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Technical skills @ IPNL
• RTL coding in System Verilog language and simulation with ad-hoc testbench

• Model writing in System Verilog language 

• Testbench implementation in System Verilog and Python language 

• Simulations using ncsim and Simvision tools

• Synthesis (Genus tool):

• Multiple clock domains management → writing of SDC constraints; skill limited to 
data not crossing different clock domains

• Multiple power domains management → skill not used at this stage 

• Hierarchical synthesis → a preliminary and tentative hierarchical flow has been 
written but not implemented in the final submission

• Design for Test (DFT) type SCAN path → introduces complexity at the timing 
analysis level (not implemented)

• Low Power  → clock gating techniques and utilisation of low-power std cells 
families (not implemented)

• Formal verification → Conformal LEC scripts and analysis of the comparison results

• Mixed environment → black-box (analogue macro) implementation at synthesis 
level
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Technical skills @ IPNL
• Placement and routing (Innovus tool)

• Multiple clock domains management → writing of SDC and CTS-specific 
constraints

• Multiple power domains management → implemented in our project

• Design for Manufacturing (DFM) → already implemented at the flow level (CERN 
scripts)

• Power analysis using Voltus tool → static and dynamic analysis; IR drop analysis

• Formal verification → not implemented at this stage 

• Digital On Top (DOT) → final chip assembly and timing verification performed with 
Innovus

• Abstract view generation of analog and digital full custom blocks → implemented 
in our design for the analog IPs

• Generation of Verilog model and timing characterization files (.lib) using Liberate 
tool → skill acquired but not used

• Timing analysis → Innovus timing analysis and full chip sign-off flow using Tempus 
scripts

• Back-annotated simulations → SDF generation and gate level simulations
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Case study : CIC1 asic
• The design and implementation is in a 65 nm CMOS technology

• CIC model written in System Verilog language

• Mostly digital functionalities : digital on top implementation (DOT)

• Main functions :

• it collects the digital data coming from 8 upstream FE chips (MPA or CBCs)

• it formats the signal in data packets containing the trigger information from 8 
LHC bunch crossings and the raw data from events passing the first trigger 
level

• data are transmitted to a lpGBT chip

• Inputs are 48 bit-lines at 320 Mbps using 2 different data formats

• Outputs are sent through 7 bit-lines at 320/640 Mbps using an unique data 
format

• The core works at 2 different input voltages : either at 1.0 V or 1.2 V 

• A first prototype of the chip has been submitted on September 2018

• The second run of CIC (including SEU hardened design) is foreseen by June 2019
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CIC physical design 

• IPs blocks : Phase aligner (SMU univ. and CERN) used at each
input data channel incoming from the 6 lines from each
MPA/CBC FE. Is required in order to synchronize the signal with
the internal clock (320 MHz). SLVS Drivers and receivers (INFN 
and Univ. Bergamo and Pavia), CMOS I/O pads and I2C slave
(CERN), ESD protections (SOFICS).

• CIC-Core : based on 2 indipendent data paths, working in 
parallel.

• SystemManager : manages the clocks generation (40MHz, 320 
MHz, 640MHz), clock gating, reset distribution, command 
decoding from the fast control frame.

• SlowControl : manages the communication via I2C protocol for 
control and monitoring fo the system. It contains the I2C slave 
and the internal I2C registers.

• Process TSMC 65nm LP 1p7m4x1z1u metal stack.
• Wire bond with AP RDL. Bare die, bumped ASIC (flip chip) with

C4 bumps.
• ~743k standard cells after full flow.

2800 um
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CIC digital flow implementation (1)
• RTL coding in System Verilog language and simulation with ad-hoc testbench

• Implementation of ad-hoc testbench for simulations at different stages of the flow: behavioral level, 
synthesized netlist, back-annotated simulation using delay from SDF (Standard Delay Format)  

• Synthesis (Genus tool):

• SDC timing constraints definition

• Definition of different clocks domains: 320 MHz, 40 MHz, 160 MHz, 640 MHz

• Design has been constrained for 640 MHz but relevant timing violations persisted (not 
synthesized)

• Reset tree is fully asynchronous:

• Required careful definitions at constraints level

• Needed definition of multicycle paths in order to relax constraints on reset signal 

• Optimization issues

• L1Path module presents several long combinatorial paths and this strains the optimizer tool:

• Required several steps of optimizations

• Instantiation of IO pads

• IO pads manually instantiated within the code

• SLVS drivers/receivers not precisely characterized: .lib file not included in timing analysis

• Design analysis 

• Debug of failing paths using graphical tools and reports

• Definition of false-paths, dont_touch and dont_use (reset tree and other critical paths)
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CIC digital flow implementation (2)
• Placement and Routing (Innovus tool):

• Design import and setup

• Floorplanning (placing analog blocks and bumps, power planning)

• Design limited by IOs: placement of pads and bumps assignments are 
constrained by chip dimensions (imposed by the requirements of the hybrid 
board)

• Placement of analog blocks (phaseAligners) critical for the timing 

• Placement (add well tap, Tie hi/lo cells, placing std cells, trial route)

• Clock Tree Synthesis:

• Definition of a CCOpt spec file taking into account the generation of the multiple 
clocks domains

• No timing paths crossing two different clock domains 

• All the clocks are generated from the same 320 MHz clock

• Generation of CTS simplified due to the presence of only one input clock 

• help received from CERN in specifying the clock tree 

• Routing

• Router constrained only to the internal metal layers separating main clock and 
signals
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CIC digital flow implementation (3)
• Verification

• Timing verification performed at this stage required several steps of optimizations

• Abstract view generation of analogue blocks

• Calibre used for final DRC and LVS

• Power and rail analysis using Voltus tool

• Management of two different power domains (core and periphery) and 
characterization of CIC core for working at two different voltages (1V and 1.2V) 

• Changes on power planning due to problems of power distribution revealed by 
static power and IR drop analysis

• No optimization techniques for low power consumption have been applied

• Generated VCD (Value Change Dump) information from simulation using the same 
testbench, for accurately results of static power analysis

• Generated power reports and VDD/VSS IR drop diagrams (help from VCAD 
Cadence support)
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CIC digital flow implementation (4)
• Signoff analysis:

• Metal filling

• Main issue: timing analysis results are impacted

• Signoff static timing analysis using Tempus tool 

• run MMMC timing analysis with crosstalk analysis (signal integrity) (help 
received from CERN)

• signoff ECO fixing (Tempus flow)

• Gate level simulation

• setting up simulator to run a gate level simulation

• run a SDF back annotated gate level simulation with the ad-hoc testbench
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Training courses @ IPNL

• “Comprehensive Digital IC implementation and Sign-off” @ Europractice 
(RAL, UK)

• “Digital Mixed Signal IC Design and Implementation” @ Europractice (RAL, 
UK)

• TSMC N65 Mixed-signal workshop @ CERN 
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CIC project : lessons learned
• Goal: Design of a mostly digital ASIC using Cadence digital-on-top flow

• Starting date: January 2017 (project restart date)

• Submission date : september 2018

• Project planning
• Plan and schedule was not well documented and lacking details
• Task assignments required several adjustments mainly due to a lack of previous experience

• Three engineers and one physicist full time at IPNL
• Two engineers and one PhD student at CERN

• Requirements not documented (and changing)

• Project execution
• important changements occurred in september 2017 (logic triplication, dimensional constraints)
• the work methodology had been changed/adapted during project development

• Human factors
• project manager reported punctually to the management without receiving adequate attention and time
• project team lacked organisation

• training happened during project development
• there was no good communication within the project team

• Overall
• project objectives are still not met

• circuit will be tested in the following weeks

• a redesign of large parts is already started
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Back up 
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CIC context 

• For High-Luminosity LHC (HL-LHC), the CMS experiment will need a completely 
new tracker detector.

• A new type of detection module, based on stub creation, has been designed in 
order to ensure tracker data extraction at 40 Mhz.

• The future Phase-II CMS Outer Tracker will be populated with 2 pT-module types : 
PS (pixel/strips) and 2S (strips/strips).

• The Concentrator Integrated circuit (CIC) is a front-end chip common to PS and 2S 
modules and is the only shared component.
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Architecture
• 2 data streams are generated in the Front-end hybrid for the Back-end: L1 data (stream 

of frames responding to the L1-accept signal) and Trigger data (sequential stream of 8 
BX long blocks where each block contains the trigger data aggregated from 8 FE chip 
associated to one CIC). 

• CIC provides to the readout chain an extra factor 10 of data reduction, by grouping 
data over time (8 BX blocks) and space (8 input chips).

• CIC ASIC uniforms the data format for the Back-End.



16

Simulations and power estimation
• Power estimation (worst corner) and IR drop analysis using Voltus tool (Cadence) : 

PS @ 1.1V : 288 mW. 2S @ 1.32V : 415 mW (during running phase).
• Test design functionalities within a scripts-based framework (python). 
• Back-annotated simulations are performed using Simvision tool (Cadence) in 3 corners : 

MAX (ss, 0.9V, -40°C), TYP (tt, 1V, 25°C), MIN (ff, 1.32V, 0°C) and 2 test cases : PS and 2S.
• Results show that all functionalities are met. 

VDD IR drop VSS IR drop
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CIC simplified block diagram
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Digital design flow

Synthetized netlist

1. PreCTS flow

2. CTS flow

3. PostCTS flow

4. Timing checks

Tape-out

Layout+netlist

Verification (simple or 
signoff)

Physical design

• The digital flow, based on a 
series of scripts, permits to 
reach the final file (GDS) for 
the Tape-out phase starting 
from the behavioral 
description of the architecture 
(RTL).

• Tape-out phase: final step 
before the ASIC fabrication.

Cadence Genus 
Synthesis tool 

Cadence Innovus, 
Tempus, Voltus  tools 
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Physical design
2800
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• Digital on Top implementation

• Die dimensions take into account bondable pad + seal 
ring (not shown in figure)

• Process TSMC 65nm LP 1p7m4x1z1u metal stack

• Wire bond with AP RDL (not shown in figure)

• Periphery ring:
• 48 sLVS RX pads along the left and right sides 

(core+periphery supplies)
• 7 sLVS TX pads on the bottom side
• 2 sLVS RX + 7 CMOS pads on top side

• PHY-ports:
• 2 PHY-port blocks phase-aligns 8 L1_IN bitlines wrt SYS_CLK
• 10 PHY-port blocks phase-align 40 TRIGGER_IN bitlines wrt 

SYS_CLK

• CIC_Core:
• Flat synthesis of trigger and L1 data-path, I2C and Fast control 

blocks.
• 8 Front-End blocks each containing a 16 words by 800b FIFO 

@40 MHz ( 22,6k cells).
• ~372k standard cells 
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Physical design
• Top level power routing:

• 15 vertical stripes in AP layer 

• 98 horizontal stripes in M7 layer

• Periphery supply:
• The power routing of the periphery supply is being kept 

separate from the core

• Radiation tolerant ESD protections (designed by SOFICS): 
used in periphery ring

• Clock tree synthesis (CTS):
• Clock tree routed using M5 and M6
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CIC power estimation

• This is before CTS (expect 30% increase then), but without any power-oriented 
optimization. We will not further optimize the power budget for the CIC1.

Corner
Startup phase (PhyPort init,...) Running phase (high input load)

Digital Analog Total Digital Analog Total

PS-like 1.1V/0°C 182 27 209 183 16 199

2S-like 1.32V/0°C 259 63 322 282 56 338

• Power budget @ PS module: 250 mW
• Power budget @ 2S module: 300 mW

• Power estimates (in mw) were processed for the complete chip (CIC_top), for the
worst corners in 2 differents configurations. For the analog Phyport part
estimations are used.
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CIC testbench

• A standalone testbench has been implemented in order to:
• Check model functionality
• Perform the comparison between data stream from CMS simulation environment

with the CIC model output after the phase alignment and data treatment.

• System level Testbench for the validation of the full acquisition chain, developed at CERN
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CIC team

 L. Caponetto (IPNL): technical coordination, physical design

G. Galbit (IPNL): digital design, system test and CIC characterization testbench

 B. Nodari (IPNL): block-level synthesis, physical design

S. Scarfi (CERN): system validation

S. Viret (IPNL): scientific coordination

 In addition to that we can now count on the support from the CERN CMS
TRACKER IC team, which has gained good experience in the TSMC 65 nm
technology.
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CIC test system
• CIC prototypes will be soldered on small passive PCBs and will be driven externally.
• 2 PCB flavors will be produced: wire-bonded and soldered (we will also order bumped

CIC1 wafers).
• Necessary tasks are:

1. Design and routing of the 3 specific board (test
vehicle, test board, converter)

2. Implementation of the test bench firmware
3. Implementation of the test bench software

• The full system will use 3 boards:

 C. Guerin & W.Tromeur (IPNL) : CIC characterization testbench and boards development

Test board

FMC

CIC

FMC

FMC

KCU105
FMC

CIC test system

SLVS signal conversion, 
power regulation,…

System test firmware


