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Outline
q ML basics
q ML in analysis
q ML in reconstruction
q ML in simulation
q Wrapping up

q Focus on applications rather than details of the 
techniques

q Deliberately incomplete (sorry…)
q No likelihood free inference, no classification without labels, 

no review on ML software, no application to distributed analysis, no GAN to 
uniformity, no Bayes optimisation, no reinforcement learning, no adversarial example, no probablilstic 
programming,  no learning with quantum computing....

ML in HEP , David Rousseau, ILP ML, IHP
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Classifier basics

ML in HEP , David Rousseau, ILP ML, IHP Background eff.
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Train on Signal and Background Monte-Carlo
èlearn the separation between S and B distribution
Apply on test sample
Apply on data

Note: instead of classifiying 0 or 1, can regress !

AUC : Area Under the (ROC) Curve

score

We’re often here
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Classifier (2)

ML in HEP , David Rousseau, ILP ML, IHP
BDT output
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Higgs evidence

Boosted Decision Tree using ~a dozen of high level variables
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ML on Higgs Physics
q At LHC, Machine Learning used almost since first data taking (2010) for 

reconstruction and analysis
q In most cases, Boosted Decision Tree with Root-TMVA, on ~10 variables
q For example, impact on Higgs boson sensitivity at LHC:

ML in HEP , David Rousseau, ILP ML, IHP

è~50% gain on LHC running 
σ
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ML in HEP
q Meanwhile, in the outside world :

q “Artificial Intelligence” not a dirty word anymore!
q We (in HEP) have realised we’re been left behind! Trying to catch up now…

ML in HEP , David Rousseau, ILP ML, IHP
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Multitude of HEP-ML events
q HiggsML Challenge, summer 2014

o èHEP ML NIPS satellite workshop, December 2014
q Connecting The Dots, Berkeley, January 2015
q Flavour of Physics Challenge, summer 2015

o èHEP ML NIPS satellite workshop, December 2015
q DS@LHC workshop, 9-13 November 2015
q Moscou/Dubna ML workshop 7-9th Dec 2015
q Heavy Flavour Data Mining workshop, 18-21 Feb 2016
q Connecting The Dots, Vienna, 22-24 February 2016
q Hep Software Foundation workshop 2-4 May 2016 at Orsay, ML session 
q Connecting The Dots, LAL-Orsay, 6-9 March 2017
q LHC Interexperiment Machine Learning group

o IML workshop @CERN 20-22 March 2017, 9-12 April 2018
q DS@HEP workshop @FNAL 8-12 May 2017
q Hammers and Nails, Weizmann, Jul 2017
q ACAT conference Seattle, Sep 2017
q Connecting The Dots, 20-22 March 2018
q CHEP, July 2018 (ML now acknowledged in Track name) 
q Tracking ML challenge, summer 2018
q ACAT conference, Saas Fe, March 2019ML in HEP , David Rousseau, ILP ML, IHP



9

What does a classifier do?

q The classifier “compresses” the two multidimensional 
“blobs” maximising the difference, without (ideally) 
any loss of information

ML in HEP , David Rousseau, ILP ML, IHP

A B

score
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q ML (nor Artificial Intelligence) does 
not do any miracles

q For selecting Signal vs Background 
and  underlying distributions are 
known, nothing beats ihihood
ratio! (often called “Bayesian 
limit”): 
o LS(x)/LB(x)

q OK but quite often LS LB are 
unknown
q + x is n-dimensional

q ML starts to be interesting when 
there is no proper formalism of the 
pdf

q èmixed approach, if you know 
something, tell your classifier 
instead of letting it guess

No miracle

ML in HEP , David Rousseau, ILP ML, IHP

S

B
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Re-weighting

Target Source

var

Target Source

var

Weights : wi
=

ptarget(vari)/psource(
vari)

q What if multi-dimension ?
q Usually : reweight separately on 1D projections, at best 2D,  

because of quick lack of statistics
q Can we do better ?

q Suppose a variable distribution is slightly different 
between a Source (e.g. Monte Carlo) and a Target (e.g. 
real data)
o èreweight! …then use reweighted events

ML in HEP , David Rousseau, ILP ML, IHP
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Multidimension reweighting

ML in HEP , David Rousseau, ILP ML, IHP

Target Source

score

Target Source

score

Weights : wi
=

Ptarget(scorei)/psour

ce(scorei)

See demo on Andrei Rogozhnikov github and also Kyle Cranmer’s github

Train on separating
Target from Source

Related : uBoost
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Multi dimensional reweighting (2)

ML in HEP , David Rousseau, ILP ML, IHP

q Reweighting the Source distribution on the score allows multidimensional 
reweighting without statistics problem

q Usual caveat still hold : Target support should be included in Source 
support, distributions should not be too different otherwise unmanageable 
very large or very small weights

q (Note : “reweighting” in HEP language <==> “importance sampling” in ML 
language)

q Only use (that I know off) in published analyses in LHCb
q Why ?



Anomaly detection
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Anomaly detection

q Three approaches:
o Supervised : model for O and N
o Semi-supervised : model for N, O 

is non-N
o Unsupervised : give the full data, 

ask the algorithm to cluster N and 
find the lone entries : o1, o2, O3

ML in HEP , David Rousseau, ILP ML, IHP
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Anomaly detection: supervised
q Suppose you have two independent samples A and B, supposedly

statistically identical. E.g. A and B could be:
o MC prod 1, MC prod 2
o MC generator 1, MC generator 2
o Geant4 Release 20.X.Y, release 20.X.Z
o Production at BNL, production at Lyon
o Data of yesterday, Data of today

q How to verify that A and B are indeed identical ?
q Standard approach : overlay histograms of many carefully chosen 

variables, check for differences (e.g. KS test)
q One supervised ML approach (not the only one): ask an artificial 

scientist, train your favorite classifier to distinguish A from B, 
histogram the score, check the difference (e.g. AUC or KS test)
o èonly one distribution to check

q Being developped for accelerator monitoring, experiment Data 
Quality monitoring

ML in HEP , David Rousseau, ILP ML, IHP
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Semi-supervised: DQM application

q Example application CMS muon chamber monitoring 
(with Convolutional NN)

ML in HEP , David Rousseau, ILP ML, IHP

Adrian Alan Pol, CHEP 2018

Seen by standard alg and ML
Seen only by ML

Demo on real data. 
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Anomaly detection for physics

ML in HEP , David Rousseau, ILP ML, IHP
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Application to new physics

ML in HEP , David Rousseau, ILP ML, IHP

Maurizio Pierini



ML in analysis
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Deep learning

ML in HEP , David Rousseau, ILP ML, IHP

Optimal stimulus
of a given neuron
Google 2012
http://arxiv.org/abs/1112.6209

GoogLeNet
ILSVRC 2014 Winner
4M parameters
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Typical Deep Learning application

ML in HEP , David Rousseau, ILP ML, IHP
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Candidat 
HèZ(èµ+µ-)Z(èe+e-)
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Deep learning for analysis

q MSSM at LHC :  H0èWWbb vs ttèWWbb
q Low level variables:

o 3-momentum vectors
q High level variables:

o Pair-wise invariant masses
q Deep NN outperforms NN, and does not 

need high level variables
q DNN learns the physics ??? 

ML in HEP , David Rousseau, ILP ML, IHP

1402.4735 Baldi, Sadowski, Whiteson

B
S
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Deep learning for analysis (2)

ML in HEP , David Rousseau, ILP ML, IHP

q H tautau analysis at LHC: Hètautau vs Zètautau
o Low level variables (4-momenta)
o High level variables (transverse mass, delta R, centrality, jet 

variables, etc…)

1410.3469 Baldi Sadowski Whiteson

q Here, the DNN improved
on NN but still needed
high level features

q Both analyses with
Delphes fast simulation

q ~100M events used for 
training (>>100* full G4 
simulation in ATLAS)
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DNN for analysis (3)
q No published LHC analyses using DL (CMS 2018 ttH « DNN » just two layers)

q Recent trend is to feed more (up to 20) variables to 
classifiers, even low level ones (2/3-vectors of particles) 
(see recent ATLAS/CMS ttH papers)

q A few NN in top and Higgs physics but no clear
advantage wrt BDT

q Not completely clear why: most likely hypothesis : lack
of training MC (Baldi et al papers use >10E6 events, 
shile a typical LHC analysis has at most 100K, even less, 
after all preselection)

q èDNN, not a drop-in replacement/improvement on BDT
q However some promising successes : è

ML in HEP , David Rousseau, ILP ML, IHP
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Parameterised learning

qTypical case: looking for 
a particle of unknown 
mass

qE.g. here tt decay

ML in HEP , David Rousseau, ILP ML, IHP

1601.07913 Baldi, Cranmer, Faucett, Sadowksi, Whiteson
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Parameterised learning (2)

ML in HEP , David Rousseau, ILP ML, IHP

q Train on 28 features 
plus true mass

q Parameterised NN as 
good as single mass 
training

q èclean interpolation
q (mass just an 

example)
q Very recently used by 

CMS bbl𝜈l 𝜈 search 
https://arxiv.org/pdf/1708.0
4188.pdf
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Deep Learning success : NOVA 

ML in HEP , David Rousseau, ILP ML, IHP
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arXiv 1604.01444 Aurisano et al
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ML in HEP , David Rousseau, ILP ML, IHP
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Aparté on t-SNE
q Non-linear dimensionality compression, very popular in ML, 

unknown (almost) in HEP, except NOVA:

ML in HEP , David Rousseau, ILP ML, IHP

van der Maaten and Hinton. JMLR 9 2008
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Systematics-aware training
q Our experimental measurement papers typically ends with

o measurement = m ± σ(stat) ± σ(syst)
ο σ(syst) systematic uncertainty : known unknowns, unknown unknowns…

q Name of the game is to minimize quadratic sum of :         
 σ(stat) ±σ(syst)
q ML techniques used so far to minimise σ(stat)
q Impact of ML on σ(syst) or even better global optimisation of σ(stat) ±

σ(syst) is an open problem
q Worrying about σ(syst) untypical of ML in industry (… until recently 

fake news)
q However, a hot topic in ML in industry: transfer learning
q E.g. : train image labelling on a image dataset, apply on new images 

(different luminosity, focus, angle etc…)
q For HEP : we train with Signal and Background which are not the real 

one (MC, control regions, etc...)èsource of systematics

ML in HEP , David Rousseau, ILP ML, IHP

See Victor Estrade CHEP 2018
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Syst Aware Training: adversarial

ML in HEP , David Rousseau, ILP ML, IHP

Inspired from 1505.07818 Ganin et al :

Signal vs Background

MC vs data

Tuning parameter
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ACAT 2017 Ryzhikov and Ustyuzhanin 



ML in reconstruction
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Jet Images
q Distinguish boosted W jets from QCD
q Particle level simulation
q Average images:

ML in HEP , David Rousseau, ILP ML, IHP

arXiv 1511.05190 de Oliveira, Kagan, Mackey, Nachman, Schwartzman  
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Jet Images : Convolution NN

q Variables build from CNN 
outperform the more usual ones

ML in HEP , David Rousseau, ILP ML, IHP

q What the CNN sees (the “cat” neurone”)
q Now need proper detector and pileup simulation ATL-

PHYS-PUB-2017-017 
q è3Dimension ?

arXiv:1511.05190
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RNN for b tagging
q BDT and usual NN expect a fix number of input. What to do when the number of inputs is not fixed 

like the tracks for b-quark jet tagging ?
q Recurrent Neural Networks (RNN) have seen outstanding performance for processing sequence data

o Take data at several “time-steps”, and use previous time-step information in processing next time-steps data 
q For b-tagging, take list of tracks in jet and feed into RNN

o Basic track information like d0, z0, pt-Fraction of jet, … 
o Physics inspired ordering by d0-significance

q RNN outperforms other IP algorithms
o No explicit vertexing, still excellent performance
o First combinations with other algorithms in progress

q Learning on sequence data may be important in other places!
o Combining tracks with clusters? Track to vertex matching?

bεb-jet efficiency, 
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ML in HEP , David Rousseau, ILP ML, IHP

ATL-PHYS-PUB-2017-003



TrackML tracking challenge
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Tracking competition
q Tracking (in particular pattern recognition) 

dominates reconstruction CPU time at LHC 
q HL-LHC (phase 2) perspective : increased pileup 

:Run 1 (2012): <>~20, Run 2  (2015): <>~30,Phase 2 
(2025): <>~150

q CPU time quadratic/exponential extrapolation 
(difficult to quote any number) 

q Large effort within HEP to optimise software and 
tackle micro and macro parallelism. Sufficient 
gains for Run 2 but still a long way for HL-LHC.

q >20 years of LHC tracking development. 
Everything has been tried?

o Maybe yes, but maybe algorithm slower at 
low lumi but with a better scaling have 
been dismissed ?

o Maybe no, brand new ideas from ML (i.e. 
Convolutional NN)

q èTracking challenge launched May-Aug 
2018 on Kaggle : just accuracy

q èThroughput phase launched on Codalab
: Sep-Mar 2019 : accuracy AND speed

q 125 events x ( 10’000 tracks / 100’000 
points)

q Follow us on twitter @trackmllhc !
q Details on : 

https://sites.google.com/site/trackmlparticle/
ML in HEP , David Rousseau, ILP ML, IHP

Tracking 

• High luminosity means high pileup 
• Combinatorics of charged particle tracking become 

extremely challenging for GPDs 
• Generally sub-linear scaling for track reconstruction 

time with m 

• Impressive improvements for Run 2, but we need to go 
much further 

23

150
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Pattern Recognition/Tracking
q Pattern recognition/tracking is a very old, very hot topic in Artificial Intelligence, but very varied
q Note that these are real-time applications, with CPU constraints

ML in HEP , David Rousseau, ILP ML, IHP
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Aparté on ML in HEP history

ML in HEP , David Rousseau, ILP ML, IHP

q 1987 Very first Neural Net in HEP paper known
q NN for tracking and calo clustering
q B. Denby then moved from Delphi at LEP to CDF at 

Tevatron. He still active outside HEP: 2017 analysis of 
ultrasonic image of the tongue

q 1992 JetNet Carsten Peterson, Thorsteinn
Rognvaldsson (Lund U.) , Leif Lonnblad (CERN) (~500 
citations) really started NN use in HEP

Bruce Denby



42ML in HEP , David Rousseau, ILP ML, IHP
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Real life  vs  challenge
1. Wide type of physics events
2. Full detailed Geant 4 / data

3. Detailed dead matter description
4. Complex geometry (tilted 

modules, double layers, 
misalignments…)

5. Hit merging
6. Allow shared hits
7. Output is hit clustering, track 

parameter and covariance matrix
8. Multiple metrics (see TDR’s)

ML in HEP , David Rousseau, ILP ML, IHP

1. One event type (ttbar)
2. ACTS (MS, energy loss, 

hadronic interaction, solenoidal
magnetic field, inefficiency)

3. Cylinders and slabs
4. Simple, ideal, geometry 

(cylinders and disks)

5. No hit merging
6. Disallow shared hits
7. Output is hit clustering
8. Single number metrics

Simpler, but not too simple!



44ML in HEP , David Rousseau, ILP ML, IHP

Evolution of leaderboard
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A few competitors
q icecube #1 92.2 % (norvegian CS master student) : combinatorial

approach, with a bit of ML
q outrunner #2 90.3% (taïwanese software engineer) Deep Learning 

approach
o Very innovative!
o But brute force : takes one full day per event ! 
o However code is using naïve python nested loops

q Sergey Gorbunov #3 89.4% demelian #4 87.1% : (HEP tracking
trigger experts in HEP labs) parameterised local helix fitting

q Yuval & Trian #7 80.4% : (greek and israeli computing engineer) 
innovative clustering

q CPMP #9 80.1% : (french computing engineer) DBSCAN 
unsupervised clustering algorithm
o we gave DBSCAN in starting kit, with a 20% score, because in only

required a few lines
q Nicole and Liam Finnies #12 74.8% : (german data scientists)  use 

LSTM
ML in HEP , David Rousseau, ILP ML, IHP
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Throughput scoring

q Ranking score = √log(1 + 600/time) ∗ (accuracy − 0.5)2

q Documented software of first phase #1 #2 #3 #7 #9 #11 #12 released
o Can be used as starting point but need retuning

ML in HEP , David Rousseau, ILP ML, IHP

fastrack
cubus
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Throughput phase LB

ML in HEP , David Rousseau, ILP ML, IHP

fastrack

cubus

q By beg Nov, 100 registered, but only 2 with non zero scores
q =>disappointing participation, many hypotheses why
q èreschedule to end 12th March 2019
q On the other hand fastrack results are astonishing

o ATLAS code recently sped up from 250s to 10s … however this is for track pT>900 MeV ~15% of TrackML
tracks



End to end Learning
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End to end learning
q Train directly for signal on « raw » event ?
q Start from RPV Susy search
ATLAS-CONF-2016-057
q Fast Simulated events with Delphes

ML in HEP , David Rousseau, ILP ML, IHP

Bhimji et al, 1711.03573

q Project energies on 64x64 ηxφ
grid

q Compare with usual jet 
Reconstruction and physics
Analysis variables such as: 
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End to end learning (2)

ML in HEP , David Rousseau, ILP ML, IHP
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End to end learning (3)

ML in HEP , David Rousseau, ILP ML, IHP

q >x2 gain over BDT/shallow network using physics variable and 5 leading jet 4-
momenta

q èCNN extract information from energy grid which is lost in the jets ?
q Not sure, they should compare to applying DL on the jets
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Background Efficiency



ML in simulation
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Generative Adversarial Network

ML in HEP , David Rousseau, ILP ML, IHP
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Condition GAN

ML in HEP , David Rousseau, ILP ML, IHP

Text to image
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GAN for simulation (1)

q Half of LHC grid computers (~300.000 
cores) are crunching Geant4 simulation 
24/24 365/365

q …while LHC experiments are collecting 
more and more events

q èreducing CPU consumption of 
simulation is very important

q Imagine training a GAN on single particle 
showers of all types and energies

q Then when an event is simulated it would 
ask for GAN showers on request 
(superfast by 3-4 order of magnitude)

q Would replace current fast simulation, 
frozen shower libraries….

q If/when it works, would require large GPU 
clusters

ML in HEP , David Rousseau, ILP ML, IHP

Geant4

GAN showers
(just cell energies)

Cells energies
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Computing speed-up single shower x1000

True/False
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Paganini et al 1705.02355.

GAN for simulation (2)

ML in HEP , David Rousseau, ILP ML, IHP St
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ATLAS calo simulation

ML in HEP , David Rousseau, ILP ML, IHP

ATL-SOFT-PUB-2018-001

+ η, φ translation
177000 cells è266 cells



58

ATLAS Calorimeter GAN

ML in HEP , David Rousseau, ILP ML, IHP

E layer 1 E layer 2 E layer 3

η spread φ spread
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DeepMasterPrints

ML in HEP , David Rousseau, ILP ML, IHP

GAN generated fingerprint to fool TouchID like systems



Wrapping-up
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ML playground

ML in HEP , David Rousseau, ILP ML, IHP

papersdata Analysis statistical 
optimisation

Particle ID
optimisation

Single trigger
optimisation

Analysis stat+syst
optimisation

Energy regression
Overall trigger
optimisation

Detector
Simulation

Generators
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ML Collaborations
q Many of the new ML techniques are complexèdifficult for HEP physicists 

alone
q ML scientists (often) eager to collaborate with HEP physicists

o prestige
o new and interesting problems (which they can publish in ML proceedings)

q Takes time to learn common language
q Access to experiment internal data an issue, but there are ways outèmore

and more Open Dataset
q Very useful/essential to build HEP - ML collaborations : study on shared 

dataset, thesis (Computer Science or HEP)
q There is always a friendly Machine Learner on a campus! 

ML in HEP , David Rousseau, ILP ML, IHP
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Open Data 

q Public dataset are essential to collaborate (beyond talking over beer/coffee) on new 
ML techniques with ML experts (or even physicists in other experiments)
o can share without experiments Non Disclosure policies

q Some collaborations built on just generator data (e.g. Pythia) or with simple detector 
simulation e.g. Delphes
o good for a start, but inaccurate

q Effort to have better open simulation engine (e.g. Delphes 4-vector detector 
simulation, ACTS for tracking)

q UCI dataset repository has some HEP datasets
q Role of CERN Open Data portal, need be more and more pupulated

ML in HEP , David Rousseau, ILP ML, IHP
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Conclusion (1)
q We (in HEP) are analysing data from multi-billion € projectsèshould make 

the most out of it!
q Recent explosion of novel (for HEP) ML techniques, novel applications for 

Analysis, Reconstruction, Simulation, Trigger, and Computing 
q Some of these are ~easy, most are complex: open source software tools 

are ~easy to get, but still need (people) training, know-how
q Sometimes contradictory results
q Never underestimate the time for :

o (1) Great ML ideaè
o (2) …demonstrated on toy datasetè
o (3) …demonstrated on semi-realistic simulation è

o (4) …demonstrated on real experiment analysis/dataset è
o (5) …experiment publication using the great idea

ML in HEP , David Rousseau, ILP ML, IHP
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(2) Faster ML to production
qTraining of HEP students post-docs

o ... and senior scientists
qCampus-level sustained HEP ML collaborations

o … not just workshops or challenges
qPublic datasets

o …not just toys but also real experimental ones
qRelease software with papers

o …matching “reproducibility” movement in ML
qComputing resources

o …although (not yet) the limiting factor

ML in HEP , David Rousseau, ILP ML, IHP


