Analyses of the AugerPrime Engineering Array

Sonja Schröder Bergische Universität Wuppertal

SDEU Meeting - Orsay 13/14.12.18

13.12.18

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Surface Scintillator Detector (SSD)

plastic scintillator detector on top of SD stations as part of upgrade 'AugerPrime'

 \rightarrow Engineering Array (EA) with 12 stations in field, currently taking data

Surface Scintillator Detector (SSD)

Engineering Array continuously undergoing changes, i.e,SSD PMT HV no HV information available since installation of UUB V2

SSD Signal Traces

signal in SSD in form of time trace

charge calculation

- integrate ADC charge with baseline correction
- stop when signal drops below baseline

sampling rate :

- 120 MHz FADC
- → time bins of 8 ns

High & Low Gain (HG,LG)

- HG/LG ratio = 128

SSD Traces – UUB V1 vs. V2

direct comparison of traces:

- station 20 before and after switch of UUB versions
- similar characteristics such as height of signal peak

reduction of baseline noise in UUB V2 already visible by eye

SSD Traces – UUB V2 LG Spikes and 1744 modulation

Trace UUB V2

C

LG traces of events recorded with UUB V2 show spikes in all stations

- constant spacing of spikes
 0710 mg (St 20)
 - ~ 9716 ns (St 20)
 - ~ 9708 ns (St 22) ~ 9725 ns (St 39)
 - ~ 9716 ns (St 1737)
 - ~ 9850 ns (St 1744)
- also seen in radio data
- origin most probably from board itself

SSD Traces – Screenshot from ED

SSD Traces – UUB V1 vs. V2 Baseline + Noise

histogramming first 500 bins of each trace and fitting with a gaussian

- \rightarrow calculation of baseline μ and baseline σ
- spread of µ reduced
- overall smaller spread (σ) of baseline noise

Analyses of the AugerPrime Engineering Array Sonja Schröder | soschroeder@uni-wuppertal.de

SSD Traces – UUB V1 vs. V2 Baseline + Noise

SSD Traces – UUB V1 vs. V2 Baseline + Noise

SSD Traces – MIP Peak UUB V1 vs. V2 (HG only)

Sonja Schröder | soschroeder@uni-wuppertal.de

SSD Traces – MIP Peak UUB V1 vs. V2 (HG only)

Sonja Schröder | soschroeder@uni-wuppertal.de

12

Denser Array and Triplet Stations

hexagon (7 SD stations) with reduced spacing of 433 m

- lowest energy threshold: Energy ≥ 10^{16.5} eV (regular array: ~10¹⁸ eV)
- high event rate

Twin Stations (20,22) in center of denser array

differences in arrival time of shower vital for direction reconstruction check timing of Twin Station SSDs based on Δt of **GPS triggertime in WCD** only events with successful SD₄₃₃ reconstruction

using data from 12/2017 to 11/2018

obtain Δt_{exp} from reconstruced shower direction (zenith (θ) & azimuth (ϕ) angle) $\rightarrow \Delta t_{exp} = \frac{-\vec{d} \cdot \vec{n}}{c}$, assuming planar wavefront $\frac{\vec{d}}{\vec{n}} : \text{shower direction}$

- → larger Δt for larger θ
 - \rightarrow larger Δt for ϕ around +/- 90°

obtain Δt_{exp} from reconstruced shower direction (zenith (θ) & azimuth (ϕ) angle) $\rightarrow \Delta t_{exp} = \frac{-\vec{d} \cdot \vec{n}}{c}$, assuming planar wavefront Δt_{gPS} showing similar shape as $\Delta t_{exp} \rightarrow \text{ correct } \Delta t_{gPS}$ for arrival direction:

SSD Twin Station Timing

calculating Δt_{corr} for stations 20 & 39 also yields promising results

current σ for timing difference of Station 20 and 39 is now:

 $\sigma = (17.3 + - 0.4)$ ns

SSD Twin Station Timing – Full Bandwidth Trigger

from 20/04/2018 to 09/05/2018: Full Bandwidth Trigger (120MHz) in place

hints at further improvement in precision of timing

```
σ = (14 +/- 1) ns
```


however, more statistics needed

SSD Twin Station Timing – New GPS Receiver

from 17/07/2018 onwards new GPS receivers (SSR 6T) were installed in station 20 & 39

provides further improvement in precision of timing

22
 20
 39
 10.6 m

SSD Twin Station Timing – UUB V2

from 24/10/2018 station 20 & 39 were equipped with UUB V2

value slightly increased, might be due to much lower statistics

 $\sigma = (15 + / - 1) \text{ ns}$

SSD Twin Station Timing – CDAS trace t_o

data from stations with new UUB V2 showing good quality and promising results

- significant reduction of spread of baseline μ and spread of baseline noise (σ) visible
- no HV information visible to cross-check for influences on trace
- spikes visible in all LG traces, with spacing of ~ 9712 ns (for station 22)
- MIP peak stable, however no calib. data for St 1737

study of timing resolution

- improvement of timing with arrival direction correction and especially new GPS receiver
- further improvement a possibility with new UUB V2 and "risetime" information of SSD (from Offline)
 - → however: more statistics needed!

