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The Punchline

Gravity as an EFT 

low-energy quantum 
effects in gravity can 
be understood as a 
Wilsonian EFT
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The Punchline
e.g. Hawking radiation calculation 
relies on Q<<Mp with Q = 1/rs

see e.g. gr-qc/0311082

𝒜E(Q) ∼ ( Q2

ME−2
p ) ( Q

4πMp )
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M2
p ( Q
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R3 + ⋯]
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Leading order: tree-level GR

Next order: 1—loop GR

tree GR with one R2 insertion



The Punchline

see e.g. 1708.07443

cosmology similarly involves a 
series in H/Mp

ℬE(Q) ∼
M2

p

H2 ( H2

Mp )
E

( H
4πMp )

2L

∏
n,d=0 ( v4

H2M2
p )

Vn0

∏
n,d>2 ( H

Mp )
2Vnd

( H
m )

(d−4)Vnd

ℒ ∼ −g [M2
p[R + (∂ϕ)2] + v4U(ϕ) + c1R2 + c2(∂ϕ)4 +

c3

m2
R3 + ⋯]
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New feature: dangerous low-energy contributions 
from zero-derivative interactions



The Punchline
BUT: there are hints EFT methods fail 
at late times  even at small curvatures 

secular growth and IR sensitivity in 
cosmological perturbations 

information loss at late times for BHs

Can domain of validity of EFT sometimes require 
more than small curvatures?
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The Punchline
Will argue yes: EFT with gravity can 
differ from ordinary Wilsonian EFT 

similar to effective description of particles 
in a medium 

can involve issues of open systems 
(particularly in presence of horizons) 

generic problems with late-time perturbative 
predictions (tho resummation methods exist)
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Late-time breakdown of perturbation theory 
illustrated by geometrical optics regime

Naive perturbation theory fails 
at late times

Physics is not powerless in 
geometrical optics regime: 
tools exist for understanding 
late time evolution

The Punchline
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U(t) = e−i(H0+V)t



Open EFTs
Open EFTs: consider the evolution of a subset A of 
a larger system B

eg: light in glass or neutrinos in Sun or 
super-Hubble modes during inflation

A

B
⇢A = TrB ⇢

@⇢

@t
= �i

h
⇢, Hint

i

EFT part: 
evolution often 
simplifies for t 
much longer 
than typical 
correlation time
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∂ρA

∂t
≃ F[ρA, ⟨Hint(t)⟩, ⟨Hint(t)Hint(t′�)⟩, ⋯]
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Open EFTs
Simplest example of late-time resummation: 
exponential decay

n(t) = n0 e−Γ t vs n(t) ≃ n0(1 − Γ t) Γ = O(g2)

t0 tp

dn
dt

= − Γn

tc
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all orders in g2t



Open EFTs
As applied to inflationary cosmology captures 
stochastic methods* and decoherence

∂ρA

∂t
≃ i[Hint, ρA] + ∑

ij

cij [2L*i ρALj − L*i LjρA − ρAL*i Lj]

System consists of super-Hubble modes; environment is 
Hubble and sub-Hubble modes

Diagonal terms give stochastic inflation + corrections

Schrodinger evolution becomes stochastic in WKB limit

P[φ] = ⟨φ |ϱ |φ⟩ ∂P
∂t

=
∂2

∂φ2
(NP) +

∂
∂φ

(FP)

see e.g. 1512.00169 12

see Leonardo’s talk

Salopek & Bond (91)
 * Starobinsky (86)

Starobinsky Yokohama (94)
Vennin, Starobinsky (15)
Collins, Holman, Vardanyan



Open EFTs

System consists of super-Hubble modes; environment is 
Hubble and sub-Hubble modes

Off-diagonal terms give decoherence and more

Quantum fluctuations rapidly decohere (in field basis) in few Hubble times

⟨φ |ϱ |φ′�⟩

see e.g. 1408.5002
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∂ρA

∂t
≃ i[Hint, ρA] + ∑

ij

cij [2L*i ρALj − L*i LjρA − ρAL*i Lj]

Lesgourges, Polarski & Starobinsky
CB, Holman, Tasinato, Williams

As applied to inflationary cosmology captures 
stochastic methods* and decoherence
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Qubits in Space
Evolution of two-level qubit in various spacetimes: 

example of late-time resummation in qubit coupling; 
shows how field interaction changes naive evolution

H = I ⊗ Hfield + 𝔥 ⊗ I + 𝔪 ⊗ ∫y(τ)
dτ ϕ[y(τ)]

Hfield = − ∫ d3x −g [ 1
2

·ϕ2 +
1
2

(∇ϕ)2 +
m2

2
ϕ2 +

λ
4!

ϕ4]

𝔥 =
ω
2

σ3

In dS choose qubit on co-moving trajectory

Hint

Unruh

𝔪 = g σ1

Hλ
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Qubits in Space
Compute perturbative evolution in interaction picture

ρI(t) ≃ ρ(0) − i∫
t

0
ds1 [V(s1), ρ(0)] + (−i)2 ∫

t

0
ds1 ∫

s1

0
ds2 [V(s2), [V(s1), ρ(0)]] + 𝒪(V3)

Trace out field degrees of freedom to track evolution of 
reduced qubit density matrix

V(s) := eiH0sHinte−iH0s

ϱ(t) = Trϕ ρ(t)

ϱI(τ) ≃ ϱ0 − g2

τ

∫
0

ds1

s1

∫
0

ds2{WΩ(s1, s2)[ϱ0 𝔪I(s1), 𝔪I(s2)]
+W*Ω(s1, s2) [ϱ0 𝔪I(s1), 𝔪I(s2)]†} + 𝒪(g4)

ρ(0) = [|Ω⟩⟨Ω |]⊗ ϱ0

WΩ(s1, s2) = ⟨Ω |ϕ[y(s1)] ϕ[y(s2)] |Ω⟩
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Late Times V1.0
Choosing qubit initially in ground state gives

ϱ(τ) ≃ | ↓ ⟩⟨ ↓ | + g2σ3 ∫
τ

0
ds1 ∫

τ

0
ds2 WΩ(s1 − s2) e−iω(s1−s2)

In late-time limit (          ) the integral over s1+s2 is ill-
defined, so compute the rate for a transition

τ → ∞

lim
τ→∞

∂ϱ(τ)
∂τ

= g2σ3 ℛΩ(ω)

ℛΩ(ω) := ∫
∞

−∞
dτ WΩ(τ) e−iωτ

Sciama & 
Candelas
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Late Times V2.0
Liouville equation and projection onto reduced density matrix are 
both linear processes, so can do a better job of time evolution

∂tρ = ℒt(ρ) where ℒt(ρ) := − i[V(t), ρ ]

Then Liouville equation for the full density matrix can be expressed 
as a integro-differential equation for the reduced density matrix

and 𝒫(𝒪) := |Ω⟩⟨Ω | ⊗ Trϕ(𝒪) so that 𝒫[ρ(t)] = |Ω⟩⟨Ω | ⊗ ϱ(t)

𝒫(∂tρ) = 𝒫ℒt(ρ) = 𝒫ℒt𝒫(ρ) + 𝒫ℒt𝒬(ρ) Nakajima
Zwanzig

can check 𝒫2 = 𝒫 so that 𝒬2 = 𝒬 where 𝒬 := 1 − 𝒫

𝒬(∂tρ) = 𝒬ℒt(ρ) = 𝒬ℒt𝒫(ρ) + 𝒬ℒt𝒬(ρ)
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Late Times V2.0
Weak Coupling: Evaluated to second order in perturbation 
theory the Nakajima-Zwanzig equation becomes

where V(t) = 𝔪(t) ⊗ 𝒜(t)

Although nonlocal in time, on both sides this refers directly only 
to the reduced density matrix.

∂t ϱ(t) = − i[𝔪(t), ϱ(t)] ⟨Ω |𝒜(t) |Ω⟩

−[𝔪(t), ϱ(s)𝔪(s)] ⟨Ω |δ𝒜(s)δ𝒜(t) |Ω⟩ }+ 𝒪(V3)

+(−i)2 ∫
t

t0

ds{[𝔪(t), 𝔪(s)ϱ(s)] ⟨Ω |δ𝒜(t)δ𝒜(s) |Ω⟩

and δ𝒜(t) = 𝒜(t) − ⟨Ω |𝒜(t) |Ω⟩
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Qubits in Space
For the qubit system of interest the Nakajima-Zwanzig  
equation becomes (in Schrodinger picture)

so off-diagonal and diagonal terms evolve independent of each 
other at this order

∂ϱ11

∂τ
= g2 ∫

τ

−τ
ds WΩ(s) e−iωs − 4g2 ∫

τ

0
ds Re[WΩ(s)] cos(ωs) ϱ11(τ − s)

∂ϱ12

∂τ
= − iωϱ12(τ) − 4ig2 ∫

τ

0
ds Re[WΩ(s)] Im[ϱ12(τ − s)]

In general evolution is non-Markovian due to the 
integration over the qubit’s past history (‘memory effect’)

 20



Qubits in Space
For the qubit system of interest the Nakajima-Zwanzig  
equation becomes (in Schrodinger picture)

so off-diagonal and diagonal terms evolve independent of each 
other at this order

∂ϱ11

∂τ
= g2 ∫

τ

−τ
ds WΩ(s) e−iωs − 4g2 ∫

τ

0
ds Re[WΩ(s)] cos(ωs) ϱ11(τ − s)

∂ϱ12

∂τ
= − iωϱ12(τ) − 4ig2 ∫

τ

0
ds Re[WΩ(s)] Im[ϱ12(τ − s)]

Late-time simplicity follows if W falls off and evolution 
sought for times longer than falloff time 
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(if w is large must also coarse grain W)



Qubits in Space
Approximately markovian form at very late times if W(s) is 
sufficiently sharply peaked in time since                   within 
the integral, leading to a Lindblad equation: 

∂ϱ11

∂τ
≃ g2ℛΩ(ω) − 2g2𝒞Ω(ω) ϱ11(τ)

∂ϱ12

∂τ
≃ − i [ω + g2ΔΩ] ϱ12 − g2𝒞Ω(ω) Im[ϱ12(τ)]

Describes relaxation to asymptotic static solution:

if WΩ(τ − iβ) = WΩ(−τ) then ϱstatic = [e−βω 0
0 1] 1

e−βω + 1

ϱij(τ − s) ≃ ϱij(τ)

with 𝒞Ω(ω) := 2∫
∞

0
dτ Re[WΩ(τ)] cos(ωτ)

Candelas-
Sciama result

‘thermalization’ 
time: 

‘decoherence’ 
time:

ξT = [2g2𝒞Ω(ω)]−1

ξD = 2ξT
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ΔΩ(ω) := 2∫
∞

0
dτ Re[WΩ(τ)] sin(ωτ)

frequency 
renormalization



Qubits in de Sitter
For de Sitter space evaluate Wightman function using BD vacuum 
and qubit along a co-moving curve to compute relaxation rates as 
system approaches static solution at very late times

WBD(τ) =
H2( 1

4 − ν2)

16π cos(πν) 2F1 [ 3
2 +ν, 3

2 −ν; 2; 1 + [sinh ( Hτ
2 ) − iϵ]

2

]
ν =

9
4

−
M2

H2
=

9
4

−
m2

H2
+ 12ξ

Also satisfies the thermal ‘KMS’ condition

conformal scalar: WBD(τ) = −
1

16π2

H2

[sinh (Hτ/2) − iϵ]2

if WΩ(τ − iβ) = WΩ(−τ) for T =
1
β

=
H
2π
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Qubits in de Sitter
For de Sitter space evaluate Wightman function using BD vacuum 
and qubit along a co-moving curve to compute relaxation rates as 
system approaches static solution at very late times

e.g. for conformal scalars: ξD = 2ξT ≃
2π

g2ω
tanh ( πω

H )
Trust the above Markovian limit on timescales ξ ≫ H−1
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For m << H the Markovian limit instead requires ξ ≫ H/m2

(critical slowing down)



These expressions also allow resummation of scalar self-
interaction because the leading resummed graphs 
correspond to there being a coupling-dependent mass shift:

As M becomes smaller Meff is bounded from below, with

CB, LeBlond,  
Holman & Shandera

Qubits in de Sitter

M2
eff = M2 +

3λH4

16π2M2

M2
min =

3λ
2π

H2

WBD(τ) ∼ −
1

4π5/2
H2 sin(πν)Γ ( 3

2
− ν) Γ(ν) exp [−( 3

2
− ν) Hτ]

Resums all orders in  (3λH2/16π2M2) ln(kτ)

ν =
9
4

−
M2

H2
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Conclusions
IR and secular issues likely generic for light 
bosons in gravitational fields, and cause 
perturbative failure at late times 

Small curvatures/couplings need not be 
sufficient for calculation control 

Resummation techniques available: Open EFTs 

Practical implications for black hole 
information loss and/or late-time cosmology?
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