Alberto Nicolis Columbia University

Deviations from scale invariance, from scale invariance

(w/ Austin Joyce and Guanhao Sun, in preparation)

"Scale invariance"

Cosmology: Correlators do not depend on distance (Up to logs)

$$\langle \zeta \zeta \rangle \propto \log |x - y| \sim \frac{1}{k^3}$$

QFT:

Correlators = distance

 $\left\langle \mathcal{O}_{\Delta} \mathcal{O}_{\Delta} \right\rangle = \frac{1}{\left| x - y \right|^{2\Delta}}$

Inflation, first order in slow roll:

$$\langle \zeta \zeta \rangle \propto \frac{1}{k^{3+2\epsilon+\eta}}$$

$$\langle \gamma \gamma \rangle \propto \frac{1}{k^{3+2\epsilon}}$$

Inflation, first order in slow roll:

Inflation, first order in slow roll:

Still scale invariant in QFT sense...

Why?

Warmup: massless scalar in dS

$$S = \int d^4x \sqrt{g} (\partial \phi)^2 \to \int d\tau d^3k \frac{1}{H^2 \tau^2} \left[|\phi'|^2 - k^2 |\phi|^2 \right]$$

Invariant under:

$$\begin{aligned} \tau &\to \lambda \tau \\ k &\to \lambda^{-1} k \\ \phi &\to \lambda^3 \phi \end{aligned} \qquad (in \ k, \tau \text{ space})$$

Two-point function

$$\implies \langle \phi \phi \rangle \sim \lambda^6 \to \delta^3(\dots) \times \frac{H^2}{k^3} F(k\tau)$$

 $\langle \phi \phi \rangle \sim \delta^3(...) \times \frac{H^2}{k^3}$

For $k\tau \rightarrow 0$, EOM:

$$\partial_{\tau} \left(\frac{1}{\tau^2} \phi' \right) \simeq 0 \quad \Longrightarrow \quad \phi \to \text{const}$$

Slow-roll inflation

Tensors:

$$S = \int d\tau d^3k \, a^2 \left[|\gamma'|^2 - k^2 |\gamma|^2 \right] \qquad a^2(\tau) \propto \frac{1}{\tau^{2+2\epsilon}}$$

Invariant under:

Slow-roll inflation

Scalars:

$$S = \int d\tau d^3k \,\epsilon a^2 \left[\left| \zeta' \right|^2 - k^2 \left| \zeta \right|^2 \right] \quad \epsilon(\tau) a^2(\tau) \propto \frac{1}{\tau^{2+2\epsilon+\eta}}$$

Invariant under:

What is this scale invariance? Approximate isometry? No (only dS) Conformal Killing vector? No (all FRW's) Accident for quadratic order? Maybe Accident for slow-roll inflation? Apparently not... Notice: totally not manifest before constraints (all $\mathcal{O}(\epsilon^0)$ terms cancel)

More data

Solid inflation:

$$S_{\gamma} = \int d\tau d^{3}k \, a^{2} \Big[|\gamma'|^{2} - k^{2} |\gamma|^{2} - \epsilon a^{2} H^{2} |\gamma|^{2} \Big]$$

$$S_{T} = \int d\tau d^{3}k \, a^{2} \Big[\frac{k^{2}}{1 + k^{2}/\epsilon a^{2} H^{2}} |\pi_{T}'|^{2} - \epsilon a^{2} H^{2} c_{T}^{2} k^{2} |\pi_{T}|^{2} \Big]$$

$$S_{L} = \int d\tau d^{3}k \, a^{2} \Big[\frac{k^{2}}{1 + k^{2}/\epsilon a^{2} H^{2}} |\pi_{L}' + \epsilon a H \pi_{L}|^{2} - \epsilon a^{2} H^{2} c_{L}^{2} k^{2} |\pi_{L}|^{2} \Big]$$

with $a(\tau), H(\tau), \epsilon(\tau), c_T(\tau), c_L(\tau) \sim \tau^{\#}$ Three regimes: k^2/a^2 vs. $H^2/c_{L,T}^2$ and ϵH^2

No obvious scale invariance. Still...

$$\langle \gamma \gamma \rangle = \delta^3(\ldots) \times \frac{1}{k^{3+2\epsilon}} F(k\tau) \to \delta^3(\ldots) \times \frac{\tau^{8\epsilon c_T^2/3}}{k^{3-2\epsilon c_L^2}}$$

$$\langle \mathscr{RR} \rangle = \delta^3(\ldots) \times \frac{1}{k^{3+2\epsilon+\eta}} F(k\tau^{1-s_L}) \to \delta^3(\ldots) \times \frac{\tau^{8\epsilon c_T^2/3 - 4s}}{k^{3-2\epsilon c_L^2 + \eta + 5s}}$$

which exhibit some scale invariance.

Flow

Scaling can change between UV and IR. E.g., in flat space:

$$S = \int d^{4}k \left[k^{2} |\phi|^{2} - m^{2} |\phi|^{2}\right] \qquad (k \equiv k^{\mu})$$

$$UV: \qquad k \to \lambda k \qquad \Longrightarrow \qquad \langle \phi \phi \rangle \sim \delta^{4}(...) \times \frac{1}{k^{2}}$$

$$IR: \qquad k \to \lambda k \qquad \longleftrightarrow \qquad \langle \phi \phi \rangle \sim \delta^{4}(...) \times \frac{1}{m^{2}}$$

So, for cosmology find the correct IR scale-invariance...

No!

It does not work. Nor should it:

All modes start inside the horizon.

Their wave function is normalized to the UV, flatspace one (for Bunch-Davies state).

Time-evolution takes them outside.

More formally:

 $\Psi[\bar{\phi}(\vec{x}); \bar{\tau}] = \int^{\phi(\vec{x}, \bar{\tau}) = \bar{\phi}(\vec{x})} D\phi(\vec{x}, \tau) e^{i(S + i\epsilon \text{ terms})}$

Looks like we need scale-invariance for all $k\tau$'s.

In fact, for solid inflation:

$$\langle \gamma \gamma \rangle = \delta^3(\dots) \times \frac{1}{k^{3+2\epsilon}} F(k\tau)$$

$$\langle \mathcal{RR} \rangle = \delta^3(\dots) \times \frac{1}{k^{3+2\epsilon+\eta}} F(k\tau^{1-s_L})$$

Not manifest at all in the action, or in computation.

What does work

Actual recipe is extremely simple (but makes no sense):

 \odot Find scaling in the UV: easy (neglect mixing).

 \odot Find time-evolution in the IR: easy (neglect k)

Combine them.

Example

Slow-roll inflation:

UV:
$$S \simeq \int d\tau d^3k a^2 \left[|\delta\phi'|^2 - k^2 |\delta\phi|^2 \right]$$

Neglect mass and mixing, keep $a^2(\tau) \propto \frac{1}{\tau^{2+2\epsilon}}$ (WKB)

Invariant under:

 $\begin{aligned} \tau \to \lambda \tau \\ k \to \lambda^{-1} k & \Longrightarrow \quad \langle \delta \phi \, \delta \phi \rangle \propto \delta^3(\dots) \times \frac{1}{k^{3+2\epsilon}} F(k\tau) \\ \delta \phi \to \lambda^{3+\epsilon} \delta \phi & \end{aligned}$

IR: Time-evolution, easy for

$$\zeta = H \frac{\delta \phi}{\dot{\phi}_0} \propto \frac{\delta \phi}{\sqrt{\epsilon}} \propto \delta \phi \, \tau^{\eta/2}$$

$$\langle \delta \zeta \, \delta \zeta \rangle \propto \delta^3(\dots) \times \frac{\tau^{\eta}}{k^{3+2\epsilon}} F(k\tau)$$

$$\zeta \rightarrow \text{const for } k\tau \rightarrow 0$$

$$\implies \langle \delta\zeta\,\delta\zeta\rangle \propto \delta^3(\ldots) \times \frac{1}{k^{3+2\epsilon+\eta}}$$

Ultimate check

17

Gaugid inflation:

Ultimate check

Gaugid inflation:

q. (64) onsists Fina	$\gamma^c_{ij}(au,ec{x})=\intrac{d^3k}{(2\pi)^3}\sum_{\perp}\epsilon^*_{ij}(ec{k})\;\gamma_s(au,ec{k})\;e^{iec{k}\cdotec{x}},$						
oll para	In tan	corresponding to purely gravitational and purely gaugid Bunch-Davies excitations.					
15							
with B_*	In terms	At time for the second s'+2 pc in the second					
Hav		1	that they undergo	stronger quantum	fluctuations than gravit	tons do In par	ticular inspection
i the v			of the E kinetic ter	rm in (50) to als	so eq. (61)) mabes it clea	ar that the ous	ntum flootmetiche
.2		and simila	in this mo				
s alrea		spectrum	implied by super-hori	where z_i	$_{\star} \equiv -k\tau_{\star}$. Plugging this e	expression for E	$_{+}$ into (72) yields at late times
or the ₇ (50)	Ta avai		super-norr		$d^2 \gamma_{\perp}^{1 \text{ file profile (C9)}} = 2\epsilon_{\gamma}$	n (73) . Indee	d, the source term in the resulting equation, being of order
n extr	we have			(($\mathcal{O}(B^2 z^{-2})$, is $\mathcal{O}(B$	²) with respec	t to the unperturbed solution at horizon crossing $z = O(1)$,
a co	The	where the	The rest of	wh	while it is even mo	negligibbar	late times compared to leading terms that grow Bir (2 (-4)
$\dot{\mu} \rightarrow \lambda$ $r^i \rightarrow$	mix and	Evalu			This means	The	late-time dynamics is more subtle, however. Indeed, according to (91), the zeroth-order
cplict		evaluatin and $f^{(2)}$	The large	·γ+	E ₊ -sourcing horizon cross	graviton	wavefunction grows like
$\langle X \rangle =$		we have to	We now s	whe	given in eq. ($\gamma_{\pm} \approx \frac{i}{\sqrt{2}} \frac{1}{1 + \alpha/3} $ (94)
It i elds:		$\{\gamma_+ \xrightarrow{z \to \infty}$	amplitude for a	mat	size $O(B^2)$.	in th	This exceeds (especially for a somewhat suppressed $c_{E\star}$) the standard single-field result (3) by
	where y	see that f	101 γ_+ , with	jini,	From the a	rise t	a large factor $c_{E\star} \epsilon_{E\star}$.
	(72)-(7	the contr		pa	helicity-2 mo		One may wonder to what extent is such an enhancement of the tensor modes in gaugic inflation compatible with the current limits on the tensor-to-scalar ratio. We will see below
y eq. 50) is f	Ina	potential	The new t	ter	numerical int		that the spectrum of scalar perturbations is given by a similar expression in the model at hand
0) 15 0	on qua	will refer	γ_{\pm} would	ori	The pert	Here	$A_2 = H_*^2 = 1$ (60)
	$\phi_{\pm \alpha} = \phi$	One	For th	sin	large mode is	to be	$\Delta_s \sim \frac{1}{M_{\rm Pl}^2} \frac{c_{T\star}}{c_{T\star}^{5\star}} . \tag{99}$
- 78		in sectio	paramete	ex	The small r	$\gamma_{\perp} W$	For a somewhat small c_T compared to c_E , the tensor-to-scalar ratio is thus easily suppressed
		lagrangia	consistent		Embertion 4	(95)	beyond the observational upper limit. Another possibility for suppressing gravity waves relative
12	Here a_{\pm} $f_{\pm}^{(1)}$ and		evolves p		$(72)_{-}(73)$ for	z^{-2-}	to scalar CMB fluctuations is to have $\epsilon_{\gamma} \ll N_e^{-1}$.
here	where P		Solution	Th	(12) (10) 101	enha as for	The <i>tut</i> of the tensor spectrum can be readily read off eq. (97) :
ome	thonor	which at la	$E_{+} = (1 - 1)$	co		ab 101	$\int_{-\infty}^{\infty} -2\epsilon_{\star} - \eta_{E\star} - 5s_{E\star}, \epsilon_{\gamma}N_e \gtrsim 1 \qquad (100)$
ily w	$[a_{\pm,m}]$	observers.	where $H_{\nu_E}^{(1)}$	re	T 10 10 10		$n_t = \left(-\frac{2}{N_e} - 2\epsilon_\star - \eta_{E\star} - 5s_{E\star}, \epsilon_\gamma N_e \ll 1 \right)$ (100)
¹⁰ Gi	For c_F	positive, γ	to match on		In line with t $F = O(B)$	This	where $s_{\rm F}$ has been defined in (65). In both of the above limits one expects a percent-leve
The lat	1	decays in	One can	wh	$L_+ = O(D)$	eter	tensor tilt, $n_t \sim N_e^{-1}$, which appears to be a genuine prediction of the theory. For all slow-rol
		This is	to the exac	tha		of E	parameters smaller than N_e^{-1} , the tensor spectrum is red-tilted, while in a more general cas
_		from qu	the E_+ pro	dise		can	both signs of n_t are possible.
	j [stretche		firm	where $\delta \gamma_{+} = J$	con	One last comment concerns the amount by which the γ_+ spectrum (97) evaluated right before the end of inflation varies by the time the CMB modes reenter the horizon. We will
1	5	accordii the hori		way	To compute	mag	return to this question in section 5. Generically, the predictions for the primordial tensor and
-		cerned v t	Plugging	by a	the system.	which	scalar spectra are expected to be more sensitive to the details of reheating in the model at hand
	5	here is t	the zerot	CC I	due to the m	disca	that they are in more ordinary theories of inflation. We will nevertheless argue, that at least in the case that reheating happens fast, i.e. within a single Hubble time, the asymptotic tensor
		m	Next	de		wardly	spectrum is reproduced by (97) to a good approximation.
		1 million (We w	
		2		h a	Plugging th	small	4.3 Scalars
				nic 6. mi: bi	r iugging ti 3	tnese	The scalar sector of gaugid inflation consists of a pair of dynamical degrees of freedom. Im
			2		13	-R	portantly, these have opposite parity with respect to the unbroken symmetry under inversion of spatial coordinates: α is parity odd while T is parity even. In the parity symmetric theory
						- 10	at hand, this results in a complete decoupling of the former field both from the metric and
					The correti		from the parity-even mode at the quadratic order in the perturbation lagrangian, making the
				5	carry tilles	Ast	primordial scalar spectrum sensitive to T alone.
				i i		14	10 compute the action for I we must first solve the contraints associated to the non- dynamical fields. By parity, the only fields that can affect the action for T must also be scalars
				10-2	I HAR I H		In the spatially flat slicing gauge, the only such fields reside in in the lapse and the shift variable
					ALC: NAME OF TAXABLE PARTY.		$\mathbf{X} \rightarrow \mathbf{S} \mathbf{X} \rightarrow \mathbf{X} \rightarrow \mathbf{C} \left(\mathbf{X}^{\dagger} \mathbf{H} \mathbf{X} \right)$ (10)

11

Tensors:
$$\gamma_{ij}, E_{ij}$$

$$S = \int d\tau d^3k \left\{ a^2 \left[|\gamma'|^2 - k^2 |\gamma|^2 - \epsilon_{\gamma} a^2 H^2 |\gamma|^2 \right] + \epsilon_E a^4 H^2 \left[|E'|^2 - c_E^2 k^2 |E|^2 \right] + 2\epsilon_{\gamma} a^4 H^2 \left[kE\gamma \right] \right\}$$

UV: Neglect mass and mixing, keep τ -dependence of coefficients

$$\begin{array}{c} \tau \to \lambda \tau \\ & & & \\ & & \\ & & \\ & \gamma \to \lambda^{-1} k \\ & & \\ & & \gamma \to \lambda^{3+\epsilon} \gamma \end{array}$$

$$\tau \to \lambda \tau$$

$$E_{ij}: k \to \lambda^{-1+s_E} k$$

$$E \to \lambda^{4+\epsilon+\eta_E/2-3s_E/2} E$$

IR: Time-evolution. Leading order terms: $S = \left[d\tau d^3 k \left\{ a^2 \left[|\gamma'|^2 - \epsilon_{\gamma} a^2 H^2 |\gamma - kE|^2 \right] \right] \right]$ $+\epsilon_E a^4 H^2 |E'|^2$ $E \rightarrow \text{const}$ $\gamma \to k E$ $\implies \langle \gamma \gamma \rangle \sim k^2 \langle EE \rangle \propto \delta^3(\dots) \times \frac{1}{k^{3+2\epsilon+\eta_E+5s_E}}$ IR: Time-evolution. Leading order terms: $S = d\tau d^{3}k \left\{ a^{2} \left[|\gamma'|^{2} - \epsilon_{\gamma} a^{2} H^{2} |\gamma - kE|^{2} \right] \right\}$ $+\epsilon_E a^4 H^2 |E'|^2$ $\rightarrow E \rightarrow \text{const}$ $\gamma \to k E$ $\langle \gamma \gamma \rangle \sim k^2 \langle EE \rangle \propto \delta^3(...) \times \frac{1}{k^{3+2\epsilon+\eta_E+5s_E}}$

Matches the

A general pattern, in search of an explanation

A general pattern, in search of an explanation

Ourely technical? Still, can simplfy computations

A general pattern, in search of an explanation

Orely technical? Still, can simplfy computations

Deeper? We'll learn something about inflation

A general pattern, in search of an explanation

Orely technical? Still, can simplfy computations

Deeper? We'll learn something about inflation

Relationship to Baumann's talk or to holographic methods (Skenderis et al.)?