Searches with top quarks in ATLAS

Vector-like quarks and resonances

Loïc Valéry (DESY) Ivalery@cern.ch

CPPM Marseille — 28/01/2019

Where we stand ...

- Successfull theory: describes elementary particles & interactions
- "Last" piece discovered in 2012: Higgs boson

Where we stand ...

But ...

• Limitations / unnatural observations

But ...

- Limitations / unnatural observations
 - Dark Matter: not described in Standard Model

But ...

- Limitations / unnatural observations
 - Dark Matter: not described in Standard Model
 - Higgs boson mass: naturally expected to be heavier

But ...

- Limitations / unnatural observations
 - Dark Matter: not described in Standard Model
 - Higgs boson mass: naturally expected to be heavier
 - etc ...

Beyond the Standard Model

Where we go ...

- Changing/adding symmetries
 - SM low-energy effective theory ?
 - SM based on SU(3) x SU(2) x U(1) \rightarrow Belong to a larger symmetry group ?
 - E6, SO(10), ... (e.g. SSM, GUT theories)
 - Breaking \Rightarrow new symmetries remain \Rightarrow additional gauge bosons predicted
 - e.g. Z', W'

Beyond the Standard Model

Where we go ...

- New dimensions
 - Could explain e.g. mass hierarchy, scale hierarchy
 - Constraints ⇒ extra-dimensions **compactified**
 - e.g. warped extra-dimensions (Randall-Sundrum)
 - Excitations of SM particles ⇒ new particles
 - e.g. Kaluza-Klein gluons, gravitons, ...

Beyond the Standard Model

Where we go ...

- Top quark partners
 - New Physics at higher scale (Planck) ⇒ could lead to large radiative corrections
 - Reduction of these corrections: top quark's partners
 - superpartners (stops), vector-like partners (e.g. Higgs compositeness)

• Large coupling expected to BSM sector in several models

• Large coupling expected to BSM sector in several models

• Large coupling expected to BSM sector in several models

Looking for new physics with top quarks

Key features

New heavy particles: high-p_T hadronically-decaying objects

New heavy particles: high-p_T semi-leptonically-decaying objects

tt+jets background

- tī + jets process: often largest background source in top-enriched BSM searches
- Different types probed in searches:
 - many additional jets, b-jets
 - high-p⊤ top quarks
 - high-p_T top-antitop system

Background estimation strategy adapted to each phase space and observable

Resonance searches

Resonances

- New heavy leptophobic gauge bosons (Ζ', W', g_{KK}, ...)
 - Several models probed (e.g. extra-dimension, SSM, Dark Matter)
 - Charge conservation: decays to tt or tb

Resonances

- New heavy leptophobic gauge bosons (Z', W', g_{KK}, ...)
 - Several models probed (e.g. extra-dimension, SSM, Dark Matter)
 - Charge conservation: decays to tt or tb

Strategy

- Continuously falling background
- New Physics → bump on invariant mass spectrum

Key aspects

- Identification of boosted objects (e.g. boosted top quarks)
- Reconstruction of invariant mass
- Background shape modelling

tt resonances

Eur. Phys. J. C 78 (2018) 565

1-lepton channel

tt resonances

1-lepton channel

Eur. Phys. J. C 78 (2018) 565

q

tt resonances

1-lepton channel

 $|\bar{q}|$

Lepton + MET + ≥1 b-jet

Eur. Phys. J. C 78 (2018) 565

No

tt resonances

1-lepton channel

- $m_{t\bar{t}}$ spectrum compared between data and background prediction
 - Data/prediction agreement can be improved → **background calibration**
 - simultaneous profile likelihood fit in all channels with all nuisance parameters

Eur. Phys. J. C 78 (2018) 565

-15 -10

ATLAS

Pre-fit impact on μ :

Post-fit impact on µ:

 $\theta_0 = +\Delta \theta \qquad \qquad \theta_0 = -\Delta \theta$

 $\theta_0 = +\Delta \hat{\theta} = \theta_0 = -\Delta \hat{\theta}$

tī parton shower boosted

- Background estimate parameters
 - Background normalisation
 - MC generator settings
 - Alternative generators
- Background calibration

tt resonances

1-lepton channel

Background model fit to data •

 $\Delta \mu \times 10^3$

0

5

10

15

-5

√s = 13 TeV, 36.1 fb⁻¹

tt resonances

1-lepton channel

- $m_{t\bar{t}}$ spectrum compared between data and background prediction
 - Data/prediction agreement can be improved → **background calibration**
 - simultaneous profile likelihood fit in all channels with all nuisance parameters
 - After fit, very good agreement with prediction

tī resonances

1-lepton channel

- $m_{t\bar{t}}$ spectrum compared between data and background prediction
 - Data/prediction agreement can be improved → background calibration
 - simultaneous profile likelihood fit in all channels with all nuisance parameters
 - After fit, very good agreement with prediction
- Bumps searched for in all channels → no significant bump observed
- CLs limits set at 95% CL for various models, masses and widths

AILAS $is = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$ Expected 95% CL upper limit Dobserved 95% CL upper limit $\pm 1 \sigma$ Expected 95% CL upper limit $\pm 2 \sigma$ Dark Matter simplified model, vector mediator 10^{-1} 10^{-2} 10^{-3} 10^{-3} 10^{-3} 10^{-4} 1.5 2 2.5 3 3.5 4 4.5 5 Mediator mass [TeV]

tb resonances

tb resonances

1-lepton search

- Event reconstruction
 - W' candidate: combination of lepton, MET and b-jet candidate
 - Resolution effects: combinatorics and PDF
- After fit, background prediction in good agreement with data

0-lepton search

- Top-tagging algorithm
 - Using shower deconstruction (SD) algorithm on large-R jets [Phys. Rev. D 84, 074002]
 - consider all possible shower histories leading to subjet configuration
 - variable of interest (likelihood ratio): χ_{SD}

0-lepton search

- Top-tagging algorithm
 - Using shower deconstruction (SD) algorithm on large-R jets [Phys. Rev. D 84, 074002]
 - consider all possible shower histories leading to subjet configuration
 - variable of interest (likelihood ratio): χ_{SD}
- Data-driven multijet background estimation
- Very good data/prediction agreement across all bins and regions

Combination

- 1- and 0-lepton searches: similar sensitivity
- Different dominating background sources
- Combination: expected sensitivity improved by factor ~2

Resonances: a few lessons learnt ?

- · High mass regime: statistics is limiting
- Event selection
 - Electrons close to jets: electron channel less powerful
 - *High-p*_T*jets b-tagging:* efficiency loss at high p_T (more likely to miss high-p_T b-jets)

Resonances: a few lessons learnt ?

- · High mass regime: statistics is limiting
- Event selection
 - Electrons close to jets: electron channel less powerful
 - *High-p_T jets b-tagging:* efficiency loss at high p_T (more likely to miss high-p_T b-jets)

Improvements ongoing for next generation (e.g. <u>ATL-PHYS-PUB-2017-013</u>)

Vector-like quark searches

Vector-like quarks

- Heavy quarks for which left- and right-handed chirality components transform the same under SU(2)
 - Predicted in **many theories** (extra-dimensions, Higgs compositeness, ...)
 - Gauge invariant mass term

Vector-like quarks

- Heavy quarks for which left- and right-handed chirality components transform the same under SU(2)
 - Predicted in many theories (extra-dimensions, Higgs compositeness, ...)
 - Gauge invariant mass term

- Production ~independent on VLQ coupling to SM partners
- Dominant for low masses

- Cross-section depends on VLQ coupling assumptions
- Can be dominant for high masses

 \bar{b}/\bar{t}

Pair-production searches Z(II)t/b+X

- Selects high-p_T $Z \rightarrow \ell \ell$ events in dilepton / trilepton events
 - sub-channels depending on N_{leptons} and N_{boosted tops} (4 signal regions)
 - 3-lepton channel: most sensitive
- Main backgrounds: tt+V, diboson, depending on SR (calibrated in data)

Same-sign leptons

- Selects same-sign dilepton and non-Z trilepton events
 - typically from $T \to Ht \to WW^* t$ or $BB \to WtWt$ decays
 - signal regions: depending on N_{leptons}, N_{b-jets}, kinematic cuts
- Main backgrounds: fake/non-prompt leptons, charge mis-measurement, $\ensuremath{t\bar{t}}\xspace+V$
 - validated in dedicated regions

Pair-production searches H(bb)t+X

objects

- Selects high-p_T top quarks / Higgs bosons in 1-lepton/0-lepton (high-MET) events
 - sub-channels depending on N_{leptons}, N_{tops}, N_{Higgs}, N_{b-jets} (34 signal regions)

Pair-production searches Summary plots

Phys. Rev. Lett. 121 (2018) 211801

• Excellent complementarity between analyses: most

parameter space "covered"

- Non-overlapping analyses
 - → combined interpretation !

Pair-production searches Summary plots

Phys. Rev. Lett. 121 (2018) 211801

• Excellent complementarity between analyses: most

parameter space "covered"

- Non-overlapping analyses
 - → combined interpretation !

Pair-production searches Combination

Phys. Rev. Lett. 121 (2018) 211801

The incredible lightness of the HiggsTAS searches for vector-like top quarks that could explain the Higgs boson's small mass ILSEPTEMBER, 2018 | By Ana Lopes

Pair-production searches Combination

Phys. Rev. Lett. 121 (2018) 211801

The incredible lightness of the HiggsTAAS searches for vector-like top quarks that could explain the Higgs boson's small mass INSEPTEMBER, 2018 | By Ara Lopes

Phys. Rev. Lett. 121 (2018) 211801

Strong sensitivity gain !

=> No evidence for lowmass VLQs

Phys. Rev. Lett. 121 (2018) 211801

Strong sensitivity gain !

=> No evidence for lowmass VLQs

Look for high mass VLQ: singleproduction !

Single-production searches Topologies

- Single production possibly more important for high VLQ masses
- Cross-section depends on VLQ coupling to SM particles

Single-production searches Topologies

- Single production possibly more important for high VLQ masses
- Cross-section depends on VLQ coupling to SM particles

Single-production searches Topologies

- Single production possibly more important for high VLQ masses
- Cross-section depends on VLQ coupling to SM particles

Topologies

- Single production possibly more important for high VLQ masses
- Cross-section depends on VLQ coupling to SM particles
- Event properties different wrt pair-production
 - Less busy final state but forward jet

Single $T/B \to Z(\ell \ell)t/b$

- Selects high-p_T $Z \rightarrow \ell \ell$ events
 - dilepton: presence of a top-tagged jet → full VLQ reconstruction
 - trilepton: ambiguity in reconstruction → use kinematic variable
- Main background: Z+jets or tt+V

Single $T/B \rightarrow Z(\ell \ell)t/b$

W/ZarXiv:1806.10555 Accepted by JHEP 000000000

- Selects high-p_T $Z \rightarrow \ell \ell$ events
 - dilepton: presence of a top-tagged jet → full VLQ reconstruction
 - *trilepton*: ambiguity in reconstruction \rightarrow use kinematic variable
- Main background: Z+jets or tt+V ٠
- Limits set for variable coupling assumptions \rightarrow model-independent interpretation ٠

VLQ searches: next steps ?

- For all VLQ searches: sensitivity limited by statistics
- Excellent coverage in pair-production → low-mass VLQs strongly constrained
 - · Combination significantly extends sensitivity !
- Single-production more and more relevant: several studies underway !
 - Quite challenging to interpret in a "model-independent" manner
- More complete models ? Exotics decays ?

Summary

- Top quark: ideal to probe several new theories extending Standard Model
- Heavy resonances decaying to top quarks and vector-like quarks
 - Thoroughly searched for by ATLAS in several (new) channels
 - Challenging experimental final states
 - No signs of new particles (yet) \rightarrow strong **constraints** on many BSM theories
- Sensitivity mostly limited by statistics
 - Will benefit from new data coming from LHC
 - ... and increase of signal acceptance !
- Stay tuned for full Run 2 results !

Thank you

Contact

DESY. Deutsches Elektronen-Synchrotron

www.desy.de

Loïc Valéry ATLAS <u>loic.valery@desy.de</u>

LHC and luminosity

- New Physics events: rare and at high energy
- Searches using Run 2 LHC data
 - Centre-of-mass energy: $\sqrt{s} = 13 \text{ TeV}$
 - Luminosity: 36.1 fb⁻¹ or 79.8 fb⁻¹

Pair-production searches Z(vv)t+X

- Selects 1-lepton events with large MET
 - Selecting $T \rightarrow Z(\nu\nu)t$ events
 - · Jet-reclustering to identify boosted top quarks
- Main backgrounds: top background and W+jets (calibrated in data)

Pair-production searches Wb/t+X

- Select 1-lepton events with high-p_T hadronic W bosons
 - BB → Wt+X: complex final state → full reconstruction otherwise MVA strategy
 - TT \rightarrow Wb+X: reconstruct $T \rightarrow Wb \rightarrow l\nu b$ mass
- Main background: tt (calibrated in data)

DESY. | Searches with top quarks in ATLAS | Loïc Valéry

Pair-production searches

Fully-hadronic

- Selects 0-lepton events with high- p_T top quarks or V/H bosons
 - sub-channels depending on boosted object content (12 channels)
- Main background: multi-jet (data-driven)
- Boosted object tagging: multi-class DNN classifier on vRC jets
 - using of jet and subjet kinematic properties
- Final discriminant: Matrix Element Method

Single $B \rightarrow Hb \rightarrow \gamma \gamma b$

- Selects events with two photons originating from Higgs + b-jet
 - Use $m_{\gamma\gamma b}$ to reconstruct vector-like B mass
- Main background: continuum $\gamma\gamma$ + jets (estimated from data in sidebands)

g**000000000**

ATLAS-CONF-2018-024

Single-production searches Single $B \rightarrow Hb \rightarrow \gamma \gamma b$ ATLAS-CONF-2018-024

- Selects events with two photons originating from Higgs + b-jet
 - Use $m_{\gamma\gamma b}$ to reconstruct vector-like B mass
- Main background: continuum $\gamma\gamma$ + jets (estimated from data in sidebands) •
- Limits set with fixed coupling

00000000

Shower deconstruction algorithm

A bit more information

Taken from https://cds.cern.ch/record/1648661

Shower deconstruction performance

A bit more information

 Use of exclusive subjets => better performance for very-highly-boosted top quarks.

DNN tagger

https://arxiv.org/pdf/1808.01771.pdf

A bit more information

Matrix element method

A bit more information

VLQ searches: next steps ?

Single VLQ production

A bit more information

• Single production production cross-section **depends on coupling** between quarks and vector-like partners.

Single VLQ interpretation

A bit more information

Some more information

arXiv:1805.04758 (Accepted by JHEP)

CMS results

ATLAS results

Phys. Rev. Lett. 121 (2018) 211801

