)

240<pTIGeV<26OGeV,65<masIGeV<9S
Pythia 8, W'— WZ, & =13 TeV

10°
10
0

Pixel P, [GeV)

[Translated] Azimuthal Angle (¢)

X 0.5 0 05 1
[Translated] Pseudorapidity (n)

240 < pT/(}eV <260 GeV, 65 < mass/GeV <95
Pythia 8, QCD dijets, (5 =13 TeV

Pixel P, [GeV)

[Translated] Pseudorapidity (n)

ML in HEP , David Rousseau, ILP ML, IHP 35
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1

[Transformed] Azimuthal Angle (&)

Jet Images * Convolulon NN

Convolved
Convolutions Feature Layers

W= WZ event

Max-Pooling

Repeat

Variables build from CNN :
outperform the more usual ones

Correlatlon of Deep Network output with pixel activations.

1.0 pr €250, 30()] matched tO QCD, my;€[65.95] GeV

0.5k

0.0F

-0.5}¢ r

-1.0 ) :
-1.0 -0.5 0.0 0.5 1.0

[Transformed] Pseudorapidity (7)
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arXiv:1511.05190 &—
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AR
Fisher
10073\ , —— Maxout
C\ Deep NN's —— Convnet

- Random

1/(Background Efficiency) "

50

8 T —— [E— P P — e T i diaeres

2 0.4 0.6 0.8
Signal Efficiency

What the CNN sees (the “cat” neurone”)

Now need proper detector and pileup simulation ATL-
PHYS-PUB-2017-017

=» 3Dimension ?

Search Border
1603.02934 SearchBorder o cter2

/Cluster 1 >< \

( ) Cluster|2

/ Clyister{1 Out-Of-Cluster

Out-Of-Cluster / /CIther 2

Cluster 1 n

/
\
\
)
7

Dead-Material
[ Cluster 2

N
)
’&ﬁ%\
.
(

]
=R

Dead Material ’
i
Cluster 1 — | []

[EP , David Rousseau, ILP ML, I+ NI
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RNN or b taggmg

[T N 7T k3 57, S £ ATL- PHYS-PUB- 20 17-003
BDT and usuaI NN expect a fix number of input. What to do when the number of inputs is not fixed
like the tracks for b-quark jet tagging ?

Recurrent Neural Networks (RNN) have seen outstanding performance for processing sequence data
Take data at several “time-steps”, and use previous time-step information in processing next time-steps data
For b-tagging, take list of tracks in jet and feed into RNN

Basic track information like d0, z0, pt-Fraction of jet, ...
Physics inspired ordering by d0-significance

RNN outperforms other IP algorithms
No explicit vertexing, still excellent performance
First combinations with other algorithms in progress

Learning on sequence data may be important in other places!
Combining tracks with clusters? Tr:

ATLAS Simulation Internal
Vs=13 TeV, tt MV2c10

-
(@)
i

-jet rejection, 1/,
T IIIIII| ]
| IIIIIII| | IIIIIII|

T IIIIIIII' T I::IIIIH|

ML in HEPO-BaydBRoueead eP Q8 |HP85 09 095 K 37

b-jet efficiency, ¢,



TrackML tracking challenge




Trackmg competltlon

Qs
! ,-: .}
] 3 P

f;f

: ‘r cPQ needs (kHS06) o

Tracking (in particular pattern recognition) E' J—- o oo large
dominates reconstruction CPU time at LHC 45:" ATLAS Internal (Datai e gt ALAKLES
HL-LHC (phase 2) perspective : increased pileup 40" oonware release g coo e
‘Run 1 (2012): <>~20, Run 2 (2015): <>~30,Phase 2 35F a4 17270 0000 .
(2025): <>~150 30! o 20000 ,

: . . . ; 19.0.3.3 0 —————
CPU time quadratic/exponential extrapolation 25;r _— LT LLLP PP L E S
(difficult to quote any number) 18511 vear
Large effort within HEP to optimise software and
tackle micro and macro parallelism. Sufficient
gains for Run 2 but still a long way for HL-LHC. /
>20 years of LHC tracking development. : ‘
Everything has been tried? 01145 T kst e Em—

Maybe yes, but maybe algorithm slower at 150

low lumi but with a better scaling have Average number of primary vertices
been dismissed ?
Maybe no, brand new ideas from ML (i.e.
Convolutional NN)

=>»Tracking challenge launched May-Aug

2018 on Kaggle : just accuracy

=>» Throughput phase launched on Codalab
: Sep-Mar 2019 : accuracy AND speed
125 events x ( 10’000 tracks / 100000
points)

Follow us on twitter @trackmllhc !

Details on :
https://sites.google.com/site/trackmlparticle/

ML in HEP , David Rousseau, ILP ML, IHP
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Pattern Recogmtloanrackmg

/ ; ’;? Fus

Pattern recognltlon/tracklng is a very oId very hot topic in Artificial Intelllgence but very varled
Note that these are real-time applications, with CPU constraints

Track Swap o J

track 3 (Cessna)

, X track 2 (777)

clutter (birds)

IL in HEP, David Rousseau, ILP ML, IHP 40



Aparte ML m HEP hlstory

- f

Computer Physics Communications 49 (1988) 429 448
North-Holland, Amsterdam

NEURAL NETWORKS AND CELLULAR AUTOMATA
IN EXPERIMENTAL HIGH ENERGY PHYSICS

B. DENBY

Laboratoire de I’Accélérateur Linéaire, Orsay, France

Received 20 September 1987; in revised form 28 December 1987

1987 Very first Neural Net in HEP paper known
NN for tracking and calo clustering

B. Denby then moved from Delphi at LEP to CDF at
Tevatron. He still active outside HEP: 2017 analysis of
ultrasonic image of the tongue

1992 JetNet Carsten Peterson, Thorsteinn
Rognvaldsson (Lund U.) , Leif Lonnblad (CERN) (~500
citations) really started NN use in HEP

ML in HEP , David Rousseau, ILP ML, IF

[ner?y 4494.1851 l
Iteralion 1 7.087 I
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Real Ilfe VS challenge

Wlde type of phy5|cs events | One event type (ttbar)
Full detailed Geant 4 / data ACTS (MS, energy loss,

hadronic interaction, solenoidal
magnetic field, inefficiency)

Cylinders and slabs

Simple, ideal, geometry
(cylinders and disks)

Detailed dead matter description

Complex geometry (tilted
modules, double layers,
misalignments...)

Hit merging No hit merging

Allow shared hits Disallow shared hits
Output is hit clustering, track Output is hit clustering
parameter and covariance matrix Single number metrics

Multiple metrics (see TDR's)

Simpler, but not too simple!

ML in HEP, David Rousseau, ILP ML, IHP 43



B Evolution of leaderboard
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’,

|cecube #1 92 2 % (norveglan CS master student) comblnatorlal
approach, with a bit of ML

outrunner #2 90.3% (taiwanese software engineer) Deep Learning
approach

Very innovative!

But brute force : takes one full day per event !

However code is using naive python nested loops

Sergey Gorbunov #3 89.4% demelian #4 87.1% : (HEP tracking
trigger experts in HEP labs) parameterised local helix fitting

Yuval & Trian #7 80.4% : (greek and israeli computing engineer)
innovative clustering

CPMP #9 80.1% : (french computing engineer) DBSCAN
unsupervised clustering algorithm

we gave DBSCAN in starting kit, with a 20% score, because in only
required a few lines

Nicole and Liam Finnies #12 74.8% : (german data scientists) use

LSTM
ML in HEP, David Rousseau, ILP ML, IHP 45



Throughput scormg

Ranking score = Vlog(1 + 600/time) * (accuracy — 0.5)?
Documented software of first phase #1 #2 #3 #7 #9 #11 #12 released

Can be used as starting point but need retuning

Yo Yo} e S —— B — 1.44
1.26
500 1 ' !
= i i 1.08
$ 400, | :
3 ] i i
2 E : 0.90
a : : QL
o 3001 i : -0.72 S
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— ] ]
: : L0.54
§ 200{ | i
® L 0.36
. § g cubus L 0.18
: : fastrack
% X i 1 . M 0.00
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By beg Nov 100 reglstered but onIy 2 with non zero scores -
=>disappointing participation, many hypotheses why
=>reschedule to end 12th March 2019

On the other hand fastrack results are astonishing
ATLAS code recently sped up from 250s to 10s ... however this is for track pT>900 MeV ~15% of TrackML

tracks
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g v
2 10.0 1.00 &
g A
o 73 fastrack // $0.88
X @) |
Y 50/ -0.76
2.5 L 0.64
0.52
0.80 0.85 0.90 0.95 1.00

accuracy



End to end Learning




End to end Iearnmg
Tra|n dlrectly for S|gnal on « raw » event ?
Start from RPV Susy search

ATLAS-CONF-2016-057
Fast Simulated events with Delphes

Project energies on 64x64 nx¢

- 3% -'\\. - -.-
grid I -_,ﬁ:‘.,:: DR _:_,._j .
Compare with usual jet [femEa e '!-‘-_i;_ 203
Reconstruction and physics : ;zs'.‘i‘{: N g SR s
H H 5 0‘.- -, el g - - s §
Analysis variables such as: EREPLL AL
4 1 :..r--._.:: '%# e )= - '-;':' 0s &
MJZ — Z mjet - -l-J .‘- s /-/' i‘\%.:-,.-—-/ . .-J..ll -
- a S . l.‘|l.l - 00
p>200GeV -3 -J.:- L ed 9L = F . ="
ln71<2.0 -2 -1 0 1 2
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e

End to end Iearmng (2)

— — N
o v o
Cluster energy [Log(MeV)]

o
v

o
(=]

J > o e 7

(NN

input conv+pool 1 conv+pool 2 conv+pool 3 conv+pool 4 fc1 output
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End to end Iearnmg (3)

1.0
e
0.8 1
" |
E) 0.6 - R
O
= —— CNN
E 0.4 ——— Log Weights
g —— 3 Channel
.20 — Ensemble
. 0.2 A -~ GBDT
— MLP
® Physics Selections
0.0 T T r T
0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Background Efficiency

>X2 gain over BDT/shallow network using physics variable and 5 leading jet 4-
momenta

=>CNN extract information from energy grid which is lost in the jets ?

Not sure, they should compare to anpB/ing DL on the jets
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ML in simulation




Generatlve Adversarlal Network
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Text to 1mage this small bird has a pink  this magnificent fellow is
breast and crown, and black almost all black with a red
primaries and secondaries. crest, and white cheek patch.

the flower has petals that this white and yellow flower
are bright pinkish purple have thin white petals and a
round yellow stamen
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GAN for S|mulat| - LA

120,000

100,000 s Data Reprocessing Large ,
=L 90,000 MC Reconctruction Mwoerta LV\;tLeS

MC Simulation Full
£0,000 s Evgen

== = Projection
40,000

s===CPU need
20,000

p— i

D Half of LHC grid computers (~300.000
» (GAN showers cores) are crunching Geant4 simulation
TR TR T st cell : 24/24 365/365
(]uS ce energles) ...while LHC experiments are collecting
more and more events
=>reducing CPU consumption of
Geant4 simulation is very important
X Imagine training a GAN on single particle
G showers of all types and energies
Then when an event is simulated it would
ask for GAN showers on request
(superfast by 3-4 order of magnitude)
. | Would replace current fast simulation,
ot N 7 frozen shower libraries....
S, If/when it works, would require large GPU
clusters

Cells energies
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P = B0

// F; Jffz?

Simplified ATLAS calorimeter

Paganlnl et al 1705 02355

Computing speed-up single shower x1000

Simulation

Lol

g 1-LF
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ATLAS calo simulti

ATL-SOFT-PUB-2018-001  HEES WSS L N7 i /7

Square towers in
Sampling 2
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ATLAS Calorimeter GAN
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GAN generated fingerprint to fool TouchlID like systems

Capacitive DeepMasterPrint Matches
0.01% FMR | 0.1% FMR | 1% FMR
VeriFinger Training 6.94% 29.44% 89.44%
VeriFinger Test 1.11% 22.50% 76.67%
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Wrapping-up
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ML Collaboratlons

| Many of the new ML techmques are complex-)dlfflcult for HEP phy5|C|sts
alone

ML scientists (often) eager to collaborate with HEP physicists

prestige

new and interesting problems (which they can publish in ML proceedings)
Takes time to learn common language

Access to experiment internal data an issue, but there are ways out=>more
and more Open Dataset

Very useful/essential to build HEP - ML collaborations : study on shared
dataset, thesis (Computer Science or HEP)

There is always a friendly Machine Learner on a campus!
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O pe nD at a

Public dataset are essential to collaborate (beyond talking over beer/coffee) on new
ML techniques with ML experts (or even physicists in other experiments)

can share without experiments Non Disclosure policies
Some collaborations built on just generator data (e.g. Pythia) or with simple detector
simulation e.g. Delphes

good for a start, but inaccurate
Effort to have better open simulation engine (e.g. Delphes 4-vector detector
simulation, ACTS for tracking)
UCI dataset repository has some HEP datasets
Role of CERN Open Data portal, need be more and more pupulated
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Conclusmn (1)

' We (|n HEP) are anaIysmg data from multi- b|II|on € prOJects-)shouId make
the most out of it!

Recent explosion of novel (for HEP) ML techniques, novel applications for
Analysis, Reconstruction, Simulation, Trigger, and Computing

Some of these are ~easy, most are complex: open source software tools
are ~easy to get, but still need (people) training, know-how
Sometimes contradictory results

Never underestimate the time for :
(1) Great ML idea=>
(2) ...demonstrated on toy dataset=>
(3) ...demonstrated on semi-realistic simulation =
(4) ...demonstrated on real experiment analysis/dataset =
(5) ...experiment publication using the great idea
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(2) Faster ML to productlon
Trammg of HEP students post docs
.. and senior scientists
Campus-level sustained HEP ML collaborations
.. hot just workshops or challenges
Public datasets
...not just toys but also real experimental ones
Release software with papers
...matching “reproducibility” movement in ML
Computing resources
...although (not yet) the limiting factor
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