2018 Blaise Plascal Chair Lecture 1

6

 Brief HistoryCosmós

Pisin Chen
Department of Physićs \& G̛raduate Institute-of Astrophysics
National Taiwan University; \&
\pm Leung Centè for Cosmology and Particle Astrophysics
Nationà Taiwan Univerrsity \&

LLR, Ecole Polytechniqque, Jan. 21, 2019

The Expanding Universe: A Gapsule History

Hubble's great discovery: Universe is expanding! The universe must have a beinning

WHAT KIND OF EXPLOSION WAS THE BIG BANG?

WRONG: The blg bang was llke a bomb going off at a certaln location in previously empty space.
In this view, the universe came into existence when matter exploded out from some particular location. The pressure was highest at the center and lowest in the surroundingvoid; this pressure difference pushed material outward.

RIGHT: It was an explosion of space Itself.

The space we inhabit is itself expanding. There was no center to this explosion; it happened everywhere. The density and pressure were the same everywhere, so there was no pressure difference to drive a conventional explosion.

\Rightarrow

Light has a unique property. Its wavelength stretches as the universe expands.

The longer the wavelength, the lower the temperature.

As the universe expands, it cools down. Eventually electrons and nuclei formed atoms. Cosmic microwave background detached

The Planck Mission

CMB Anisotropy

 at the level of $\sim 1 / 100,000$

Why did our universe start from here,

 where the potential is concave?

Euclidean wormholes in dS

PC, Hu and Yeom, 1611.08468; PC and D-h Yeom,
1706.07784

Euclidean wormholes in dS

PC, Hu and Yeom, 1611.08468; PC and D-h Yeom,
1706.07784

Q: Why is the universe so uniform and flat? A: Inflation

Within $10^{-35} \mathrm{sec}$. the size of the universe expaloded times!

Q: But why is it slightly non-uniform? A: Quantum fluctuations

According to QM, vacuum is filled with particles randomly emerged and disappeared dictated by Heisenberg's uncertainty principle.

Starobinsky R² Model Favored

Primordial Gravitational Waves: The holy grail of inflation

In the 1990s, physicists theorized that rapid inflation during the big bang would also generate gravity waves, which would leave their mark by polarizing light in the cosmic afterglow. Extremely sensitive telescopes at the South Pole have detected such skewed light waves, but scientists have spent almost a decade ensuring that the phenomenon was not the result of other factors.

History of the Universe

The 2015 BICEP-2 false alarm

History of the Universe

AliCPT (Ali CMB Polarization Telescope) IHEP-NTU-Stanford/SLAC-ASU Collaboration

- A two-phase CMB polarization experiment in Ali, Tibet.
- Primary science goals
p Inflation: tensor to scalar ratio r
p CPT violation: CMB rotation angle
p Reionization: E-mode polarization

- Based on BICEP3 detector module.
- AliCPT-1 (95 \& 150 GHz ; survey up to ~10\% sky)
- Provides cutting edge E-mode measurement;
- Suggests survey region for AliCPT-2.

Planned survey region of AliCPT
Complementary northern hemisphere measurement / Large sky coverage / Ideal site

Status of AliCPT

AliCPT-1 (5,250m site)

- 4 detector modules (~ 6,800 detectors) for $90,150 \mathrm{GHz}$.
- Design to be fixed by 2018; Calibration and test during 2019. Data taking from 2020.

AliCPT-2 (6,000m site)

- Preliminary site survey in July 2017. Planned survey in the near future.
- Two weather stations installed. Data will b compared to NASA MERRA-2 satellite.

Expected to be deployed in 2022.

July 2018

$\Omega_{i} \equiv \rho_{i} / \rho_{\text {CRITICAL }}$
$\Omega_{\text {TOTAL }}=1$

Dark energy 68\%

27\%
Dark matter

Heavy Elements:
$\Omega=0.0003$
D \& Neutrinos (v):
$\Omega=0.0047$

Cold Dark Matter:
$\mathbf{0}=0.25^{\text {(extra gravity }}$:
Cold Dark Matter
$Q=0.25^{\text {(extra gravity })}$
Dark Energy (1): (anti-gravity) $\Omega=0.70$

Free y \& He .

Every galaxy is imbedded in the halo of DM.

Extent of Survey

around the Sun

Milky Way

Abell Cluster viewed from Hubble Telescope

The visible gravitational lensing effect cannot be explained unless there exists additional gravity provided by invisible matter.

John Wheeler: Spacetime tells matter how to move; matter tells spacetime how to curve.

WIMP Dark Matter Not Found!

Axion-like BEC Dark Matter?

$\Omega_{i} \equiv \rho_{i} / \rho_{\text {CRITICAL }}$
$\Omega_{\text {TOTAL }}=1$

Heavy Elements:
$\Omega=0.0003$
D © Neutrinos (v): $\Omega=0.0047$

Dark energy 68\% Dark matter 27\%

ACDM

"New" discovery (1998): Accelerating expansion of the universe Requires the existence of a new substance - dark energy.

Einstein's cosmological constant a natural candidate for dark energy

Once Einstein knew the universe was expanding, he discarded the cosmological constant, which he introduced in his general relativity theory to prevent the gravitational collapse of a galaxy, as an unnecessary fudge factor. He later called it the "biggest blunder of his life," according to his fellow physicist George Gamow. Today astronomers refer to one theory of dark energy as Einstein's cosmological constant

Dark Energy: Dynamical Field vs. Cosmological Constant

DE eq. of state: $p=W \rho$,
$w_{0}=-1.04_{-0.69}^{+0.72}, w_{a}<1.32$.

$$
w=w_{0}+w_{a}(1-a) .
$$

(95\%; Planck+WP+BAO)

Fig. 36. 2D marginalized posterior distributions for w_{0} and w_{a}, for the data combinations Planck+WP+BAO (grey), Planck+WP+Union2.1 (red) and Planck+WP+SNLS (blue). The contours are 68% and 95%, and dashed grey lines show the cosmological constant solution.

Dark Energy Induced Anisotropy in Cosmic Expansion

Chien-Ting Chen \& PC, arXiv:1704.06797

The total luminosity distance power spectrum for $\ell=2$ to 10 at $z=0.1$ with the integration range from $\mathrm{k}=0.0001$ to $0.15 \mathrm{Mpc}^{-1} \mathrm{~h}$ (blue) and at $z=0.5$ with the integration range from $k=0.0001$ to $0.1 \mathrm{Mpc}^{-1} \mathrm{~h}$ (purple).

$\Omega_{i} \equiv \rho_{i} / \rho_{\text {CRITICAL }}$
$\Omega_{\text {TOTАL }}=1$

Cosmic Pie

Dark energy

Heavy Elements:
$\Omega=0.0003$

$$
68 \%
$$

Neutrinos (v):
$\Omega=0.0047$

27\%
Free H \& He.
$\Omega=0.04$
Cold Dark Matter: $\Omega=0.25^{\text {(extra gravity) }}$

Dark Energy (1): (anti-gravity $\Omega=0.70$

Standard model of particle physics

 12 building blocks, each with a different "flavor".

Neutrinos contribute $1 / 4$, yet they are least understood.

Neutrinos: The longest distance messenger in the universe

Protons would interact with CMB and be lost; bent by inter-galactic magnetic fields, too; cannot trace back the origin.

Light can be absorbed by dusts.

ANITA-I, II, III, IV (2006-2018)

Accidental discovery made by the NTU team

Geomagnetic field induced synchrotron radiation by e+e- paris in cosmic ray air shower

ANITA very effective in detecting - Witra-high energy cosmic rays

NTU Prof. Jiwoo Nam First discovered this.

ARA Cosmic Neutrino Observatory

ROC's first major science project at South Pole

TAROGE Observatory

(Taiwan Astroparticle Radiowave Observatory for Geo-synchrotron Emission)

Installation of TAROGE-3, July 2018

ANITA discovered two anomalous up-pointing shower events: Cannot be explained by Standard Model

Synopsis: ANITA Spots Another Inverted Cosmic-Ray-Like Event

October 18, 2018
A fountain of high-energy particles that resembles an upside-down cosmic-ray :r is detected for the second time by the Antarctic Impulsive Transient n.

:nergy cosmic-ray particles constantly bombard Earth. When one of these les collides with molecules in our atmosphere, it triggers a cascade of secondary les, collectively known as a cosmic-ray air shower. But that isn't the only way nergy particles interact with Earth. On 28 December 2006, the balloon-borne .tic Impulsive Transient Antenna (ANITA) detected an "upward" air shower-a
uin of high-energy particles erupting from Antarctica's icy ground. The team now s the observation of a second such event, which occurred on 12 December 2014.

TAROGE-M: To nail down up-pointing events

Three types of black holes

Supermassive BHs (hundreds of thousands to billions solar masses)

Stellar BHs (several to tens solar masse

Primordial BHs (born around Big Bang era

LIGO gravitational waves observatory

LIGO observation of first GW in 2016

Two stellar BHs spiral and collide into each other

Simple algebra: $29+36=62+3$

Black hole Hawking evaporation: Connecting gravity, QM, statistical mechanics in one stroke

BH evaporation and information loss paradox

Information Loss

Investigations of ILP mostly theoretical.

 Astro black holes too cold and too young Hawking lifetime of solar mass BH: 10^{67} years Age of the universe: 1.38×10^{10} years

Analog Black Holes

- Sound waves in moving fluids - "dumb holes" Unruh $(1981,1995)$
- Traveling index of refraction in media Yablonovitch (1989)
- Violent acceleration of electron by lasers

Chen-Tajima (1999)

- Electromagnetic waveguides Schutzhold-Unruh (2005)
- Bose-Einstein condensate Steinhauer (2014)
- Accelerating mirror

Fulling-Davies (1976), Davies-Fulling-Unruh (1977), Birrell-

Davies (1982), Carlitz-Willey (1987), Hotta-SchutzholdUnruh (2015), Chen-Mourou (2016), Chen-Yeom (2017.)

Flying plasma mirrors as analog black holes

在賓驗桌上模擬黑洞

How would AnaBHEL investigate information loss paradox?

Conceptual design of AnaBHEL experiment

ime resolved photo sensor

Relativistic plasma mirror

Reflected source pulse in X-ray

Accelerating
plasma mirror

AnaBHEL Collaboration formed

(Analog Black Hole Evaporation via Lasers)

National Taiwan University + Ecole Polytechnique + CEA-Saclay

+ Kansai Photon Research Inst. + Shanghai Jiao Tong U.
- Three stages:

1. Proof of principle at NCU 100 TW Laser facility (Taiwan)
2. Further tests at KPSI (Japan) with 1 PW laser 3. Full scale expt. with 10PW Apollon Laser Facility, Saclay
NCU 100ftanacerfindilixttaivain 209P91 PW Laser, Japan
10 PW Apollon

AnaBHEL Collaboration Kickoff Meeting at NTU, April 2017

Chee-Chun Leung Cosmology Hall 2018 World Architecture Festival Award Finalist

Treintheon of Cosmology: Zhang Heng, Galileo, Newton, Einstein

$+8$

