Clustering Time Series
using Unsupervised-
Shapelets
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Motivations
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Motivations
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Figure 1. A Euclidean distance clustering of two exemplars from the “raw”

Gun-Point dataset, together with a random walk sequence. The hundreds of _1_‘/__\_\— _I
papers that have used the Gun-Point dataset have only considered the

human edited version, corresponding to just the red/bold data. Figure 2. Clustering Gun-Point after ignoring some data.




Problem

How can we discover shapelets from a dataset
without having any knowledge of the class labels?




Definitions and Background

Definition 1: Time Series, a time series T=T1, T2, ..., Tn is
an ordered set of real values. The total number of real
values is equal to the length of the time series. A dataset
D={T1, T2, ... TN} is a collection of N such time series.

Definition 2: Subsequence, a subsequence Si,/, where
1</<n and 1<i<n, is a set of | continuous real values from a
time series, T, that starts at position J.




Definitions and Background

Definition 3: The Subsequence distance between a
subsequence S of length m and a time series T of length n
is the distance between S and the subsequence of T that

has minimum distance. We denote it as sdist(S, T).

Definition 4: An unsupervised-shapelet S’ is a subsequence
of a time series T for which the sdists between S’ and the
time series from a group DA are much smaller than the
sdists between and rest of the time series DB in the
dataset D .




Definitions and Background

Definition 5: A Distance map contains the sdists between
each of the u-shapelets and all the time series in the
dataset. If we have m u-shapelets for a dataset of N time
series, the size of the distance map is [N x m] where each

column is a distance vector of a u-shapelet.




A Discrete Analogue of U-Shapelet

San Jose; Earth Day; San Francisco; Memorial Day; Fink
Nottle; Labor Day; Bingo Little.

Jose | Earth Memorial Fink Labor Bingo Little
Francisco Nottle
San 0 2 0 2 2 2 2

Day 2 0 2 0 3 0 3




Algorithm - intuition

Figure 3. Sample time series from four classes of Trace dataset.

_/—&—_j\m

u-shapelet 2 /h I

class1 iclassﬁ
o #@%

o =

scisis of u-shapelet 2

. - e

_— i class 3 class 4

]
T

1 1 1 1 1 1 D 1
0 sdists of u-shapelet 1 14

Figure 4. (/eft) two u-shapelets (marked with red) used for clustering 7race
dataset. (right) a plot of distance map of the u-shapelets.




Algorithm - A Formal Description

gap = g —og — (Ug + 0y)

Abraham Lincoln lived here for many years. (English)
She is looking for Ibrahim. (Arabic)
You can find Abrahan in that house. (Portuguese)

18 2 3 oai 05
Michael is singing a song for her. (English) 0 | 0 | 0 | DBgy 5 | 0
She bought a gift for Michaél. (Dutch) L |drl E— dr. B
She can teach Michales chess (Hebrew) Y DA D5y

Figure 5. Orderline for (/eft) “Abraham”, (right) “Lincoln”.
Hamming distance for Abraham
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Algorithm - A Formal Description

O = mean (Sdi&‘t(g, DA)) + std (sdist(g, Da))
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Figure 6. Orderline for “Day”. © i1s shown with red/thick line and dr 1s
shown with blue/thin line.



Algorithm - A Formal Description
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Figure 7. (/eff) The six u-shaplets returned by our algorithm on the Trace
dataset. (right) The CRI (red/bold) predicts the best number of u-shapelets

to use 1s two. By peeking at the ground truth labels (blue/light) we can see
that the choice does produce a perfect clustering.
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EXPERIMENTAL EVALUATION

TABLE VI. COMPARISON TO RIVAL METOHDS

. Rand index Number of
Pataset Extracted Time Series u-shapelets
(# of class) Features [33] u-Shapelets ED used

Trace (4) 0.74 1 0.75 2
Syn-Control (6) 0.85 0.94 0.87 5
Gun Point (2) 0.49 0.74 0.49 1
ECG (3) 0.4 0.7 not-defined 1
Population (2) 0.8 0.9 0.5 1
Temperature (2) 0.8 0.9 1 1
Income (2) 0.5 0.5 0.5 1




Drawback

The computation of orderline is time consumming.
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Figure 5. gray) The distribution of all
u-shapelet scores computed during a
brute force search. green) The
minimum Rand index of these u-
shapelets. Once the u-shapelet score is
greater than about 0.65, it can achieve
, . . the same Rand index as the best u-

All u-shapelet candidates with a score in this range
produce essentially the same quality clustering

Rand index

0 01 02 03 04 05 06 07 08" shapelet
u-shapelet candidate gap score




Figure 6. Representation of time series T (blue) in PAA (green/bold) converted into a SAX
word, SAX(T)s,g = {5,5,4,3,2,3,1,1}, with cardinality 5 and dimensionality 8
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Figure 7. Time series T converted into a set of SAX words, {5,5,5,2,3,2,2,1},
{5,5,4,3,3,2,2,1}, ..., {4,2,5,5,3,1,2,1}, using a sliding window of length 64



U-shapelet candidates SAX words 1strandom mask 2" random mask
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$; A~ 4|5|1|3|3|4| [4(5|1|3|3|4| |4|5|1|3|3|4 Figure 8. Sever_al re}nt_jomly chosen u-shap_elet
candidates, their original SAX representation (¢ =

5,3—\-—» 66|4(2(2|2| |6/6|4(2|2|2| |6|6|4|2|2|2 6 and d = 6) and SAX words after two rounds of
random masking of 2 symbols
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Figure 9. gray) Distribution of maximum values of gap score per interval. green) Mean and
standard deviation of gap score values per interval
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R.M.1 |R.M.2 | R.M.3 R.M.1 | R.M.2 | R.M.3 R.M.1 | R.M.2 | R.M.3

T; 1 1 1 1 1 1 1 1 1

T, 1 1 1 0 0 0 1 1 1

T; 0 0 0] 1 0 0 1 1 1

T 0 0 0 1 0 0 1 1 1

Sum: 2 2 2 3 1 1 4 4 4
Mean: 2 1.67 4
Std: 0 1.15 0

Good candidate

Not filtered out, but
will be checked after
those with lower std

Filtered out as mean

is too high

Figure 10. For each u-shapelet candidate
we count how many time series have a
subsequence that shares the masked SAX
signature with this candidate (number of
collisions). U-shapelet candidates having
a low variability of the number of
collisions are very likely to be better
candidates
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0 Total number of u-shapelet candidates 100,000

Figure 11. Probability of finding a “good enough” u-shapelet after searching 1% of candidates



T

© Rand Index

\]

90 100 110 120 130 140 150 160 170 180
Time series number in dataset

Figure 13. Rand index for k-means clustering (blue) and clustering with u-shapelets (green).

The addition of spurious data does not hurt the quality of clustering with u-shapelets (averaged
by 10 random runs)



