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The first detections of binary coalescence opens up the era where

we begin to explore the Universe using GWs.

We will focus on three selected topics:

• Dark energy and GWs

• Stochastic backgrounds of GWs of cosmological origin

• (BH quasi-normal modes)

More details in
MM, Gravitational Waves, Vol. 2,
848 p., Oxford Univ. Press 2018.



I. Dark energy and GWs

GWs from coalescing binaries provide an absolute measurement of the distance to
the source. To lowest order
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→ measure r without the need of calibration (“standard sirens")



For sources at cosmological distances
1
r →

1
dL

dL(z) =
1 + z
H0

∫ z

0

dz̃√
ΩM(1 + z̃)3 + ρDE(z̃)/ρ0

[ΩM = ρM(0)/ρ0, ρ0 = 3H2
0/(8πG)]

• low z: Hubble law, dL ' H−1
0 z (GW170817)

• moderate z: access ΩM, ρDE(z)

Need an independent determination of z (electromagnetic counterpart, statistical
methods)

→ multi-messenger astronomy



– low z:

Planck 2018+BAO+SNe: H0 = 68.34± 0.83
local measurements (Riess et al.): H0 = 73.48± 1.66

3.7σ discrepancy: indication for deviation from ΛCDM?

GW170817: H0 = 70.0+12.0
−8.0

O(50− 100) standard sirens at advanced LIGO/Virgo needed to arbitrate the
discrepancy

– moderate z: non-trivial DE? pDE = wDEρDE

typical parametrization wDE(z) = w0 + z
1+z wa

Planck 2018+BAO+SNe:

w0 only: w0 = −1.0281± 0.031

(w0,wa): w0 = −0.961± 0.077, wa = −0.28+0.31
−0.27



Modified GW propagation
Belgacem, Dirian, Foffa, MM (2017,2018)

in GR, in a FRW metric ds2 = a2(η)(dη2 − dx2)

h̃′′A + 2Hh̃′A + k2h̃A = 0 (H ≡ a′/a)

h̃A(η, k) =
1

a(η)
χ̃A(η, k) → χ̃′′A +

(
k2 − a′′

a

)
χ̃A = 0

inside the horizon a′′/a� k2 → χ̃′′A + k2χ̃A ' 0

1. GWs propagate as the speed of light
2. hA ∝ 1/a. For coalescing binaries this gives hA ∝ 1/dL(z)



In several modified gravity models

h̃′′A + 2H[1− δ(η)]h̃′A + k2h̃A = 0

h̃A(η, k) =
1

ã(η)
χ̃A(η, k) where

ã′

ã
= H[1− δ(η)]

then

χ̃′′A +

(
k2 − a′′

a

)
χ̃A = 0 → χ̃′′A + k2χ̃A ' 0

1. GWs still propagate as the speed of light (ok with GW170817)
2. hA ∝ 1/ã



the “GW luminosity distance" is different from the standard
(electromagnetic) luminosity distance !

Deffayet and Menou 2007
Saltas et al 2014

Lombriser and Taylor 2016
Nishizawa 2017

Belgacem et al 2017, 2018
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For a generic modified gravity model Ξ0 is more
easily observable than w0 because of the
degeneracies with H0,ΩM !

Forecasts for the Einstein Telescope

ET could detect ∼ 105 − 106 BNS/yr up to large z;
assume 103 em counterparts
(more detailed modelization of the GRB detection in

progress, with T.Regimbau and E. Howell)

∆w0 = 3.2%, ∆Ξ0 = 0.8%

Forecast for LISA in progress (with the LISA CosmoWG)



II. Stochastic backgrounds of GWs

GWs allow us to probe early Universe cosmology down to a primordial epoch
unaccessible to electromagnetic observations

Particles decouple from the primordial plasma when the reaction rate Γ < H(t)

• Photons decouple shortly after recombination, T ' 0.26 eV, z ' 1090

• For neutrinos

Γ

H
∼ G2

FT5

T2/MPl
'
(
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)3

• For gravitons

Γ

H
∼
(

T
MPl

)3



Some definitions
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0Ωgw(f ) is independent of the uncertainty on H0



What do we know on h2
0Ωgw(f )?

BBN is a balance between nuclear reaction rate and the expansion rate.
Any extra energy at time of BBN alters it.⇒ limit on ρGW

∫ f=∞

f=fBBN

d(log f ) h2
0Ωgw(f ) < 1.3× 10−6
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Only applies to modes that were inside the horizon at time of BBN

Note the huge range of frequencies on the horizontal axis!



Limits on extra radiation at CMB.

Extra radiation at the epoch of RD-MD equilibrium shifts the epoch of RD-MD transition. This
affects the acoustic peaks and delays structure formation
If the perturbations induced by GWs are adiabatic, they act as extra neutrinos:∫ f=∞

f=fCMB

d(log f ) h2
0Ωgw(f ) < 1.7× 10−6

More likely, for GWs generated by
cosmic string, phase transitions,
etc. use homogeneous initial
conditions. The degeneracy with
neutrinos is broken, stronger limits -15 -10 -5 0 5 10
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How to detect stochastic GW backgrounds at interferometers?
For a single detector, it is just an extra noise!

For a single GW signal s(t) = n(t) + h(t). If we know h(t):∫ T

0
dt s(t)h(t) =

∫ T

0
dt n(t)h(t) +

∫ T

0
dt h2(t) = O(T1/2) + O(T)

Optimal filtering: S =
∫ T

0 dt s(t)K(t), K̃(f ) = h̃(f )/Sn(f )

For a stochastic GW signal, we do not know h(t), but we can perform correlations between two
detectors:

S =

∫ T

0
dt1

∫ T

0
dt2 s1(t)s2(t)K(t1 − t2)

again, S/N ∝ T1/2



Existing limits from adv LIGO/Virgo:
h2

0Ωgw < 7.9× 10−8 in the band 20− 86 Hz
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Pulsar timing arrays (EPTA, NANOGrav,PPTA, forming the IPTA)

monitor networks of stable ms pulsars. Sensitive to f ' 1/T (T ∼ 10 yr→ f ∼ nHz)

h2
0Ωgw(f ) < 2.3× 10−10 @ f = 6.3 nHz (PPTA)

h2
0Ωgw(f ) < 4.2× 10−10 @ f = 2.8 nHz (NANOGrav)

h2
0Ωgw(f ) < 4.1× 10−9 @ f = 2.8 nHz (EPTA)
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Limits on GWs from CMB

Temperature anisotropies:

Planck, paper XX (2015)

Polarization anisotropies:

scalar perturbations only generate E-modes
tensor perturbations generate both E- and
B-modes

Joint analysis of data from BICEP2/Keck
Array and Planck.

• strong evidence for dust and no
statistically significant evidence for
tensor modes

• r0.05 < 0.12 at 95% c.l.
(k∗ = 0.05 Mpc−1)
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Theoretical expectations

PTA limits possibly in tension with some current models of SMBH mergers, but
theoretical uncertainties are still large

Ingredients:

• measured galactic merger rate

• all large galaxies host SMBHs

• radiation-reaction from GWs alone is not sufficient to induce coalescence within the age
of the Universe. Three-body scattering on stars or friction against circumbinary gas is
needed (and is expected)
On the other hand, if the coupling to the environment is too efficient, the time for GW
emission is reduced



Planck data already rule out some inflationary models

Inflationary prediction from
amplification of vacuum
fluctuations
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Several (more hypothetical) generation mechanism have been studied

Alternatives to inflation
e.g., pre-big-bang
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1st-order phase transition
at the EW scale
(requires extensions of the SM)
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Cosmic strings

small initial loop size large initial loop size
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from Binetruy, Bohe, Caprini and Dufaux (2012)

the background due to bursts from cusps and kinks on cosmic strings is also
potentially detectable at advanced LIGO/Virgo or at eLISA

Damour and Vilenkin (2001)

several other interesting mechanisms proposed (e.g. from pre-heating after inflation,
field condensates, etc.)



Conclusions

• Stochastic GW background are being actively searched over a huge range of
frequencies, 10−17 − 103 Hz

• temperature anisotropies and B-mode polarization of CMB already exclude
plausible inflationary models

• PTA results already challenge some models of GWs from SMBH

• Several production mechanisms predict signals detectable at advanced IFOs or
PTA.

A new territory will be explored in the next few years



III. BH quasi-normal modes. The vibrations of pure space-time configurations

By now a classic chapter of GR. A long history, going back to works of Regge and Wheeler
(1957), Zerilli (1970), Vishveshwara (1970), Press (1971), Teukolsky (1973), Chandrasekhar
(1975,1983), Chandrasekhar and Detweiler (1975), ...

A simpler example: scalar field on a Schwarzschild background

�φ ≡ (−ḡ)−1/2∂µ
[
(−ḡ)1/2ḡµν∂ν

]
φ = 0

ds2 = −A(r)dt2 + B(r)dr2 + r2
(

dθ2 + sin2 θdφ2
)

A(r) = 1− RS

r
, B(r) =

1
A(r)

, RS = 2GM



φ(t, x) =
1
r

∑
l,m

ulm(t, r)Ylm(θ, φ)

r∗ ≡ r + RS log
r − RS

RS

ulm(t, r) =

∫ ∞
−∞

dω
2π

ũlm(ω, r)e−iωt

and we get [
− d2

dr2
∗

+ Vl(r)
]

ũlm = ω2 ũlm

where

Vl(r) = A(r)
[

l(l + 1)

r2 +
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Boundary conditions

at r∗ → ±∞ becomes a free wave equations, with solutions e−iω(t±r∗)

To study how an initial localized perturbation evolve, we select pure outgoing waves
at infinity,

ulm(t, r)→
∫ ∞
−∞

dω Aout
lm (ω)e−iω(t−r∗) , (r∗ → +∞)

and pure ingoing at the horizon

ulm(t, r)→
∫ ∞
−∞

dω Ain
lm(ω)e−iω(t+r∗) , (r∗ → −∞)



Why this selects a discrete set of frequencies?

Equivalent scattering problem: prepare an initial right-moving wavepacket,

u0
lm(t, r∗) =

∫ ∞
−∞

dω
2π

A0
lm(ω) exp{−iω(t − r∗)} , (r∗ → −∞)

At r∗ → −∞ there will also be a reflected, left-moving, wavepacket

urefl
lm (t, r∗) =

∫ ∞
−∞

dω
2π

Arefl
lm (ω) exp{−iω(t + r∗)} , (r∗ → −∞)

while at r = +∞

utrans
lm (t, r∗) =

∫ ∞
−∞

dω
2π

Atrans
lm (ω) exp{−iω(t − r∗)} , (r∗ → +∞)

Amplitude for reflection: Slm(ω) = Arefl
lm (ω)/A0

lm(ω).

Our b.c. correspond to A0
lm(ω) = 0 with Arefl

lm (ω) 6= 0, and therefore to poles of Slm(ω)



For metric perturbation, conceptually similar but technically more complicated:
• gµν = ḡµν + hµν . Linearize the Einstein eqs

• expand hµν in tensor spherical harmonics. Separate axial and polar perturbations

• choose a clever gauge (Regge-Wheeler gauge)

gµν dxµdxν = −A(r)
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∞∑
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∞∑
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lm Ylm



+B(r)dr2
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Find two master functions Qlm, Zlm in the axial and polar sectors. Then

∂2

∂r2
∗

Q̃lm +
[
ω2 − VRW

l (r)
]

Q̃lm = 0 Regge−Wheeler eq.

∂2

∂r2
∗

Z̃lm +
[
ω2 − VZ

l (r)
]

Z̃lm = 0 Zerilli eq.

VRW,Z
l (r) qualitatively similar to the scalar case⇒ define QNMs in the same way

(ωQNM)nl = (ωR)nl − i(ωI)nl

Furthermore, axial and polar perturbations are isospectral



Several techniques developed for computing numerically (ωR)nl, (ωI)nl

The least damped QNM emits GWs at a frequency

f ' 12 kHz
(

M�
M

)

τ =
1
ωI
' 5.5× 10−5 s

(
M

M�

)

• for M = 10M�: f ∼ 1 kHz, τ ∼ 0.5 ms

• for M = 106M�: f ∼ 10 mHz, τ ∼ 1 min

For realistic astrophysical applications, we need to perturb over Kerr BHs⇒
Teukolsky eq.



We can now compare with the observations!

GW150914 visible even without
matched filtering. Ringdown near
the best sensitivity in frequency

GW151226 only visible after
matched filtering.
Ringdown phase too small to be
separately tested



Can we detect the BH quasinormal modes?

From the reconstructed mass and spin of the final BH we can compute the frequency and
damping time of the dominant QNM
We can then compare with parameter estimation on the ringdown part of the signal, starting
from tmax + 1, 3, 5, 7 ms.
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What about the near future?
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Each improvement by factor of 10 in h means that we explore a volume 103 times bigger

I am looking forward to the detection of a large number of BH-BH coalescences, at
cosmological distance, and SNR=O(100) !


