

Dee integration

CMS Tracker Upgrade France, 05/12/2018

Colin Bernet, Gaëlle Boudoul, <u>Nicolas Chanon</u>, Pierre Dené, Thierry Dupasquier, Nick Lumb, Muriel Vander Donckt, Sébastien Viret

Dees integration: plans

	2018				2019				2020				2021				2022				2023				2024			
	T1	T2	ТЗ	T4	T1	T2	ТЗ	T4	T1	T2	T3	T4	T1	T2	T3	T4	T1	T2	T3	T4	T1	T2	T3	T4	T1	T2	T3	T4
Equipping centers	17/0	8/201	8													27	/10/20	021				Ï						
Dee Integration/tests	S														27/	/04/2	022									26/0	3/202	4

Dee Integration steps

- Module reception from Quality control centers
- Module tests at reception
- Assembly line for PS and 2S module mounting on Dees
 - System test during assembly
- Cold tests after mounting
- **Shipment** of the Dees to TEDD assembly centers

Clean room at IPNL

Clean room for Dee construction and integration, Building Van De Graaf

- Work basically done, a few remaining items
- Clean room to be equipped very soon:
 - New fridge able to contain 1 full-size Dee (ordered),
 - **Dry air supply** (2019),
 - Preliminary version of **system tests...**


Receiving and storing modules

Dee Integration steps

- Module reception from Quality control centers
- Module tests at reception
- **Assembly line** for PS and 2S module mounting on Dees
- Cold tests after mounting
- **Shipment** of the Dees to TEDD assembly centers

Receive modules shipped from Quality Control centers (Germany)

- Project of a **shipment box** is not started in CMS
 - The same box will be used to move/store modules inside the clean room.
- Scanning system to **identify components** (not yet existing) and connect to **database** (in construction)
- Visual inspection with a binocular
- Plan to store the modules a few days in a closed storage cabinet, under **dry air**: will decrease **humidity** if any
- Modules ready to be tested

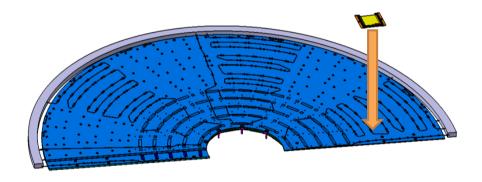
System tests at reception

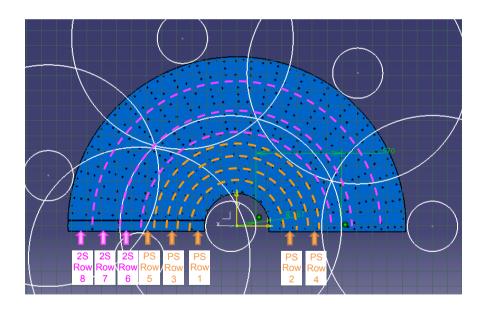

Dee Integration steps

- **Module reception** from Quality control centers
- Module tests at reception
- Assembly line for PS and 2S module mounting on Dees
- Cold tests after mounting
- **Shipment** of the Dees to TEDD assembly centers

Testing modules at reception

At **room temperature** (assume burn-in was done at QC centers)

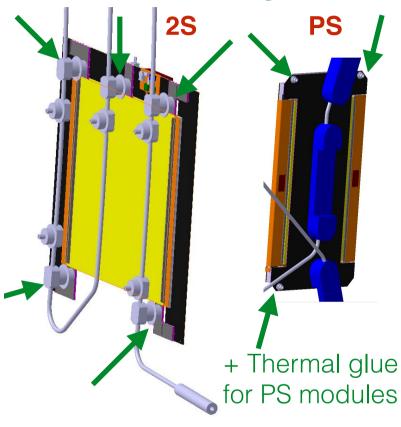

- 1) Need automated tests to measure sensor I-V curves
 - Use a system to test several modules at once, similar to burn-in, but at room temperature: from KIT?
- **2)** Measuring **basic module properties** (module connectivity, test slow control, test reading data, channels alive)
- 3) Calibration and **noise measurement** should take ~few minutes (efficiency vs threshold, voltage). Still in discussion (is it needed?).
- => Needs **FC7 with µTCA crate**, with µDTC firmware to test PS and 2S modules: need automated tools, with a GUI and connection to database to upload results


Assembly line (1/2)

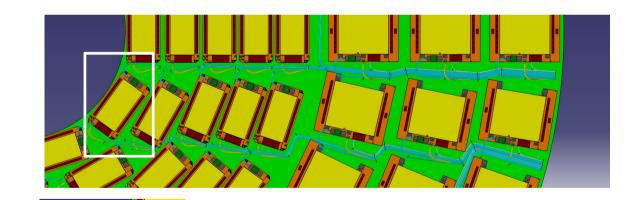
Dee Integration steps

- **Module reception** from Quality control centers
- Module tests at reception
- Assembly line for PS and 2S module mounting on Dees
- Cold tests after mounting
- **Shipment** of the Dees to TEDD assembly centers

- Installing the modules in horizontal position on a workbench
- Protect mounted modules with plexiglass ("assembly box" to be designed)
- The arch makes it easy to rotate the Dee and mount the other face



2 technicians can mount modules on one Dee at the same time (one for 2S, the other for PS modules)


CMS powleds work poduzo

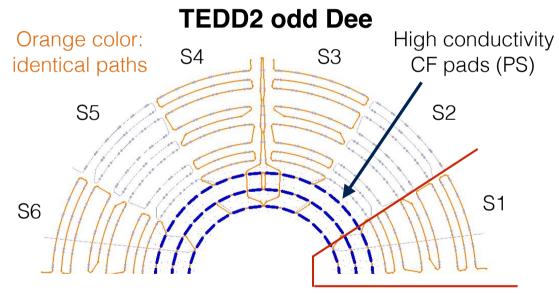
Assembly line (2/2)

Positioning inserts

- Appropriate screw torque needed to conduct heat properly
- Thermal glue foreseen for PS modules has a phase-change. We are evaluating using graphite foil instead

- Final cabling of modules on Dees: HV, (at the edge of Dees)
- Each time 8(?) modules are mounted (assumes that the cabling operation is the Dee and not once the Dee is fully not

k will be connected to the **octopus**


vith 1 FC7 at room temperature ach time a module is mounted on

Cold tests after mounting (1/2)

Dee Integration steps

- Module reception from Quality control centers
- Module tests at reception
- Assembly line for PS and 2S module mounting on Dees
- Cold tests after mounting
- **Shipment** of the Dees to TEDD assembly centers

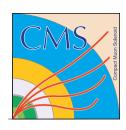
Module/Dee	PS	28
TEDD1 odd	76	96
TEDD1 even	84	66
TEDD2 odd	52	96
TEDD2 even	70	64

- Max 25 module / sector in TEDD2
- Final CMS DTC / ATCA crate may not be ready on time
- It was suggested that **1 FC7** will be able to **connect to 8 modules** (if read out is done alternatively between modules...): to be verified (hw, sw and fw do not exist yet)

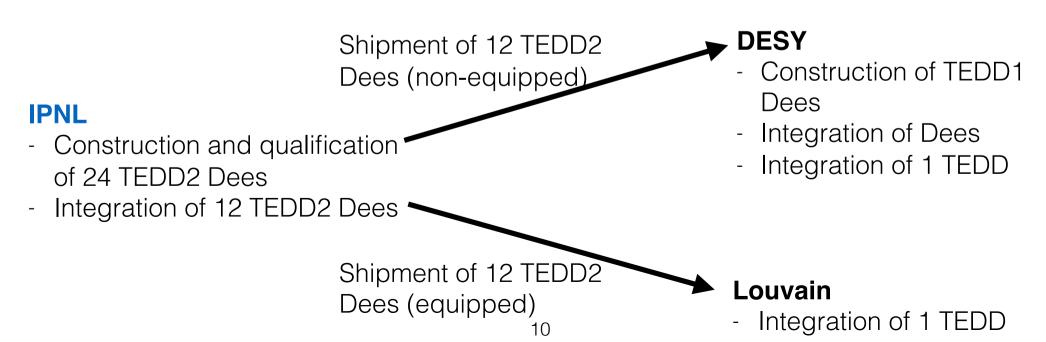
=> 4 FC7 boards are needed to test modules in 1 TEDD cooling sector

Cold tests after mounting (2/2)

Procedure for sector cold tests:


- Full Dee put in the **fridge** (fully mounted would be better)
- Will test modules 1 cooling sector by 1 cooling sector
- Use dry air for the cold tests, and monitor humidity and temperature
- Cool down 2 sectors at -35°C (with just 1, modules at the sector border would not be cold enough) while actively cooling the fridge at -25°C
- Operate several cycles between -35°C and room temperature
- Verify that connections are OK
- Measurements:
 - ΔT measurement: Goal ΔT < 10°C between CO₂ and modules
 - Calibration curves at -35°C

Custom cooling system at IPNL, can cool 2 sectors at -35


Temperature tests of a 40% Dee prototype in Lyon

Shipment to TEDD assembly centers

Dee Integration steps

- Module reception from Quality control centers
- Module tests at reception
- **Assembly line** for PS and 2S module mounting on Dees
- Cold tests after mounting
- **Shipment** of the Dees to TEDD assembly centers
- Dee-boxes with accelerometers
- CNRS logistics (Ulisse) or private transporter?
- Insurance? The cost of a mounted Dee is about 600 k€!

Preparations: Test bench at IPNL

Setting up a test bench at IPNL, preparing for integration

- 1 microTCA crate with MCH, 5 FC7 and 1 DAQ PC (received DAQ PC,1 FC7, MCH)
- LV, HV power supplies (LV received)
- Might get a 2CBC3 hybrid + 1 sensor beginning of 2019 from KIT
- Full-size 2S module to be received by mid-2019
 - New service hybrid (SEH v3.1) should be available by then: need to make sure of which components are needed to build the prototype



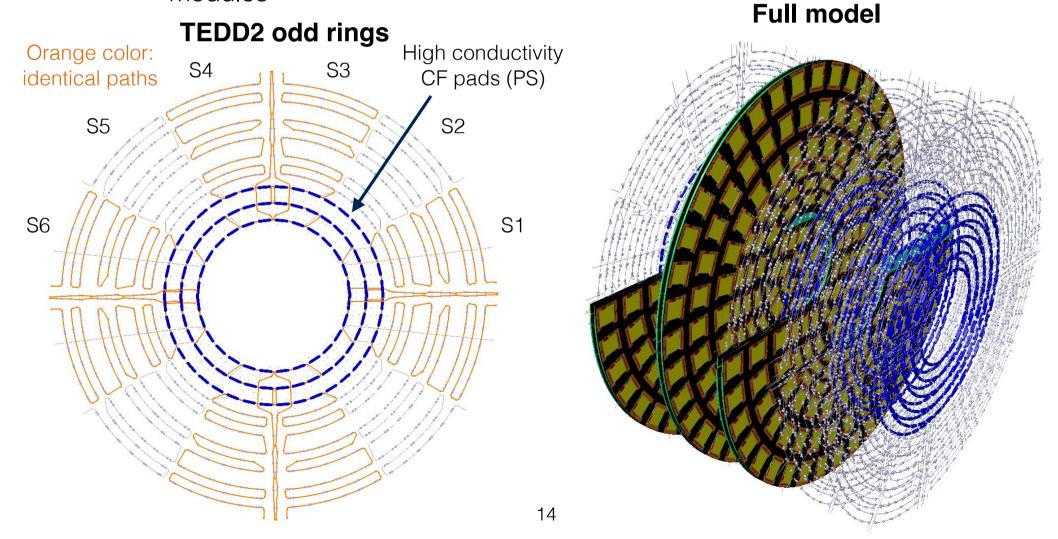
FC7 back-end boards (+ Mezzanines)

MicroTCA crate with CMS-style backplane

Conclusions

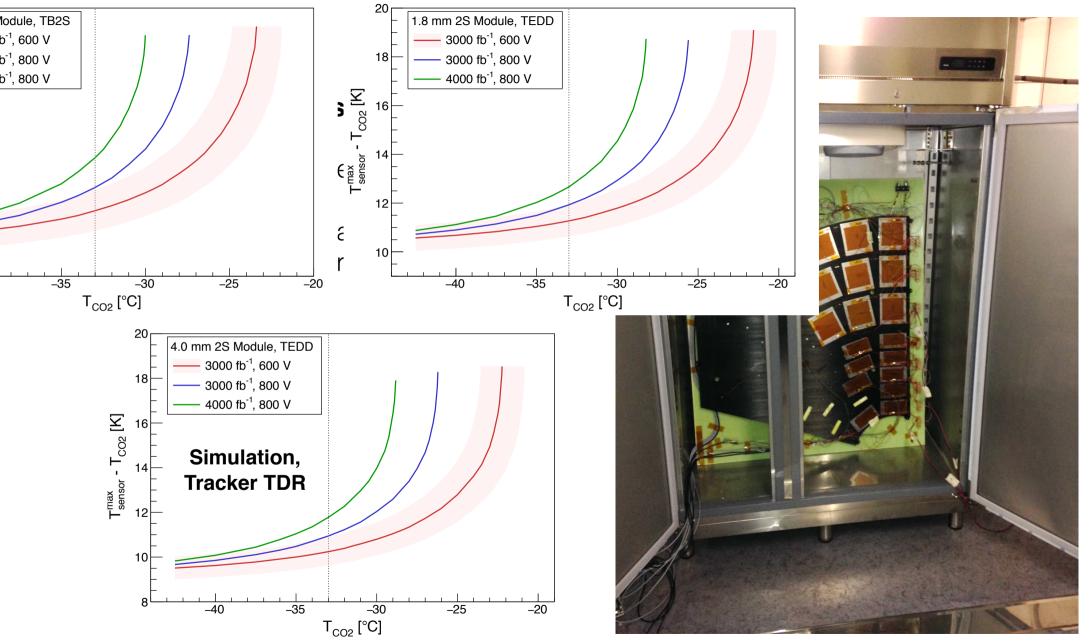
Preparation of Dee Integration started at IPNL

- Profit from past experience of phase-0 tracker
- Preliminary stages of reflection (presented to System test meeting and got first feedbacks in June)
- Plans of CMS system test group are evolving and not yet fully defined
- Started to equip VdG clean room
- We are setting up a bench test at IPNL, to be ready in 2019. Will be updated when latest components are available


Back-up slides

CMS provings unity tomano

Cooling pipes


Embedded cooling circuits for all Dee types have been designed

- 6 cooling sectors / Dee, highly symmetric
- 2 cooling loops per sector and per disk (odd/even rings)
- Pipe size 2.2mm inner diameter, optimised for $\Delta T < 10^{\circ} C$ between CO_2 and modules

Dees prototynes thermal measurements

