
R. Assiro

UUB Petalinux achitecture

Root File System

Linux KERNEL
+

modules

Device tree

Image.ub

image.ub is a compressed file to build all linux components

At system startup UBOOT decompress image.ub into the ram and lunch the kernel

UBOOT

CPU

Image.ub size:

about 15Mb

Too big for

radio transfer

Advantages of the solution:

- Easy to manage, one file only

- Easy to build and release

disadvantages:

- No flexibility to change the single component

- Too big to transfer by radio

Solution in present UUB (monolithic)

Flash memory boot partition

R. Assiro

Next Petalinux achitecture

Linux KERNEL

After system boot we can change

the flash memory contents

UBOOT

CPU

Advantages of the solution:

- Very flexible to implement new software device (system.dtb just 20Kb)

- Small files by radio

disadvantages:

- More complex to manage, more files

A solution for the future

zImage

Device tree

system.dtb

Root File System
Modules
drivers

rootfs.cpio.gz

File 1

File 2

File 3

Flash memory boot partition

Backup slides

Partition qspi-fsbl-uboot 2 Mb in Linux it is /dev/MTD1
The Zynq reads FSBL to start and then UBOOT

QSPI Flash Memory partitions

0x000180000

u-boot-env1

Bitstream (fpga.bit)

0x03000000

Image.ub

0x08000000

0x00000000
Flash Memory Address

R. Assiro

qspi-ubi-auger
Ready for storage /flash

u-boot-env2

qspi-ubi-itb

U-BOOT

FSBL

qspi-fsbl-uboot

First Step Boot Loader

U-boot

Partition qspi-ubi-itb 46 Mb in Linux it is /dev/MTD2

U-boot’s Variables enviroment 1

U-boot’s Variables enviroment 2 (copy)

Image.ub is the compressed file of linux image

- Kernel - Device tree - RootFs

fpga.bin is the bitstream file for PLD side of Zynq

Partition qspi-ubi-auger 80Mb in Linux it is /dev/MTD3

This volume is used for safety only

uboot.bin

uub.bin

uub.bin = entire flash memory content from 0x0 to 0x3000000 address (48Mb)

uboot.bin = FSBL and u-boot programs (490 Kb)

Bitstream (fpga.bit)
copy

Image.ub
copy

Volume itbs (26 Mb)

Volume recovery (20 Mb)

Volume name /flash. It’s usable to store data (log file, scripts etc)

How patching works

U-BOOT

UUB boot sequence

Root
File

system

RAM memory

FPGA

image.ub
Kernel +

rootfs

Flash memory /boot

fpga.bit

KERNEL

patching

KERNEL

After boot ‘patching’ overwrites

files in rootfs from:

uub-patches directory’s patch

tar files from

uub-patches

to rootfs

R. Assiro

USB memory stick

uub-patches
directory

uub-patches
directory

uub-update

directory

 fpga.bit

image.ub

tar files from

usb memory

to flash memory

If USB memory is present at boot:

-Upgrade UUB with new bitstream

and system (fpga.bit and image.ub)

- Add patches to flash memory

(no volatile patches)

Files overwriting

UUB Upgrade

Add new patch files

Patch files

fpga.bit

Root File
system

RAM memory

Flash memory /boot

patching

KERNEL

uub-patches
directory

Files overwriting

Add new patch files

Patch files

Bin/hello.elf

Etc/init.d/rc.local

P01hello.tgz

Radio program

Radio control
program

Bin/hello.elf

Etc/init.d/rc.local

RADIO UNIT

Bin/hello.elf

Etc/init.d/rc.local

P01hello.tgz

Add patch content

Example of Patch

to send by radio

