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UUB Petalinux achitecture 

Root File System 

Linux KERNEL 
+ 

modules 

Device tree 

Image.ub 

image.ub is a compressed file to build all linux components 

At system startup UBOOT decompress image.ub into the ram and lunch the kernel 

UBOOT 

CPU 

Image.ub size: 

about 15Mb 

Too big for  

radio transfer 

Advantages of the solution: 

- Easy to manage, one file only 

- Easy to build and release 

 
disadvantages: 

- No flexibility to change the single component  

- Too big to transfer by radio 

 

Solution in present UUB (monolithic) 

Flash memory boot partition 
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Next Petalinux achitecture 

Linux KERNEL 

After system boot we can change  

the flash memory contents 

UBOOT 

CPU 

Advantages of the solution: 

- Very flexible to implement new software device (system.dtb just 20Kb)  

- Small files by radio 

 
disadvantages: 

- More complex to manage, more files 

 

A solution for the future 

zImage 

Device tree 

system.dtb 

Root File System 
Modules 
drivers 

rootfs.cpio.gz 

File 1 

File 2 

File 3 

Flash memory boot partition 



Backup slides 



Partition qspi-fsbl-uboot 2 Mb in Linux it is /dev/MTD1 
The Zynq reads FSBL to start and then UBOOT  

 
 

QSPI Flash Memory partitions 

0x000180000 

u-boot-env1 

Bitstream (fpga.bit) 

0x03000000 

Image.ub 

0x08000000 

0x00000000 
Flash Memory Address 
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qspi-ubi-auger 
Ready for storage /flash 

u-boot-env2 

qspi-ubi-itb 

U-BOOT 

FSBL 

qspi-fsbl-uboot 

First Step Boot Loader 

U-boot 

Partition qspi-ubi-itb 46 Mb in Linux it is /dev/MTD2 

U-boot’s Variables enviroment 1 

U-boot’s Variables enviroment 2 (copy) 

Image.ub is the compressed file of linux image 

- Kernel  -  Device tree  -  RootFs 

fpga.bin is the bitstream file for PLD side of  Zynq 

Partition qspi-ubi-auger 80Mb in Linux it is /dev/MTD3 

This volume is used for safety only 

uboot.bin 

uub.bin 

uub.bin = entire flash memory content from 0x0 to 0x3000000 address (48Mb) 

uboot.bin = FSBL and  u-boot programs (490 Kb) 

Bitstream (fpga.bit) 
copy 

Image.ub 
copy 

Volume itbs (26 Mb) 

Volume recovery (20 Mb) 

Volume name /flash. It’s usable to store data (log file, scripts etc) 



How patching works 

U-BOOT 

UUB boot sequence 

Root 
File 

system 

RAM memory 

FPGA 

image.ub 
Kernel + 

rootfs 

Flash memory /boot 

fpga.bit 

KERNEL 

patching 

KERNEL 

After boot ‘patching’ overwrites 

files in rootfs from:  

uub-patches directory’s patch 

tar files from 

uub-patches 

to rootfs 
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USB memory stick 

uub-patches 
directory 

uub-patches 
directory 

uub-update 

directory 

 fpga.bit 

image.ub 

tar files from 

usb memory 

to flash memory 

If  USB memory is present at boot: 

 

-Upgrade UUB with new  bitstream 

and system (fpga.bit and image.ub) 

 

- Add patches to flash memory 

(no volatile patches) 

Files overwriting 

UUB Upgrade 

Add new patch files  

Patch files 

fpga.bit 



Root File 
system 

RAM memory 

Flash memory /boot 

patching 

KERNEL 

uub-patches 
directory 

Files overwriting 

Add new patch files  

Patch files 

Bin/hello.elf 

Etc/init.d/rc.local 

P01hello.tgz 

Radio program 

Radio control 
program 

Bin/hello.elf 

Etc/init.d/rc.local 

RADIO  UNIT 

Bin/hello.elf 

Etc/init.d/rc.local 

P01hello.tgz 

Add patch content 

Example of Patch 

to send by radio 


