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Outline

✤ Waveform modelling: Need accurate models for waveforms in GR to test for 
deviations and models in alternate theories to bound specific deviations

✤ Combining together constraints from multiple events

✤ Propagation tests: Dephasing of waveforms and comparison with EM

✤ Polarization tests: Use 3+ detectors to constrain deviations from purely tensor 
polarizations

✤ Black hole mimickers: Use tidal and/or rotational deformabilities to constrain 
possible massive, compact objects that could produce signals similar to black 
holes.

✤ Future prospects (3G and LISA)
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Overview of waveform modelling in 
GR and beyond

✤ Current status of waveform models for BBH and BNS. 
NSBH not considered here explicitly, as they have not yet been observed, and do not 
have quite as well-developed waveform models.

✤ Ongoing work on improving these waveform models.
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Motivation for waveform modelling

✤ NR simulations are expensive.

✤ Can only run them for selected points in parameter space

✤ Can’t run them for long enough to cover the entire (design sensitivity) 
Advanced LIGO band (down to 10 Hz) except for high-mass systems.  
 
[Current longest NR BBH simulation (Szilágyi et al. PRL 2015) covers AdvLIGO band for total masses > 44 
Msun; most only cover AdvLIGO band for masses > 65 Msun or higher]

✤ Have to design fast-to-evaluate models to interpolate between NR 
simulations and include as much physics from perturbation theory 
calculations (post-Newtonian and black hole/neutron star perturbation 
theory and self-force calculations) as possible.
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General frameworks for waveform 
modelling

✤ Effective-one-body formalism: Physics-inspired resummations of perturbation theory results, 
with free coefficients tuned to NR simulations. Solve ODEs for dynamics and obtain 
waveform in the time domain.  
 
Relatively slow, though there are ways of interpolating these in the frequency domain 
(reduced order models) and recent work (Nagar and Rettegno, arXiv 2018) that gives much 
faster evolutions, at least in the aligned-spin quasicircular case.

✤ Phenom models: Natively frequency-domain model. Add phenomenological parameters to 
PN and BHPT results and calibrate by fits to FFTs of hybrids of PN/uncalibrated EOB and NR 
waveforms. Model precession by “twisting up” aligned-spin waveform using PN precession 
expressions. Relatively fast to evaluate.

✤ Surrogate models or Gaussian process regression: Directly interpolate NR waveforms. Can 
achieve accuracies comparable to those of the waveforms used for training, but requires a 
large number of waveforms, and thus covers a narrow parameter space than the other models.
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Waveforms used for current tests of 
GR

✤ All current waveform-based tests of GR are carried 
out with the precessing Phenom model (in its 
extension to include tidal effects for binary neutron 
stars).

✤ The aligned-spin EOB model is used as a consistency 
check where possible.
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Current and planned improvements 
to waveform models in GR

✤ Aligned-spin waveform models including higher modes now exist; these are 
now being extended to model precession.  (Surrogate models already include 
higher modes in a restricted region of parameter space.)

✤ Work on modelling small-to-moderate eccentricity binary black holes continues, 
both on the PN side as well as several initial NR-tuned waveform models.

✤ There are some very preliminary models for BNS post-merger, but nothing 
ready for use in data analysis.

✤ There is ongoing work to push BBH simulations to higher spins and more 
extreme mass ratios. However, significantly extending beyond the current mass 
ratio record of 18:1 (for accurate simulations) likely requires significant new 
ideas.
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Combining together constraints 
from multiple events

!8



How to combine together multiple 
events?

✤ When testing a given theory, where one knows the deviations one 
expects for a given binary, one can simply combine posteriors on the 
parameters of the theory.

✤ Alternatively, when making consistency tests, one can combine 
together Bayes factors for GR versus non-GR.

✤ One can even simply combine together the posteriors for the 
deviations in consistency tests—this is what is done in current LVC 
analyses.  
 
Studies show that it is possible for tests to pick up on GR violations 
this way, though they are not guaranteed to for an arbitrary violation.
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Efficacy of combining together 
events: Bayes factors
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strong tidal effects, instrumental calibration errors, and
precessing spins. Recalling that the 1.5 PN contribution to
the orbital motion is where, according to GR, the dynamical
self-interaction of spacetime first becomes visible [7,8], we
consider a (heuristic) violation of GR at that order, taking
the form of a −10% shift in the relevant coefficient in the
expansion of dv=dtðvÞ:

dv
dt

ðvÞ ¼ GPPðvÞ þ GtidalðvÞ

þ δξ3 α3 ðm 1; m 2 ; ~S1; ~S2 Þv12 ; (15)

where we note that the leading-order contribution to dv=dt
goes like v9 ; α3 ðm 1; m 2 ; ~S1; ~S2 Þ is the 1.5 PN coefficient
predicted by GR, and δξ3 ¼ −0.1.
In Fig. 9, we show background as well as foreground log

odds ratio distributions, for catalogs of 15 sources each,
where in both cases the injections include neutron star tidal
deformation, instrumental calibration errors, and precess-
ing spins. As before, the recovery is with TaylorF2 wave-
forms that allow for (anti-)aligned spins, cut off at a
frequency of 400 Hz. We see that the separation between
the distributions is complete: almost regardless of false
alarm probability, with 15 BNS detections the efficiency in
finding the given GR violation is essentially 100%.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

We have developed TIGER, a data analysis pipeline to
perform model-independent tests of general relativity in the
strong-field regime, using detections of compact binary
coalescence events with second-generation gravitational

wave detectors. The basic idea is to compare the GR
hypothesis HGR with the hypothesis HmodGR that one or
more coefficients in the post-Newtonian expression for the
phase do not depend on component masses and spins in the
way GR predicts. Though the latter hypothesis has no
waveform model associated with it, it can be written as the
logical union of mutually exclusive subhypotheses, in each
of which a fixed number of phase coefficients are free
parameters on top of component masses, spins, sky
position, orientation, and distance, while the others depend
on masses and spins in the way GR predicts. In present
form, the pipeline can in principle already be applied to
binary neutron star events, for which waveform models that
are reliable and can be generated sufficiently fast on a
computer are available.
We performed a range of numerical experiments to check

the robustness of TIGER against fundamental, astrophysi-
cal, and instrumental unknowns. In the BNS mass regime,
the differences between the available waveform approx-
imants are very small, making it unlikely that imperfect
modeling of the signal will cause us to suspect a violation
of GR. The fact that waveforms are only known up to a
finite post-Newtonian order should also not be cause for
concern. In the final stages of inspiral, finite size effects are
important and the neutron stars will deform each other in an
essentially unknown way; however, if the recovery wave-
forms are cut off at 400 Hz then the unknown tidal effects
will not be mistaken for violations of GR, but the
performance of TIGER remains unaffected. Instrumental
calibration errors of expected size will not be problematic.
Finally, if, as generally expected, the spins of neutron stars
in binaries are small, then they can easily be dealt with.
In present form, TIGER relies on two important astro-

physical assumptions. One is that NSBH and BBH coa-
lescences have chirp masses above a certain value, so that
such events can be discarded, leaving only BNS. The other
is the relative smallness of spins for BNS. In the future we
will also want to work with BBH and NSBH events so that
if an anomaly is discovered in BNS signals, we can confirm
that it is of a fundamental rather than an astrophysical
nature by using qualitatively different systems. Pan et al.
[78] appear to have arrived at a reliable semianalytic
waveform model for BBH and NSBH coalescence, and
their approximant will be extremely useful as an injection
waveform. However, it is too computationally expensive to
be used for recovery. On the other hand, very recently
Hannam et al. [79] proposed a frequency domain inspiral-
merger-ringdown waveform which captures precessing
spins, and which may already be useful for our purposes.
An upgrade of the fast time domain “PhenSpin” waveform
of Sturani et al. [80,81] could also be an option for
recovery. (Note that for the background calculation, it is
important that the injected waveform model be as close as
possible to reality, but the requirements for the recovery
waveform are less stringent.) To have some idea of what

FIG. 9 (color online). Log odds ratio distributions for catalogs
of 15 sources each. The blue, dotted histogram is the GR
background for TaylorT4 signals with precessing spins, neutron
star tidal deformation, and instrumental calibration errors. The
red, dashed one is a foreground distribution for signals with the
same effects present, and with a GR violation that takes the form
of a constant −10% shift at 1.5 PN, as explained in the main text.
In both cases, the recovery is with (anti-)aligned spinning
TaylorF2 waveforms cut off at 400 Hz.

M. AGATHOS et al. PHYSICAL REVIEW D 89, 082001 (2014)

082001-10

Post-Newtonian constraints
from Agathos et al. PRD

2014, showing how one can
obtain strong evidence against
GR when combining together
Bayes factors if the data are

described by a deviation
from GR.  

 
Here a catalog consists of 15

events



Efficacy of combining together 
events: Posteriors
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Figure 3. Left: In each plot shaded regions show the 68% and 95% credible intervals on 
the combined posteriors on ϵ := ∆Mf /M̄f , σ := ∆af /āf  from multiple observations of 
GR signals, plotted against the number of binary black hole observations. The GR value 
(ϵ = σ = 0) is indicated by horizontal dashed lines. The mean value of the posterior 
from each event is shown as an orange dot along with the corresponding 68% credible 
interval as an orange vertical line. Posteriors on ε are marginalized over σ, and vice 
versa. Right: the thin orange contours show the 68% credible regions of the individual 
posteriors on the ϵ,σ computed from the same events. The GR value (ϵ = σ = 0) is 
indicated by the black  +  sign. Right inset: The red contours show the 68% credible 
regions on the combined posterior from 5, 10 and 25 events (with increasing shades of 
darkness). The GR value (ϵ = σ = 0) is indicated by the black  +  sign. Different rows 
correspond to different catalogs of 50 randomly chosen events from a total of  ∼100 
simulated events.

A Ghosh et alClass. Quantum Grav. 35 (2018) 014002

GR

15

the waveforms are generated with a modification of the GR energy flux as described in sec-
tion 4.1. Also, for simplicity, we consider binary black holes with zero spins, since the EOB 
waveform family that we employ to produce modified GR waveforms is a nonspinning model 
[42, 43]. However, we still perform parameter estimation using the same SEOBNRv2_ROM_
Double Spin aligned-spin model employed in section 3.

Modified GR waveforms for binaries with different mass ratios (as well as distances, sky 
locations, and other extrinsic parameters) were constructed using the prescription presented 

Figure 8. Same as figure  3 except that the test is performed on simulated signals 
containing a modification from GR described in section 4.2. The combined posteriors 
from multiple observations show a clear departure from the GR predictions (horizontal 
dashed lines on the left plots and the plus sign on the right plots).

A Ghosh et alClass. Quantum Grav. 35 (2018) 014002

modified GR [EOB
waveforms with some
higher modes in the energy
flux scaled by a constant]

Have to worry about waveform systematics (with current waveforms) when 
combining together ~100 events

Results from
Ghosh et al.
CQG 2018



Propagation tests
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Motivation

✤ The large distances to which we can detect GWs from compact binaries, 
compared to the size of the source, means that it is possible to put stringent 
constraints on modifications to the propagation of gravitational waves.

✤ In particular, it is possible to test modified dispersion and birefringence 
with a single GW detection; constraining a modified speed of propagation 
with no dispersion requires an EM counterpart.  
 
An EM counterpart or population of sources is also required for constraints 
on modifications to the 1/dL falloff with distance.

✤ However, possible to perform a direct Rømer delay-style measurement of 
GW speed using a continuous GW source [Finn and Romano, PRD 2013].
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Constraints on a modified 
dispersion relation

✤ The LVC has placed constraints on a modified dispersion relation of the form  
 
 
[Mirshekari, Yunes, and Will, PRD 2012]

✤ This reduces to the massive graviton dispersion relation for α = 0, A > 0, and 
gives the leading contributions from multi-fractal spacetime (α = 2.5), 
doubly special relativity (α = 3), and Hořava-Lifshitz and extra dimensional 
theories (α = 4). α = 4 also corresponds to the leading non-birefringent 
contribution in the Standard Model Extension.  
 
α = 2 gives a nondispersive modification of the speed of gravitational waves.

V TESTS OF GENERAL RELATIVITY

modify the phase of the waveform from its GR value, the
amplitude is kept unchanged; this is because our analysis
is more sensitive to the phase evolution than the ampli-
tude. We use a non-GR template of the form

h̃(f) = Ã(f ; ~#GR)ei[ (f ;~#GR)+� (f ;~#GR,XmodGR)]
, (4)

where XmodGR is a theory-dependent parameter, which
is zero in the usual GR templates. To simulate the non-
GR waveform, we used the e↵ective-precession model as
a base; all the GR and non-GR parameters are assumed
unknown and estimated from the data.

With multiple detections it is possible to combine con-
straints on XmodGR to obtain tighter bounds. For a
generic parameter #, we compute a combined posterior
distribution by combining the individual likelihoods [59].
For each event ei we estimate the marginal likelihood
density p(ei|#) using a Gaussian kernel density estima-
tor. This gives a simple representation of the likelihood
that can be easily manipulated. The combined poste-
rior distribution is computed by multiplying the marginal
likelihoods and the chosen prior distribution,

p(#|e1, . . . , eN ) / p(#)
NY

i=1

p(e1, . . . , eN |#). (5)

This is used to compute bounds on # given N detec-
tions. We use the three confident detections (GW150914,
GW151226 and GW170104) to set combined bounds on
potential deviation from GR, except in the case of the
inspiral–merger–ringdown consistency test where only
GW150914 and GW170104 are used as GW151226 has
insu�cient SNR from the merger–ringdown to make use-
ful inferences.

A. Modified dispersion

We have assumed a generic dispersion relation of the
form E

2 = p
2
c
2 + Ap

↵
c
↵, ↵ � 0. To leading order in

AE
↵�2, the group velocity of gravitational waves is thus

modified as vg/c = 1 + (↵ � 1)AE
↵�2

/2. The modified
dispersion relation results in an extra term to be added
to the gravitational-wave phase [60]:

� =

8
>>>><

>>>>:

⇡

↵ � 1

AD↵

(hc)2�↵


(1 + z)f

c

�↵�1

↵ 6= 1

⇡AD↵

hc
ln

✓
⇡GMdet

f

c3

◆
↵ = 1

. (6)

Here Mdet is the redshifted (detector-frame) chirp mass,
h is the Planck constant, and D↵ is a distance measure,

D↵ =
1 + z

H0

Z z

0

(1 + z
0)↵�2

p
⌦m(1 + z0)3 + ⌦⇤

dz
0
, (7)

where H0 is the Hubble constant, ⌦m and ⌦⇤ are the
matter and dark energy density parameters [61], respec-
tively.

Table II lists the 90% credible upper bounds on the
magnitude of A, where the individual and combined
bounds for the three confident detections are shown; we
see that depending on the value of ↵ and the sign of
A, the combined bounds are better than those obtained
from GW170104 alone by a factor of ⇠ 1–4.5. For all
values of ↵, these bounds are consistent with the uncer-
tainties one might expect for heavy binary black holes
using Fisher-matrix estimates on simulated GW150914-
like signals [62].

For small values of ↵, it is useful to recast the results in
terms of lower bounds on a length scale �A = hcA

1/(↵�2),
which can be thought of as the range (or the screen-
ing length) of an e↵ective potential, which is infinite
in GR. In Table III we report the numerical values of
these bounds for ↵ < 2. For ↵ = 3, 4, we instead ex-
press the bounds as lower limits on the energy scale at
which quantum gravity e↵ects might become important,
EQG = A

�1/(↵�2) [63–67]. This facilitates the compar-
ison with existing constraints from other sectors, which
we show in Table IV.

In the subluminal propagation regime, bounds ex-
ist from electromagnetic (spectral time lag in gamma-
ray bursts [66]), neutrino (time delay between neutrino
and photons from blazar PKS B1424-418 [67]), and
gravitational (absence of gravitational Cherenkov radi-
ation [63, 65]) sectors. In the superluminal propagation
regime, the only existing limits are from the neutrino sec-
tor (absence of Bremsstrahlung from electron–positron
pairs [64]). The GW170104 constraints are weaker than
existing bounds, but are the first constraints on Lorentz
violation in the gravitational superluminal-propagation
sector.

The posterior distributions for A have long tails, which
makes it di�cult to accurately calculate 90% limits with
a finite number of samples. To quantify this uncertainty
on the bounds, for each value of ↵ and sign of A we use
Bayesian bootstrapping [68] to generate 1000 instances of
the relevant posterior distribution. We find that the 90%
credible upper bounds are estimated within an interval
whose 90% credible interval width is . 20% of the values
reported in Table II.

For the (GR) source parameters, to check for the po-
tential impact of errors from waveform modelling, we
analysed the data using both the e↵ective-precession
model and the full-precession model. However, the full-
precession model was not adapted in time for tests of GR
to be completed for this publication. In the first observ-
ing run, we performed tests with two di↵erent waveform
families [13, 58]: the e↵ective-precession model [16–18],
and a nonprecessing waveform model [24, 69]. We follow
the same approach here, and use the same nonprecessing
waveform model used for the matched filter search [70].
The use of a nonprecessing waveform should give con-
servative bounds on the potential error from waveform
modelling, as some of the di↵erences may come from the
failure to include precession e↵ects [12]. We find that
the numbers so obtained are consistent with the results

6
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Effects on GW phasing of a 
modified dispersion relation

✤ Mirshekari, Yunes, and Will (MYW) obtain the frequency-domain 
dephasing associated with this dispersion relation for PN waveforms 
using the stationary phase approximation (SPA), obtaining

✤ They also use the “particle velocity”  
 
 
in the derivation.
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V TESTS OF GENERAL RELATIVITY

modify the phase of the waveform from its GR value, the
amplitude is kept unchanged; this is because our analysis
is more sensitive to the phase evolution than the ampli-
tude. We use a non-GR template of the form

h̃(f) = Ã(f ; ~#GR)ei[ (f ;~#GR)+� (f ;~#GR,XmodGR)]
, (4)

where XmodGR is a theory-dependent parameter, which
is zero in the usual GR templates. To simulate the non-
GR waveform, we used the e↵ective-precession model as
a base; all the GR and non-GR parameters are assumed
unknown and estimated from the data.

With multiple detections it is possible to combine con-
straints on XmodGR to obtain tighter bounds. For a
generic parameter #, we compute a combined posterior
distribution by combining the individual likelihoods [59].
For each event ei we estimate the marginal likelihood
density p(ei|#) using a Gaussian kernel density estima-
tor. This gives a simple representation of the likelihood
that can be easily manipulated. The combined poste-
rior distribution is computed by multiplying the marginal
likelihoods and the chosen prior distribution,
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NY
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p(e1, . . . , eN |#). (5)

This is used to compute bounds on # given N detec-
tions. We use the three confident detections (GW150914,
GW151226 and GW170104) to set combined bounds on
potential deviation from GR, except in the case of the
inspiral–merger–ringdown consistency test where only
GW150914 and GW170104 are used as GW151226 has
insu�cient SNR from the merger–ringdown to make use-
ful inferences.

A. Modified dispersion

We have assumed a generic dispersion relation of the
form E
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↵, ↵ � 0. To leading order in

AE
↵�2, the group velocity of gravitational waves is thus
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where H0 is the Hubble constant, ⌦m and ⌦⇤ are the
matter and dark energy density parameters [61], respec-
tively.

Table II lists the 90% credible upper bounds on the
magnitude of A, where the individual and combined
bounds for the three confident detections are shown; we
see that depending on the value of ↵ and the sign of
A, the combined bounds are better than those obtained
from GW170104 alone by a factor of ⇠ 1–4.5. For all
values of ↵, these bounds are consistent with the uncer-
tainties one might expect for heavy binary black holes
using Fisher-matrix estimates on simulated GW150914-
like signals [62].

For small values of ↵, it is useful to recast the results in
terms of lower bounds on a length scale �A = hcA

1/(↵�2),
which can be thought of as the range (or the screen-
ing length) of an e↵ective potential, which is infinite
in GR. In Table III we report the numerical values of
these bounds for ↵ < 2. For ↵ = 3, 4, we instead ex-
press the bounds as lower limits on the energy scale at
which quantum gravity e↵ects might become important,
EQG = A

�1/(↵�2) [63–67]. This facilitates the compar-
ison with existing constraints from other sectors, which
we show in Table IV.

In the subluminal propagation regime, bounds ex-
ist from electromagnetic (spectral time lag in gamma-
ray bursts [66]), neutrino (time delay between neutrino
and photons from blazar PKS B1424-418 [67]), and
gravitational (absence of gravitational Cherenkov radi-
ation [63, 65]) sectors. In the superluminal propagation
regime, the only existing limits are from the neutrino sec-
tor (absence of Bremsstrahlung from electron–positron
pairs [64]). The GW170104 constraints are weaker than
existing bounds, but are the first constraints on Lorentz
violation in the gravitational superluminal-propagation
sector.

The posterior distributions for A have long tails, which
makes it di�cult to accurately calculate 90% limits with
a finite number of samples. To quantify this uncertainty
on the bounds, for each value of ↵ and sign of A we use
Bayesian bootstrapping [68] to generate 1000 instances of
the relevant posterior distribution. We find that the 90%
credible upper bounds are estimated within an interval
whose 90% credible interval width is . 20% of the values
reported in Table II.

For the (GR) source parameters, to check for the po-
tential impact of errors from waveform modelling, we
analysed the data using both the e↵ective-precession
model and the full-precession model. However, the full-
precession model was not adapted in time for tests of GR
to be completed for this publication. In the first observ-
ing run, we performed tests with two di↵erent waveform
families [13, 58]: the e↵ective-precession model [16–18],
and a nonprecessing waveform model [24, 69]. We follow
the same approach here, and use the same nonprecessing
waveform model used for the matched filter search [70].
The use of a nonprecessing waveform should give con-
servative bounds on the potential error from waveform
modelling, as some of the di↵erences may come from the
failure to include precession e↵ects [12]. We find that
the numbers so obtained are consistent with the results
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FIG. 1: An inspiral-merger-ringdown waveform generated with deformations induced from Lorentz violations from Eqn. 2.5 at ↵ = 0.5 and
A > 0 (left) and A < 0 (right). The waveform model used is IMRPhenomPv2 and the LIV parameter chosen to generate the deformed waveforms
is log �e f f = 18.5 m. The corresponding GR waveform is plotted atop with the peaks of the waveforms aligned. The source chosen has
component masses of m1 = 35 M� and m2 = 25 M� at a luminosity distance of 500 Mpc. The dimensionless spin magnitudes are 0.34 and 0.67
respectively.

II. BASIC IDEA

Following Ref. [7], we consider propagation of GWs which
follows a dispersion relation

E2 = p2c2 + Ap↵c↵ . (2.1)

Here E is the energy carried by the GW, A denotes the mag-
nitude of possible Lorentz violation and ↵ the exponent of
the momentum correction which leads to Lorentz violation.
GR is recovered in the limit of A ! 0. It is evident that the
phase velocity of the GW signal, which has many frequency
components, will depend on the frequency leading to a dephas-
ing with respect to the GR waveform. The group velocity of
the GW may easily be derived from this dispersion relation,
assuming A ⌧ 1 as

vg
c
=

s
dE
dp
= 1 +

↵ � 1
2
A E↵�2. (2.2)

This implies that the GWs will travel with speeds di↵erent
from c depending on the scale of Lorentz violation. It is clear
that if A > 0,↵ > 1 or A < 0,↵ < 1, GWs propagate superlu-
minally (vg > c) and if A < 0,↵ > 1 or A > 0,↵ < 1, GWs
propagate subluminally (vg < c). Henceforth, we shall assume
geometrized units of G=c=1.

Mirshekari et al. [1] showed that the additional terms in
the dispersion relation translate into extra contribution to the
frequency domain (FD) phase of the GW waveform. Intuitively
this happens because of the di↵erence in arrival time of the
various frequency components. Hence we can add these phase
corrections to the the state-of-art waveform model for compact
binaries and use them to constrain any LIV present. In the
frequency domain, the GW signal can be written as

h( f ) = A( f )ei ( f ) (2.3)

with phase

 ( f ) =  GR( f ) + � ↵( f ), (2.4)

where  GR( f ) is the GR phasing and � ↵( f ) arises due to ef-
fects of possible Lorentz violation. It is worth noting that these
corrections are solely from the propagation of GWs and not
due to their generation. Unless we have a self-consistent theory
of gravity which violates LIV, the generation e↵ects cannot be
incorporated into the phasing. The dephasing � ↵( f ) , where
↵ denotes the exponent of momentum correction, explicitly
reads [1]

� ↵,1( f ) = �sgn(A)
⇡

(1 � ↵)
D↵
|�A|2�↵

f ↵�1

(1 + z)1�↵ ,

� ↵=1( f ) = sgn(A)
⇡D1

|�A|
ln(⇡M f ),

(2.5)

where

�A ⌘ hA
1
↵�2 (2.6)

denotes the length scale introduced by the dispersion and h
refers to Planck’s constant.

D↵ =
(1 + z)1�↵

H0

Z z

0

(1 + z0)↵�2
p
⌦m(1 + z0)3 +⌦⇤

dz0, (2.7)

is a distance measure introduced by dispersion.
The assumption that the waveform is well-described by a

GR waveform in the binary’s local wave zone (i.e., near to
the binary compared to the distance from the binary to Earth,
but far from the binary compared to its own size) is likely
to be a good approximation for ↵ < 2, where we constrain
�A to be much larger than the size of the binary. NKJ-M: We
actually may need to worry about cases where

we constrain �A to be comparable to or larger

than the distance to the sources, since there

might be a significant screening correction

to the modified propagation, if the screening

length is similar to �A, like it is in the

massive graviton case, as discussed in [12].

Of course, that analysis just assumes that

the propagation effect is suppressed inside

the screening radius, and doesn’t show that
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Effects on GW phasing of a 
modified dispersion relation

✤ The LVC implementation applies this dephasing to IMR waveforms, where the SPA is not necessarily 
applicable.

✤ However, it is possible to derive this dephasing without using the SPA by starting from the PDE associated with 
the dispersion relation (a nonlocal PDE involving the fractional Laplacian when α is not an even integer).  
 
This gives the result one would obtain using the group velocity  
 
 
in the MYW derivation instead of the particle velocity, which corresponds to rescaling the bounds on A by a 
factor of 1/(1 - α) for α ≠ 1 and an unobservable constant dephasing for α = 1.

✤ The constraints on the length scale associated with the dispersion relation are much larger than the size of the 
binary for α < 2. However, they are much smaller than the size of the binary for α > 2. Thus, one has to posit a 
screening mechanism for the GR + propagation dephasing waveform model to make sense in these cases.  
 
As discussed in Perkins and Yunes [arXiv 2018] in the massive graviton context, if the screening length is a 
significant fraction of the distance to the source, then this could affect the constraints (assuming that the 
waveform is not dephased significantly in regions where the potential is screened). 
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2

A ! A/(1� ↵) (10)

vp/c = pc/E = 1�AE
↵�2

/2 +O(A2) (11)

vg/c = (dE/dp)/c = 1 + (↵� 1)AE
↵�2

/2 +O(A2) (12)

1. Explanation

Note that Eq. (1) and the results from [1]...

III. MORE THINGS

IV. CONCLUSIONS
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[1] M. Ruiz, M. Alcubierre, D. Núñez, and R. Takahashi, Gen. Rel. Grav., 40, 2467 (2008), arXiv:0707.4654 [gr-qc].



Results from GW detections

✤ This test was first applied to GW data in the GW170104 paper [LVC PRL 
118, 221101 (2017)].  
 
 
 
 
 
 
 
 
 
 

evolution provided that the positive orbit-aligned spin is
small (whether due to low spins or misalignment) [129,150–
152]. Current gravitational-wave measurements cluster
around χeff ∼ 0 (jχeff j < 0.35 at the 90% credible level for
all events; see Fig. 5 of the Supplemental Material [11]) [5].
Assuming that binary black hole spins are not typically small
(≲0.2), our observations hint towards the astrophysical
population favoring a distribution of misaligned spins rather
than near orbit-aligned spins [153]; further detections will
test if this is the case, and enable us to distinguish different
spin magnitude and orientation distributions [154–159].

VIII. TESTS OF GENERAL RELATIVITY

To check the consistency of the observed signals with the
predictions of GR for binary black holes in quasicircular
orbit, we employ a phenomenological approach that probes
how gravitational-wave generation or propagation could be
modified in an alternative theory of gravity. Testing for these
characteristicmodifications in thewaveform can quantify the
degree to which departures from GR can be tolerated given
the data. First, we consider the possibility of a modified
gravitational-wave dispersion relation, and place bounds on
the magnitude of potential deviations from GR. Second, we
perform null tests to quantify generic deviations from GR:
without assuming a specific alternative theory of gravity, we
verify if the detected signal is compatible with GR. For these
tests we use the three confident detections (GW150914,
GW151226, and GW170104); we do not use the marginal
event LVT151012, as its low SNR means that it contributes
insignificantly to all the tests [5].

A. Modified dispersion

InGR, gravitationalwaves are nondispersive.We consider
a modified dispersion relation of the form E2 ¼
p2c2 þ Apαcα, α ≥ 0, that leads to dephasing of the waves
relative to the phase evolution in GR. Here E and p are the
energy andmomentumof gravitational radiation, andA is the
amplitude of the dispersion [160,161]. Modifications to the
dispersion relation can arise in theories that include viola-
tions of local Lorentz invariance [162]. Lorentz invariance is
a cornerstone of modern physics but its violation is expected
in certain quantum gravity frameworks [162,163]. Several
modified theories of gravity predict specific values of α,
including massive-graviton theories (α ¼ 0, A > 0) [163],
multifractal spacetime [164] (α ¼ 2.5), doubly special rel-
ativity [165] (α ¼ 3), and Hořava-Lifshitz [166] and extra-
dimensional [167] theories (α ¼ 4). For our analysis, we
assume that the only effect of these alternative theories is to
modify the dispersion relation.
To leading order in AEα−2, the group velocity of gravi-

tational waves is modified as vg=c ¼ 1þ ðα − 1ÞAEα−2=2
[161]; both superluminal and subluminal propagation veloc-
ities are possible, depending on the sign ofA and the value of
α. A change in the dispersion relation leads to an extra term

δΨðA; αÞ in the evolution of the gravitational-wave phase
[160]. We introduce such a term in the effective-precession
waveform model [38] to constrain dispersion for various
values of α. To this end, we assume flat priors on A. In Fig. 5
we show 90% credible upper bounds on jAj derived from the
three confident detections. We do not show results for α ¼ 2
since in this case the modification of the gravitational-wave
phase is degenerate with the arrival time of the signal.
There exist constraints on Lorentz invariance violating

dispersion relations from other observational sectors (e.g.,
photon or neutrino observations) for certain values of α, and
our results are weaker by several orders of magnitude.
However, there are frameworks in which Lorentz invari-
ance is only broken in one sector [168,169], implying that
each sector provides complementary information on poten-
tial modifications to GR. Our results are the first bounds
derived from gravitational-wave observations, and the first
tests of superluminal propagation in the gravitational sector.
The result for A > 0 and α ¼ 0 can be reparametrized to

derive a lower bound on the graviton Compton wavelength
λg, assuming that gravitons disperse in vacuum in the same
way as massive particles [5,7,170]. In this case, no violation
of Lorentz invariance is assumed. Using a flat prior for the
gravitonmass, we obtain λg>1.5×1013km, which improves
on the bound of 1.0 × 1013 km from previous gravitational-
wave observations [5,7]. The combined bound using the
three confident detections is λg > 1.6 × 1013 km, or for the
graviton mass m g ≤ 7.7 × 10−23 eV=c2.

B. Null tests

In the post-Newtonian approximation, the gravitational-
wave phase in the Fourier domain is a series expansion in

FIG. 5. 90% credible upper bounds on jAj, the magnitude
of dispersion, obtained combining the posteriors of GW170104
with those of GW150914 and GW151226. We use picoelectron-
volts as a convenient unit because the corresponding frequency
scale is around where GW170104 has greatest amplitude
(1 peV≃ h × 250 Hz, where h is the Planck constant). General
relativity corresponds to A ¼ 0. Markers filled at the top (bottom)
correspond to values of jAj and α for which gravitational waves
travel with superluminal (subluminal) speed.
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Combined constraints
from GW150914, GW151226,

and GW170104.

In almost all cases the
strongest individual constraints
come from GW170104, due to

its larger distance.

GW170817 doesn’t give
improved constraints, since it

is relatively close !17



GW + EM propagation constraints

✤ The time delay of 1.74 ± 0.05 s between 
GW170817 and GRB170817A gave several 
new constraints on propagation [LVC + 
Fermi + INTEGRAL, ApJL 848, L13 (2017)]:

✤ Speed of propagation of GWs

✤ Shapiro delay of GWs

✤ Constraints on SME coefficients

✤ Additionally, the EM distance estimate to 
the host galaxy allowed for constraints on 
the number of dimensions from the 
amplitude of the GWs [Pardo et al. JCAP 
2018; LVC arXiv:1811.00364].

The 90% credible intervals(Veitch et al. 2015; Abbott et al.
2017e) for the component masses (in the m m1 2. convention)
are m M1.36, 2.261 Î :( ) and m M0.86, 1.362 Î :( ) , with total
mass M2.82 0.09

0.47
-
+

:, when considering dimensionless spins with

magnitudes up to 0.89 (high-spin prior, hereafter). When the
dimensionless spin prior is restricted to 0.05- (low-spin prior,
hereafter), the measured component masses are m 1.36,1 Î (

M1.60 :) and m M1.17, 1.362 Î :( ) , and the total mass is

Figure 2. Joint, multi-messenger detection of GW170817 and GRB170817A. Top: the summed GBM lightcurve for sodium iodide (NaI) detectors 1, 2, and 5 for
GRB170817A between 10 and 50 keV, matching the 100 ms time bins of the SPI-ACS data. The background estimate from Goldstein et al. (2016) is overlaid in red.
Second: the same as the top panel but in the 50–300 keV energy range. Third: the SPI-ACS lightcurve with the energy range starting approximately at 100 keV and
with a high energy limit of least 80 MeV. Bottom: the time-frequency map of GW170817 was obtained by coherently combining LIGO-Hanford and LIGO-
Livingston data. All times here are referenced to the GW170817 trigger time T0

GW.

3

The Astrophysical Journal Letters, 848:L13 (27pp), 2017 October 20 Abbott et al.
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GW propagation speed constraint

✤ Since the timescales associated with launching the GRB after a BNS merger are much 
smaller than the propagation time of the signals to Earth, one can place stringent 
constraints on the propagation speed of GWs even with relatively weak assumptions 
about the astrophysics involved in launching the GRB.

✤ To obtain the constraints of  
 
 
 
quoted in LVC + Fermi + INTEGRAL, ApJL 848, L13 (2017), the GRB was assumed to be 
launched from 0 to 10 s after the merger.  
 
These bounds are weakened by two orders of magnitude if one allows for more extreme 
scenarios, where the could be emitted up to ~100 s before the merger (if it came from 
crust cracking), or ~1000 s after it, in the case of a long-lived hypermassive neutron star.

!19

of 5.3s. This unambiguous association confirms that BNS
mergers are progenitors of (at least some) SGRBs.

4. Implications for Fundamental Physics

Little or no arrival delay between photons and GWs over
cosmological distances is expected as the intrinsic emission
times are similar and the propagation speeds of EM and GWs
are thought to be identical. In this Section we discuss the
implications on fundamental physics of the temporal offset of

1.74 0.05 s+ o( ) measured between GW170817 and
GRB170817A.

Standard EM theory minimally coupled to general relativity
predicts that GWs and light propagate with identical speeds.
The refractive index of vacuum is expected to be unity, and
both waves are expected to be affected by background
gravitational potentials in the same way. The arrival delay of
only a few seconds across a distance greater than one hundred
million light years places stringent constraints on deviations
from fundamental principles. We use the observed temporal
offset, the distance to the source, and the expected emission-
time difference to place constraints on the deviation of the
speed of gravity from the speed of light, and on violations of
Lorentz invariance and the equivalence principle.

4.1. Speed of Gravity

Assuming a small difference in travel time tD between
photons and GWs, and the known travel distance D, the
fractional speed difference during the trip can be written

v v v t DEM EMD » D , where v v vGW EMD = - is the differ-
ence between the speed of gravity vGW and the speed of light
vEM. This relation is less constraining for small distances, hence
we conservatively use here D 26 Mpc= , the lower bound of
the 90% credible interval on luminosity distance derived from
the GW signal (Abbott et al. 2017e). If we conservatively
assume that the peak of the GW signal and the first photons
were emitted simultaneously, attributing the entire

1.74 0.05 s+ o( ) lag to faster travel by the GW signal, this
time difference provides an upper bound on vD . To obtain a
lower bound on vD , one can assume that the two signals were
emitted at times differing by more than 1.74 0.05 s+ o( ) with
the faster EM signal making up some of the difference. As a
conservative bound relative to the few second delays discussed
in Section 2.1, we assume the SGRB signal was emitted 10 s
after the GW signal. The resulting constraint on the fractional
speed difference is

v
v

3 10 7 10 . 115

EM

16- -- ´
D

+ ´- - ( )

The intergalactic medium dispersion has negligible impact on
the gamma-ray photon speed, with an expected propagation
delay many orders of magnitude smaller than our errors
on vGW.

Lags much longer than 10 s are proposed in alternative
models (e.g., Ciolfi & Siegel 2015; Rezzolla & Kumar 2015),
and emission of photons before the merger is also possible
(Tsang et al. 2012). Hence, certain exotic scenarios can extend
this time difference window to (−100 s, 1000 s), yielding a 2
orders of magnitude broadening of the allowed velocity range
on either side. While the emission times of the two messengers
are inherently model dependent, conservative assumptions
yield dramatic improvements over existing indirect (Kostelecky

& Russell 2017) and direct (Cornish et al. 2017) constraints,
which allow for time differences of more than 1000 years.
Future joint GW–GRB detection should allow disentangling
the emission time difference from the relative propagation time,
as only the latter is expected to depend on distance.

4.2. Lorentz Invariance Violation Limits

Within a comprehensive effective field theory description of
Lorentz violation (Colladay & Kostelecký 1997, 1998;
Kostelecký 2004; Tasson 2014), the relative group velocity
of GWs and EM waves, is controlled by differences in
coefficients for Lorentz violation in the gravitational sector and
the photon sector at each mass dimension d (Kostelecký &
Mewes 2016, 2009, 2008; Wei et al. 2017). We focus here on
the non-birefringent, non-dispersive limit at mass dimension
d=4, as it yields by far the most impressive results. In this
case, the difference in group velocities for the two sectors takes
the form
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The result is presented in a spherical harmonic, Yℓm, basis, sℓm
4( )

and c I ℓm
4

( )
( ) being spherical-basis coefficients for Lorentz violation

in the gravitational and EM sectors, respectively. The direction n̂
refers to the sky position (provided in Coulter et al. 2017a,
2017b).
For ease of comparison with the many existing sensitivities

(Shao 2014a, 2014b; Shao et al. 2017; Kostelecký & Tasson
2015; Bourgoin et al. 2016; Le Poncin-Lafitte et al. 2016;
Kostelecky & Russell 2017) to the d=4 gravity-sector
coefficients (Bailey & Kostelecký 2006; Hees et al. 2016), an
analysis in which the coefficients are constrained one at a time
is useful (Flowers et al. 2016), with all other coefficients,
including the EM sector ones, set to zero. These results are
presented in Table 1 along with the best constraints for each
coefficient prior to this work. These results can be compared
with the isotropic A, LVa Lorentz violation parametrization
(Mirshekari et al. 2012) used by Abbott et al. (2017c) in
dispersive GW tests. The 2LVa = limit of this parametrization
is equivalent to the isotropic limit of the framework discussed
above, with s A400

4 pl( ) . Constraints on A for 2LVa = can
be obtained from the first line of Table 1; these cannot be
established within the analysis carried out in Abbott et al.
(2017c).

4.3. Test of the Equivalence Principle

Probing whether EM radiation and GWs are affected by
background gravitational potentials in the same way is a test of
the equivalence principle (Will 2014). One way to achieve this
is to use the Shapiro effect (Shapiro 1964), which predicts that
the propagation time of massless particles in curved spacetime,
i.e., through gravitational fields, is slightly increased with
respect to the flat spacetime case. We will consider the
following simple parametrized form of the Shapiro delay
(Krauss & Tremaine 1988; Longo 1988; Gao et al. 2015;
Kahya & Desai 2016):
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GW Shapiro delay constraint

✤ As was first appreciated for EM and neutrino signals for SN1987A, there is an appreciable 
Shapiro delay (> 50 days) due to propagating through the Milky Way’s gravitational 
potential.

✤ One can phenomenologically assume that there are different parameterized post-
Newtonian parameters for GW and EM propagation in the Shapiro delay expression  
 
 
 
and constrain the difference.

✤ One obtains 
 
 
using the same 0 to 10 s intrinsic time delay as well as conservative bounds on the mass 
of the Milky Way.
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of 5.3s. This unambiguous association confirms that BNS
mergers are progenitors of (at least some) SGRBs.

4. Implications for Fundamental Physics

Little or no arrival delay between photons and GWs over
cosmological distances is expected as the intrinsic emission
times are similar and the propagation speeds of EM and GWs
are thought to be identical. In this Section we discuss the
implications on fundamental physics of the temporal offset of

1.74 0.05 s+ o( ) measured between GW170817 and
GRB170817A.

Standard EM theory minimally coupled to general relativity
predicts that GWs and light propagate with identical speeds.
The refractive index of vacuum is expected to be unity, and
both waves are expected to be affected by background
gravitational potentials in the same way. The arrival delay of
only a few seconds across a distance greater than one hundred
million light years places stringent constraints on deviations
from fundamental principles. We use the observed temporal
offset, the distance to the source, and the expected emission-
time difference to place constraints on the deviation of the
speed of gravity from the speed of light, and on violations of
Lorentz invariance and the equivalence principle.

4.1. Speed of Gravity

Assuming a small difference in travel time tD between
photons and GWs, and the known travel distance D, the
fractional speed difference during the trip can be written

v v v t DEM EMD » D , where v v vGW EMD = - is the differ-
ence between the speed of gravity vGW and the speed of light
vEM. This relation is less constraining for small distances, hence
we conservatively use here D 26 Mpc= , the lower bound of
the 90% credible interval on luminosity distance derived from
the GW signal (Abbott et al. 2017e). If we conservatively
assume that the peak of the GW signal and the first photons
were emitted simultaneously, attributing the entire

1.74 0.05 s+ o( ) lag to faster travel by the GW signal, this
time difference provides an upper bound on vD . To obtain a
lower bound on vD , one can assume that the two signals were
emitted at times differing by more than 1.74 0.05 s+ o( ) with
the faster EM signal making up some of the difference. As a
conservative bound relative to the few second delays discussed
in Section 2.1, we assume the SGRB signal was emitted 10 s
after the GW signal. The resulting constraint on the fractional
speed difference is
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The intergalactic medium dispersion has negligible impact on
the gamma-ray photon speed, with an expected propagation
delay many orders of magnitude smaller than our errors
on vGW.

Lags much longer than 10 s are proposed in alternative
models (e.g., Ciolfi & Siegel 2015; Rezzolla & Kumar 2015),
and emission of photons before the merger is also possible
(Tsang et al. 2012). Hence, certain exotic scenarios can extend
this time difference window to (−100 s, 1000 s), yielding a 2
orders of magnitude broadening of the allowed velocity range
on either side. While the emission times of the two messengers
are inherently model dependent, conservative assumptions
yield dramatic improvements over existing indirect (Kostelecky

& Russell 2017) and direct (Cornish et al. 2017) constraints,
which allow for time differences of more than 1000 years.
Future joint GW–GRB detection should allow disentangling
the emission time difference from the relative propagation time,
as only the latter is expected to depend on distance.

4.2. Lorentz Invariance Violation Limits

Within a comprehensive effective field theory description of
Lorentz violation (Colladay & Kostelecký 1997, 1998;
Kostelecký 2004; Tasson 2014), the relative group velocity
of GWs and EM waves, is controlled by differences in
coefficients for Lorentz violation in the gravitational sector and
the photon sector at each mass dimension d (Kostelecký &
Mewes 2016, 2009, 2008; Wei et al. 2017). We focus here on
the non-birefringent, non-dispersive limit at mass dimension
d=4, as it yields by far the most impressive results. In this
case, the difference in group velocities for the two sectors takes
the form
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2017b).
For ease of comparison with the many existing sensitivities

(Shao 2014a, 2014b; Shao et al. 2017; Kostelecký & Tasson
2015; Bourgoin et al. 2016; Le Poncin-Lafitte et al. 2016;
Kostelecky & Russell 2017) to the d=4 gravity-sector
coefficients (Bailey & Kostelecký 2006; Hees et al. 2016), an
analysis in which the coefficients are constrained one at a time
is useful (Flowers et al. 2016), with all other coefficients,
including the EM sector ones, set to zero. These results are
presented in Table 1 along with the best constraints for each
coefficient prior to this work. These results can be compared
with the isotropic A, LVa Lorentz violation parametrization
(Mirshekari et al. 2012) used by Abbott et al. (2017c) in
dispersive GW tests. The 2LVa = limit of this parametrization
is equivalent to the isotropic limit of the framework discussed
above, with s A400

4 pl( ) . Constraints on A for 2LVa = can
be obtained from the first line of Table 1; these cannot be
established within the analysis carried out in Abbott et al.
(2017c).

4.3. Test of the Equivalence Principle

Probing whether EM radiation and GWs are affected by
background gravitational potentials in the same way is a test of
the equivalence principle (Will 2014). One way to achieve this
is to use the Shapiro effect (Shapiro 1964), which predicts that
the propagation time of massless particles in curved spacetime,
i.e., through gravitational fields, is slightly increased with
respect to the flat spacetime case. We will consider the
following simple parametrized form of the Shapiro delay
(Krauss & Tremaine 1988; Longo 1988; Gao et al. 2015;
Kahya & Desai 2016):
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Newtonian
potential

where re and ro denote emission and observation positions,
respectively, rU ( ) is the gravitational potential, and the integral
is computed along the wave path. γ parametrizes a deviation
from the Einstein–Maxwell theory, which minimally couples
classical electromagnetism to general relativity. We allow for
different values of γ for the propagation of EM and GWs ( EMg
and GWg , respectively, with 1EM GWg g= = in the Einstein–
Maxwell theory).

While obtaining the best bound on the difference between
the Shapiro time delays requires modeling the potential rU ( )
along the entire line of sight, we determine a conservative
bound on GW EMg g- by considering only the effect of the
Milky Way outside a sphere of 100 kpc, and by using a
Keplerian potential with a mass of M2.5 1011´ : (the lowest
total mass within a sphere of radius 100 kpc quoted in Bland-
Hawthorn & Gerhard 2016, from Gibbons et al. 2014, taking
the 95% confidence lower bound) (Krauss & Tremaine 1988;
Longo 1988; Gao et al. 2015). Using the same time bounds as
Equation (1) we find

2.6 10 1.2 10 . 47
GW EM

6- -g g- ´ - ´- - ( )
The best absolute bound on EMg is 1 2.1 2.3EMg - = o ´( )
10 5- , from the measurement of the Shapiro delay (at radio
wavelengths) with the Cassini spacecraft (Bertotti et al. 2003).

5. Astrophysical Implications

The joint GW–GRB detection provides us with unprece-
dented information about the central engine of SGRBs. The
delay between the GW and the GRB trigger times allows us to
examine some basic GRB physics. This delay could be intrinsic
to the central engine, reflecting the time elapsed from the
moment the binary components come into contact to the
formation of a remnant BH and the resulting jet. This
interpretation includes the case of a relatively long-lived
massive NS remnant, which has been suggested to survive from
seconds to minutes after merger(see Faber & Rasio 2012;
Baiotti & Rezzolla 2017 and references therein). The delay
could also be due to the propagation time of the relativistic jet,

including the time it takes for the jet to break out of the dense
gaseous environment produced by non-relativistic merger
ejecta(Nagakura et al. 2014; Moharana & Piran 2017) and/
or the emitting region to become transparent to gamma-
rays(Mészáros & Rees 2000).
We first discuss the implications that the time delay between

the GW and EM emission has on the physical properties of the
emitting region when considering the jet propagation and
transparency scenarios. Here we assume that the entire delay is
due to the expansion of the emitting region and neglect any
intrinsic delays between the moment of binary coalescence and
the launching of the resulting jet, thus placing limits on the
physical properties of the system. Then we consider the impact
of SGRB emission from an NS merger on the EOS of dense
matter.

5.1. GRB Physics

The main hard peak observed for GRB170817A lasted
roughly half a second. This peak is consistent with a single
intrinsic emission episode as it is well described by a single
pulse (Goldstein et al. 2017), showing no evidence for
significant substructure (spikes). This interpretation is consis-
tent with the SPI-ACS observation of a single peak (Savchenko
et al. 2017b). The GBM detection of GRB170817A also
shows no evidence for photons with energy >511 keV,
implying that the outflow does not require a high bulk Lorentz
factor Γ to overcome photon–photon absorption at the source.
Explanations for the extreme energetics and short timescales

observed in GRBs invoke a near instantaneous release of a
large amount of energy in a compact volume of space(Goodman
1986; Paczynski 1986). This is commonly referred to as the
fireball model, and it is the framework that we will assume for
the remainder of this section. The fireball model is largely
independent of the burst progenitor and focuses on the dynamics
of such a system after this sudden release of energy. The
resulting pair-plasma is optically thick and quickly expands
under its own pressure to produce a highly relativistic outflow
that coasts asymptotically with a constant Lorentz factor
Γ. Within the fireball, kinetic energy is imparted to particles

Table 1
Constraints on the Dimensionless Minimal Gravity Sector Coefficients

ℓ Previous Lower This Work Lower Coefficient This Work Upper Previous Upper

0 −3×10−14 −2×10−14 s00
4( ) 5×10−15 8×10−5

1 −1×10−13 −3×10−14 s10
4( ) 7×10−15 7×10−14

−8×10−14 −1×10−14 sRe 11
4- ( ) 2×10−15 8×10−14

−7×10−14 −3×10−14 sIm 11
4( ) 7×10−15 9×10−14

2 −1×10−13 −4×10−14 s20
4- ( ) 8×10−15 7×10−14

−7×10−14 −1×10−14 sRe 21
4- ( ) 2×10−15 7×10−14

−5×10−14 −4×10−14 sIm 21
4( ) 8×10−15 8×10−14

−6×10−14 −1×10−14 sRe 22
4( ) 3×10−15 8×10−14

−7×10−14 −2×10−14 sIm 22
4- ( ) 4×10−15 7×10−14

Note. Constraints on the dimensionless minimal gravity sector coefficients obtained in this work via Equations (1) and (2) appear in columns 3 and 5. The
corresponding limits that predate this work and are reported in columns 2 and 6; all pre-existing limits are taken from Kostelecký & Tasson (2015), with the exception
of the upper limit on s00

4( ) from Shao (2014a, 2014b). The isotropic upper bound in the first line shows greater than 10 orders of magnitude improvement. The gravity
sector coefficients are constrained one at a time, by setting all other coefficients, including those from the EM sector, to zero.

7

The Astrophysical Journal Letters, 848:L13 (27pp), 2017 October 20 Abbott et al.



GW Shapiro delay constraint

✤ Note, however, that in discussions with Olivier 
Minazzoli on how to extend these constraints to include 
the contributions of all nearby galaxies, we realized that 
one really needs to use cosmological perturbation 
theory to perform this calculation, even for a relatively 
close source like GW170817/GRB170817A.

✤ The constraints we have deduced using the Milky 
Way’s Newtonian potential are likely still conservative, 
but should be revisited.
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Polarization tests
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Work to date

✤ The two LIGO detectors have very similar orientations => see 
almost the same polarization.  
 
Thus, not possible to make strong constraints on alternative 
polarizations using compact binary signals until Virgo came online.  
 
Illustrated in the GW150914 testing GR paper using Bayes factors 
between the plus and cross polarizations and the scalar breathing 
mode using unmodeled BayesWave reconstructions. These Bayes 
factors do not favour either model.

✤ With Virgo, one can distinguish between purely tensor and purely 
scalar or purely vector polarizations.  
 
However, one needs more detectors to distinguish between mixed 
polarizations using compact binary signals. See, e.g., Isi and 
Weinstein arXiv 2017.

The Confrontation between General Relativity and Experiment 81

Three modes (A+, A⇥, and AS) are transverse to the direction of propagation, with two repre-
senting quadrupolar deformations and one representing a monopolar transverse “breathing” de-
formation. Three modes are longitudinal, with one (AL) an axially symmetric stretching mode
in the propagation direction, and one quadrupolar mode in each of the two orthogonal planes
containing the propagation direction (AV1 and AV2). Figure 10 shows the displacements induced
on a ring of freely falling test particles by each of these modes. General relativity predicts only
the first two transverse quadrupolar modes (a) and (b) independently of the source; these corre-
spond to the waveforms h+ and h⇥ discussed earlier (note the cos 2� and sin 2� dependences of
the displacements).

x

y

x

y

z

x

z

y

x

y

z

y

(b)

(d)

(f)(e)

(c)

(a)

Gravitational−Wave Polarization

Figure 10: The six polarization modes for gravitational waves permitted in any metric theory of gravity.
Shown is the displacement that each mode induces on a ring of test particles. The wave propagates in
the +z direction. There is no displacement out of the plane of the picture. In (a), (b), and (c), the wave
propagates out of the plane; in (d), (e), and (f), the wave propagates in the plane. In GR, only (a) and
(b) are present; in massless scalar–tensor gravity, (c) may also be present.

Massless scalar–tensor gravitational waves can in addition contain the transverse breathing
mode (c). This can be obtained from the physical waveform h

↵� , which is related to h̃
↵� and ' to

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2014-4

GW polarizations in a general theory
from Will LRR 2014 !23



Polarization test results

✤ GW170814 [LVC PRL 119, 141101 (2017)] provided the first 
constraints on purely vector or purely scalar GWs: Bayes 
factors in favour of purely tensor GWs of > 200 (vs vector) 
and 1000 (vs scalar), respectively.

✤ The precise EM sky location of GW170817 gives much 
stronger results [LVC arXiv:1811.00364]: Bayes factors of 
~1021 (vs vector) and 1023 (vs scalar), respectively.

✤ Both of these constraints are obtained using standard GR 
waveform models and non-tensorial detector responses.
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Polarization tests: Continuous waves 
and stochastic backgrounds

✤ Due to the Earth’s rotation, it is possible to disentangle additional 
polarization states with only two detectors for long-lived signals.

✤ This has been studied for continuous wave signals in Isi et al. 
PRD 2015 and Isi, Pitkin, and Weinstein PRD 2017. Additionally, 
LVC PRL 120, 031104 (2018) places upper bounds on GWs from 
known pulsars allowing for generic polarizations using O1 data.

✤ There is a similar study for stochastic backgrounds in Callister et 
al. PRX 2017; LVC PRL 120, 201102 (2018) presents upper bounds 
from O1.
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Constraints on black hole 
mimickers
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Motivation

✤ There could be dark, massive, compact objects that are similar enough 
to black holes that binaries of such objects could produce the GW 
signals identified as coming from binary black holes.

✤ The best-motivated such objects are boson stars, which are described 
by the Einstein equations coupled to a complex scalar field.

✤ Other possibilities are dark matter stars or (to be quite speculative) 
gravastars, which have a de Sitter interior surrounded by a shell of 
matter.

✤ Any of these non-black hole objects’ gravitational fields will have 
different responses to spin and tidal perturbations than black holes do.
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Tidal and rotational deformabilities

✤ In the Newtonian picture, the applied tidal field induces a 
change to the body’s gravitational field, which is described by 
an infinite set of coefficients, one for each multipole moment, 
which depend upon the body’s internal structure. These first 
enter the waveform at (formal) 5PN order; actually Newtonian 
order. They are zero for black holes.

✤ In the relativistic case, this split is not so clean (see Gralla CQG 
2018), and there is an ambiguity in going from the standard 
calculation of the Love number to the contributions. However, 
this should only be significant for objects very close to black 
holes.

✤ For rotating objects, there is no such ambiguity, as one can read 
off the multipoles at infinity, and one again has an infinite set of 
coefficients encoding how the body’s gravitational field 
responds to rotation. These first enter the waveform at 2PN and 
are all unity (by definition) for black holes.

!28
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Projected constraints from tidal 
deformations
✤ For the case of tidal deformations, NKJ-M et al. arXiv 2018 used 

a waveform model given by adding the post-Newtonian tidal 
phasing to a frequency-domain binary black hole waveform 
model, to improve the point particle description of the 
waveform.

✤ Since this model will not describe the merger phase accurately, 
they consider various cutoff frequencies in computing the 
likelihood integral, and choose the highest one that is still below 
the contact frequency they estimate from the, assuming 
polytropic stars, as a simple model.

✤ They find that observations of binary black holes like the signals 
LIGO has seen so far in O3 will allow one to rule out 
noninteracting boson stars as and constrain the parameter space 
for boson stars with λB|φ|4 a interaction.  
 
[These are obtained using the polytropic star results, but are likely 
representative of what one would obtain with an analysis using a binary 
boson star contact frequency calculation.]

!29
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FIG. 4: Constraints on the parameter space of a boson star with quartic self-interaction from the 15.5, 8.2 M� (detector frame) injection using
the fits in Eqs. (3) applied to the n � 1.4 results. Here mB is the boson mass and �B is the coupling strength. The solid and dashed cyan curves
correspond to the observed lower limit of m1 � 10.5M� and upper limit of ⇤  298 (both at the 95% credible level), respectively. The gray
region is excluded at the 95% credible level. The purple line shows the parameters corresponding to a self-interaction cross-section per unit
mass of 0.1–1 cm2/g, as suggested for dark matter by various astronomical observations (discussed in, e.g., [11]).

Dark matter self-interaction cross-section
of 0.1–1 cm2/g, needed to account

for various observations



Projected constraints from 
rotational deformations
✤ For the case of rotational deformations, 

Krishnendu, Arun, and Mishra PRL 2017 use 
a PN waveform (including higher harmonics) 
and the Fisher matrix to obtain estimates of 
the accuracy with which they can measure the 
rotational deformations in the high-SNR limit.

✤ They only consider the quadrupole 
deformabilities κ1,2 and find that the 
individual deformabilities are not measured 
very precisely, but the symmetric combination 
κs = (κ1 + κ2)/2 is measured fairly accurately. 
κs = 1 for a binary black hole, so one can use 
deviations from.

!30

would mean that the proposed test could be effective in
certain cases even with moderate spins.
Since the GW detectors are poised to observe tens to

hundreds of BBH mergers in the coming years, we also have
the interesting possibility of combining the constraints from
these individual observations. If there are N detections, the
errors go down by roughly a factor of

ffiffiffiffi
N

p
. Hence, the

combined posterior of about 100 events on the null hypoth-
esis may narrow down the constraints on κs by a factor of 10.
Possible constraints on κs from space-based detectors.—

With the recent success of the LISA pathfinder mission
[45], there is renewed interest in pursuing a GW detector in
space with low frequency sensitivity capable of observing
supermassive BBH (SMBBH) mergers. Towards this goal,
we extend our study to the case of low frequency space-
based detectors like LISA and projected constraints pos-
sible on κs from them. The results are shown in Fig. 3
which uses the noise PSD of Ref. [46]. The SMBBH
system is assumed to be at a luminosity distance of 3 Gpc.
We find that the LISA observations of SMBBH mergers
can very accurately constrain the κs parameter and, hence,
confirm the BBH nature of the observed sources, tightly
constraining any alternatives to BBHs. It should be clear

from Fig. 3 that errors in measuring κs are smaller than 10%
for a number of configurations with moderate spins,
making the test an extremely deep probe of any possible
deviation from BBH nature. These results show how LISA
can be a very sensitive probe of fundamental physics.
Possible constraints on BH mimickers.—Since boson

stars can have κ between ∼10 and 150 [28], binary systems
of boson stars may have κs in the range of ∼10–150. This
allowed range lies well within the reach of the proposed test.
Recently, for slowly rotating thin shell gravastars, Ref. [29]
showed that the spin-induced quadrupole can take a wide
range of values depending on the specifics of the model
(see Fig. 7 of Ref. [29]). This range includes κ ¼ 1, the BH
value, too. Indeed, if κGS ¼ 1, our test will not be able to
distinguish it from a BH. Except for this very fine-tuned
scenario, the projected bounds from the proposed test might
significantly help to constrain the allowed parameter space
of gravastars and can influence the theoretical developments
in the field. The details of the bounds possible on specific
BH mimicker models will be reported elsewhere [47].
We note that the proposed test may not be very sensitive in

distinguishing a BH from a BH mimicker in a NSBH
system. This is because the neutron stars are expected to
have small spins (≤0.05) for which spin-induced quadrupole

FIG. 2. Two-dimensional error contours indicating the measur-
ability ofκs in the χ1–χ2 plane for two representativebinary systems:
ð5; 4ÞM⊙ (top panel) and ð10; 9ÞM⊙ (bottom panel) for advanced
LIGO sensitivity. The inclination angle of the binary is chosen to
a value of π=3, and the source is located and oriented in such a
way that it produces a signal-to-noise ratio of 10 at the detector.

FIG. 3. Projected constraints from GW observations of
SMBBH mergers by the LISA detector as a function of the
component spins for two representative SMBBH configurations
ð5 × 106; 106ÞM⊙ (top panel) and ð107; 106ÞM⊙ (bottom panel)
located at 3 Gpc. The inclination angle of the binary is chosen to a
value of π=3.
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Future work

✤ Since one expects both rotational and tidal 
deformations to be important, the next step is to 
combine these analyses together (and include 
rotational-tidal couplings, computed in, e.g., 
Abdelsalhin, Pani, and Gualtieri, PRD 2018 and 
Landry, arXiv 2018).

✤ After this has been completed, it will be time to 
consider the constraints that can be placed using real 
data.
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Future detectors
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Planned and proposed future 
detectors
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Figure 1. Noise PSDs for various space-based and advanced Earth-based detector designs. “NiAk” refers to non sky-averaged
eLISA PSDs with pessimistic (N1) and optimistic (N2) acceleration noise and armlength L = k Gm (cf. [18]). In the high-
frequency regime, we show noise PSDs for (top to bottom): the first AdLIGO observing run (O1); the expected sensitivity for
the second observing run (O2) and the Advanced LIGO design sensitivity (AdLIGO) [19]; the pessimistic and optimistic ranges
of AdLIGO designs with squeezing (A+, A++) [20] ; Vrt and Voyager [21]; Cosmic Explorer (CE1), basically A+ in a 40-km
facility [22]; CE2 wide and CE2 narrow, i.e. 40-km detectors with Voyager-type technology but di↵erent signal extraction
tuning [23]; and two possible Einstein Telescope designs, namely ET-B [24] and ET-D in the “xylophone” configuration [25].

noise PSD Sn(f), and we have used the approximation
4Qlmn � 1. The ringdown e�ciency for nonspinning
binaries is well approximated by the matched-filtering
estimate of Eq. (4.17) in [11]: ✏rd = 0.44⌘2. When us-
ing the best-fit parameters inferred for GW150914 [3],
Eq. (1) yields a ringdown SNR ⇢ ' 7.7 in O1 (in agree-
ment with [2]) and ⇢ ' 16.2 in AdLIGO.

Due to the orbital hang-up e↵ect, spinning binaries
with aligned (antialigned) spins radiate more (less) than
their nonspinning counterparts. The dominant spin-
induced correction to the radiated energy is proportional
to the sum of the components of the binary spins along
the orbital angular momentum [26, 30, 31]. We es-
timate this correction by rescaling the radiated energy
by the factor Erad(m1, m2, j1, j2)/Erad(m1, m2, 0, 0),
where the total energy radiated in the merger Erad is
computed using Eq. (18) of [26]. We find that spin-
dependent corrections change ⇢ by at most 50%.

It is now easy to understand why Einstein Telescope-
class detectors are needed to match the SNR of eLISA-
like detectors and to perform BH spectroscopy. The
quantity Flmn(j) is a number of order unity [12, 14].
The physical frequency is flmn ⇠ 1/Mz: for example,
an equal-mass merger of nonspinning BHs produces a
remnant with j ' 0.6864 and fundamental ringdown fre-
quency f220 ' 170.2(102 M�/Mz) Hz. So Earth-based
detectors are most sensitive to the ringdown of BHs with
Mz ⇠ 102M�, while space-based detectors are most sens-
itive to the ringdown of BHs with Mz ⇠ 106M�. The cru-
cial point is that, according to Eq. (1), ⇢ ⇠ M3/2 at fixed
redshift and noise PSD. As shown in Fig. 1, the “bucket”

of the N2A5 eLISA detector is at S1/2
N2A5 ⇠ 10�21 Hz�1/2.

This noise level is ⇠ 102 (103, 104) times larger than
the best sensitivity of AdLIGO (Voyager, Einstein Tele-
scope), respectively. However eLISA BHs are ⇠ 104 times
more massive, yielding SNRs that are larger by a factor
⇠ 106. Astrophysical rate calculations are very di↵er-
ent in the two frequency regimes, but these qualitative
arguments explain why only Einstein Telescope-class de-
tectors will achieve SNRs nearly comparable to eLISA.

Astrophysical models. We estimate ringdown de-
tection rates for Earth-based interferometers (detection
rates for the full inspiral-merger-ringdown signal are
higher) using three population synthesis models com-
puted with the Startrack code: models M1, M3 and
M10. Models M1 and M3 are the “standard” and “pess-
imistic” models described in [8]. The “standard model”
M1 and model M10 predict very similar rates for Ad-
LIGO at design sensitivity. In both of these models,
compact objects receive natal kicks that decrease with
the compact object mass, with the most massive BHs
receiving no natal kicks. This decreases the probability
of massive BHs being ejected from the binary, increasing
merger rates. Model M1 allows for BH masses as high
as ⇠ 100 M�. On the contrary, model M10 includes the
e↵ect of pair-instability mass loss, which sets an upper
limit of ⇠ 50M� on the mass of stellar origin BHs [32].
In model M3, all compact objects (including BHs) ex-
perience high natal kicks drawn from a Maxwellian with
� = 265km s�1 based on the natal kick distribution
measured for single pulsars in our Galaxy [33]. The as-
sumption of large natal kicks leads to a severe reduction

Figure from Berti et al. PRL 117, 101102 (2016)
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Testing GR with 3G ground-based 
detectors

✤ There are likely not any radically new tests of 
GR that are only possible with 3G detectors 
(except possibly the intermediate mass-ratio 
analogues of extreme mass-ratio inspirals). 
However, it is possible that, e.g., CW sources 
will only be detected once the detectors reach 
3G sensitivity.  
[Astrophysical stochastic backgrounds are expected to be detected with a 
few years at design sensitivity; see, e.g., LVC PRL 120, 091101 (2018).]

✤ However, applications of current and future 
tests of GR using 3G detectors will be much 
more sensitive, due to higher SNRs and more 
sources.
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FIG. 3: The errors on s, the symmetric combination of 1 and 2,
in the dimensionless spin parameter plane for binary’s total mass of
30M� and mass ratios of q = 1.2 (left panel) and q = 3 (right panel).
In both panels, solid curve corresponds to the errors using Cosmic Ex-
plorer PSD and the errors using Adv. LIGO PSD is denoted by dashed
contours. As can be seen from the plots, parameter space explored
in the �1-�2 plane is much larger for Cosmic Explorer compared to
advanced LIGO.

order in the phase), spin-spin e↵ects up to 3PN (starting at
2PN) and the leading cubic-spin terms at 3.5PN. Moreover, the
amplitude involves spin e↵ects up to 2PN.

The waveform we use for our analyses contain only the
leading (second) harmonic (quadrupolar mode) and its PN
corrections in the amplitude, while the presence of higher
modes in the waveform is neglected, and schematically reads
as,

h̃( f ) =
M2

DL

r
5 ⇡ ⌘
48

4X

n=0

Vn�7/2
2 C(n)

2 ei
�
2 SPA( f /2)�⇡/4

�
, (2.1)

where M, ⌘ and DL denote the total mass, symmetric mass ratio
and the luminosity distance to the binary system respectively.
Coe�cients, C(n)

2 represents the amplitude corrections to the
quadrupolar harmonic at (n/2) PN order [80]. The pre-factor
V2 related to the gravitational wave frequency ( f ) and the
total mass of the binary system as, V2 = (⇡M f )1/3. Here
 SPA( f ) represents the phase of the waveform. Each of these
C(n)

2 and the phasing, with explicit dependence on spin-induced
quadrupole (through s and a) and octupole (through �s and

�a) moment parameters at respective PN orders are given in
supplemental material of [64].

E↵ect of the leading spin-induced multipole moment (mass-
type quadrupole, M2= �M3 �2) in the phasing of gravitational
waves from binary black hole systems was first computed in
[85] and contributes to the gravitational wave phase at 2PN
order. Here, the symbols M and � again represent the mass and
dimensionless spin parameter for each binary component while
the negative sign (by convention) indicates that the spin induces
oblateness to the black hole. Post-Newtonian corrections to
this at 3PN order have been computed in [78]. The sub-leading,
spin-induced multipole moment (current-type octupole, S 3 =
�M4 �3) starts to contribute to the phase at 3.5PN order and
was computed in [79]. Notice the spin dependences of the
spin-induced multipole moments here: M2(S 3) have quadratic
(cubic) dependences on the spin parameter and first appear
in the phasing formula at 2PN (3.5PN) order because these
are the orders at which quadratic-in-spin (cubic-in-spin) terms
start to appear in the gravitational wave phase.

Note that the relations for M2 and S 3 assume that the binary
constituents are black holes but can be generalized for a non-
BH compact object by introducing coe�cients that character-
ize the degree of deformation. For instance, we can choose to
rewrite these relations as : M2=� M3 �2 and S 3 = ��M4 �3

where the coe�cients  and � take the value unity for black
holes whereas they deviate from unity for other types of com-
pact objects including exotic alternatives to black holes. For ex-
ample, the values of  and � for neutron stars, depending upon
the neutron star equation of state and mass, range between 2-14
and 4-30, respectively [65–67]. The spin-induced multipole
moments of a few exotic compact objects are also computed in
the literature: for a particular class of spinning boson star sys-
tem  (�) can take values between ⇠ 10� 150 (⇠ 10-200) [68].
Variation of quadrupole and octupole moment parameters in
the boson star mass-spin parameter plane is shown respectively
in Figs. 4 and 5 of [68]. Similar computations have been done
for gravastars, see for instance [86, 87] which discuss spin-
induced multipole moments for thin shell gravastar models.
If the observed values of spin-induced quadrupole moments
are o↵set from black hole value, it may be interpreted as an
evidence of an exotic compact object. On the other hand, if
the posterior distribution for the observed value is found to be
peaking at 1 with a width, the corresponding error bars can be
translated into an upper bound on the allowed value of the pa-
rameter for the particular system. In this work, we compute the
projected accuracies on the measurement of the spin-induced
multipole moments using the semi-analytical parameter esti-
mation technique of Fisher information matrix. The necessary
details of the scheme and the analysis are presented in the next
section.

III. PARAMETER ESTIMATION USING THE FISHER
INFORMATION MATRIX ANALYSIS

When we have an accurate model for the signal of interest
and the expected sensitivity of the detector, Fisher information
matrix approach can be used to compute the 1-� error bars
on the parameters of the signal [88] assuming the noise in
the detector is Gaussian-stationary, and the signal to noise

Figure from Krishnendu,
Mishra, and Arun arXiv 2018
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Tests of gravity with LISA

✤ LISA should allow for completely new tests, most notably 
with extreme mass-ratio inspirals. Here one can read off the 
multipole moments of the large Kerr black hole from the 
waveform, as first noted by Ryan [PRD 1992]. This give a 
direct test of the black hole nature and the no-hair conjecture.  
 
However, there is much work required on self-force 
calculations in order to perform such measurements.

✤ It also has guaranteed loud (SNR ~100) CW sources (the 
verification white dwarf binaries) that can be used for various 
tests, e.g., tests of polarizations or a Rømer delay-style 
measurement of the speed of GWs (not as sensitive as the higher-frequency 

ground-based detector CW version, only ~10-3, much less the GW170817 result, but very direct).
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Conclusions

✤ There are currently fast-to-evaluate waveform models that are 
suitably accurate for tests, with ongoing work to improve 
accuracy and parameter space coverage/physics included.

✤ One can use these waveforms to make various tests of GR, 
including propagation effects, polarizations, and black hole 
mimickers.

✤ 3G detectors will make much more sensitive tests. LISA will allow 
for completely new tests, such as those from EMRIs, though much 
work on waveform modeling is required for those cases.
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