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“Scale invariance”

Cosmology: Correlators do not depend on distance

(Up to logs)
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However

Inflation, first order in slow roll:
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Inflation, first order in slow roll:
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Still scale invariant in QFT sense...



Why?

Warmup: massless scalar in dS
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Slow-roll inflation

Tensors:

S = ded3ka2[\y’\2 — kz\}/\z] a*(1) o
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Slow-roll inflation

Scalars:

Si= ded3k€a2[\é"\2 — kz\(:\z] e(1)a* (1)
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What is this scale invariance?

@ Approximate isometry? No (only dS)

@ Conformal Killing vector? No (all FRWS)
@ Accident for quadratic order? Maybe

@ Accident for slow-roll inflation? Apparently not...

@ Notice: totally not manifest before constraints
(all O(e") terms cancel)



More data
Solid inflation:

S, = ded3ka2[|y’\2 — kzl}/\2 — easz\y\z]
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with a(7), H(7), e(7), c(7), ¢;(7) ~ "

Three regimes: k’/a’ vs. Hz/ch and eH?
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No obvious scale invariance. Still...
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which exhibit some scale invariance.
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Flow

Scaling can change between UV and IR.
E.g., in flat space:

S = [a'k[e1p 1 - m?1 4P = k¥
UV: k > Ak g 1
L L —> (WP (...) X B
IR: k — Ak i L
T S (PP 0(:.) X s

So, for cosmology find the correct IR scale-invariance...
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No!

It does not work. Nor should it:

@ All modes start inside the horizon.

® Their wave function is normalized to the UV, flat-
space one (for Bunch-Davies state).

® Time-evolution takes them outside.
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More formally:

D¢(7 T) ei(S+i€terms)

: H(T D=h(T)
Y[p(X); 7] = J

Looks like we need scale-invariance for all kzs.
In fact, for solid inflation:
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Not manifest at all in the action, or in computation.
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What does work

Actual recipe is extremely simple (but makes no sense):

@ Find scaling in the UV: easy (neglect mixing).
@ Find time-evolution in the IR: easy (neglect k)

® Combine them.
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Example

Slow-roll inflation:

uVv: S ~ ded3ka2[\5¢’\2—k2\5¢\2]

|
Neglect mass and mixing, keep a*(7) (WKB)
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IR: Time-evolution, easy for

C=H5._¢OC%OC5¢T”/2
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Ultimate check
Gaugid inflation:
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Tensors: ., k;;
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UV: Neglect mass and mixing, keep 7-dependence
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IR:  Time-evolution. Leading order terms:
S = Jdm’3k {az[ | y’|2 — e},asz |y — kE\z]
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IR:  Time-evolution. Leading order terms:
S = Jdm’3k {az[ | y’|2 — e},asz |y — kE\z]
bepa HA B )

= B const y —> kE
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Matches the
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Conclusions

@ A general pattern, in search of an explanation

@ Purely fechnical? Still, can simplfy computations
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Conclusions

@ A general pattern, in search of an explanation
@ Purely fechnical? Still, can simplfy computations
@ Deeper? We'll learn something about inflation

@ Relationship to Baumanns talk or to holographic
methods (Skenderis et al.)?
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