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In recent years we in the study of perturbative scattering amplitudes 
we have seen the emergence of positive geometry, where the 
geometry is defined by a set of positivity conditions on the space in 
which the amplitude lives.  

The presence of this geometry can be traced back to the principle of 
locality and unitarity for which the scattering amplitude respects, or, 
it can be viewed as the unification of locality and unitarity!  

          If this is a reflection of a new fundamental principle of QFTs, we should be 
            seeing its presence in a general context (where ?) 
            Can we impose the constraint that Lorentz invariance is not emergent (how?) 

N=4 SYM 

The Amplituehedron 
Arkani-Hamed, Trnka

phi^3 
The Associahedron 

Arkani-Hamed, He, 



In the context of EFTs, it is long known that coefficients of leading higher 
dimension operators are constrained to be positive  

The coefficients can be captured through utilizing the analytic properties 
of the scattering amplitude (in the forward limit t=0). Through the 
Froissart bound 

  

Utilizes the optical theorem. (If one assumes perturbative UV completion, there is 
an infinite positivity bound for s^n)  
             Can we probe the details (fine grained)  of unitarity and Lorenz invariance in  
                 the UV ?  
                 Can we differentiate the different operators that contribute for fixed derivative  
                  order ?  
                  

a>0

Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi



Let’s consider the couplings of EFT operators in the context of scattering 
amplitudes 
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We have an polynomial at the origin, with the Taylor coefficients identified with  
the coefficients of the EFT -> Are these coefficients well defined ?



1. For theories whose UV completion is perturbative, ( linear sigma model  

, string theory), the massless branch cut can be suppressed and we cleanly 
define:  

2. We can also have non-trivial massless branch cuts, then the we define the 
coefficients off from the real axes   

  

We have an polynomial at the origin, with the Taylor coefficients identified with  
the coefficients of the EFT -> Are these coefficients well defined ?



It is well known that non-analyticity of S-matrix does not always reflect 
particle production              anomalous threshold singularities  

Even at one-loops ! 

Where do we have control over the analytic property of the S-matrix ?

Anomalous  
thresholds can  
be avoided if  

t<<m^2



The only non-analyticity on the complex s-plane with t held fixed lies on the 
real axes  

Importantly, the residues and discontinuity is positively expandable on the 
Gegenbauer polynomials (Legendre polynomials in 4D)  

With t<<m^2



=0 for n>2

A renormalizable theory in the UV tell us that 
M(s,t)<=s^2 at large s 

The vanishing of the contour tell us that 
the Taylor coefficients of the EFT is 

completely controlled by the residue and 
discontinuity Arkani-hamed, Huang, Huang



=0 for n>2

The fact that Gravity is UV completed, tell us that 
M(s,t)<=s^2 at large s 

The vanishing of the contour tell us that 
the Taylor coefficients of the EFT is 

completely controlled by the residue and 
discontinuity Arkani-hamed, Huang, Huang

Let’s focus on the forward limit, t=0  

The polynomials are positive in the 
forward limit



The Taylor coefficients of the EFT is 
completely controlled by the residue and 

discontinuity 

What about higher order in t? 

Arkani-hamed, Huang, Huang

The couplings  
must sit inside 
the convex hull 
of Gegenbauer  

vectors ! 



CONVEX HULL
This is the primitive form of positive geometry 

•   The position of center of 
 mass 

The center of mass is always “inside” the polygon because m>0 
The inside of the polygon is inside the CONVEX HULL 

 



We can consider fixed k- ( mass dimension )  

We can consider fixed q- ( angular dependence ) 



These two convex hull reflects the constraint of locality+unitarity and 
unitarity+Lorentz invariance  

Can we determine the boundary of this hull? Naively, no, there are infinite 
number of vectors ( the complexity for n-vectors in d-dimensions is n^d/2 ). 
However, these vectors are special! There ordered determinants are all positive !    



These two convex hull reflects the constraint of locality+unitarity and 
unitarity+Lorentz invariance  

Can we determine the boundary of this hull? Naively, no, there are infinite 
number of vectors ( the complexity for n-vectors in d-dimensions is n^d/2 ). 
However, these vectors are special! There ordered determinants are all positive !    



The convex hull of vectors whose ordered determinants are all positive, 
correspond to cyclic polytopes   



Consider fixed mass dimension we have an infinite number of positivity 
bounds. Exp. k=2 

Defining things projectively, we organize the couplings as 
The couplings are subject to  

In summary     



Consider fixed mass dimension we have an infinite number of positivity 
bounds.  
Exp. k=3 

subject to



Consider fixed mass dimension we have an infinite number of positivity 
bounds.  
Exp. k=5  
the couplings are organized as   

the boundaries are 



Consider fixed mass dimension we have an infinite number of positivity 
bounds.  
Exp. k=5  
the couplings are organized as   

the boundaries are 



For external spinning states, we can analyze constraints on   
R^2,  R^2F,  F^4, ..  

All ordered determinants are positive! 

We simply replace the gegenbauer polynomials with 

Arkani-hamed, Huang, Huang





Instead of fixed mass-dimensions, lets consider fixed degree in angle.  
  

Take the forward limit, collect the coefficients of successive powers in s, we find that the couplings 
live in the convex hull of points on a moment curve 
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The coupling constants are in the convex hull, iff the Hankel matrix is a positive matrix



Now let’s consider the EFT for generic QFTs. At low energies we only have massless 
photons, with an infinite set of higher dimensional operators ( in F )  

The Wilson coefficients are functions of the charge, gauge coupling and mass. It is more 
natural to parameterize in dimensionless ratio  

with the coefficients parametrized as: 

                                                                             

 
α β γ are calculable coefficients. Could unitarity constrain z ??   



The coefficients parametrized as: 

                                                                             

 
The leading coefficient is determined by  the largest  z.  Could  unitarity provide a bound for z?

• In D=4, there is a one-loop UV divergence with F^4 counter term, whose finite  
value is determined from the UV physics and thus un-known. 

• Since these coefficients ARE derived from local loop corrections, whose  
boundary behaves as s^2 (due to gravitons). Any Hankel matrix constraint  
that does not involve g_2 must be trivially satisfied with no bearing on z  
(indeed it is) 

• Hankel matrix constraint that does involve g_2 will likely constrain the value of 
the aforementioned normalization constant, not z.      

   See C. Cheung and G. Remmen  



Instead, lets’s consider 3D : 

                                                                             

 

• In D=3, there no one-loop UV divergence. The leading contributions in M_pl IS 
    calculable   
• The leading coefficient is determined by the largest z and lightest mass 
• The t-channel pole is not physical (removable) 
  
• Hankel matrix constraint that does involve g_2 will constrain the value z.    
  

See Brando Bellazzini, Matthew Lewandowski,  
Javi Serra 1902.03250

http://arxiv.org/abs/arXiv:1902.03250


Scalars

Lets consider the 3D EFT instead 

We consider the one-loop EFT of massive charged scalars and fermions.   

The integral coefficients are given as 
                                                                              

 

Fermions



Let’s consider the limit s-> infinity,  

Without any extra massless D.O.F, the cancellation of s^2 growth requires the presence of  
z >1, the WGC in 3D!  

For multiple U(1) we have  

There must exists states whose convex hull contains the unit circle  



Expanding in 1/m, in the forward limit we have the EFT description 

With exact expression for EFT Taylor coefficients to all order in derivatives 

We can now analyze the sign of Det[K_n]  

 

Scalars Fermions



We can now analyze the sign of Det[K_n]  

In general Det[K_n]>0, imposes  0<z<a  and b<z. For example the positivity of  

The asymptotic behavior of (a,b) is very different 

 



In general Det[K_n]>0, imposes  0<z<a  and b<z 

If we assume the linear rise tend to infinity, then we conclude that unitarization of gravity  
forbids an isolated low mass state with z>1!  

But for a standard model like spectrum we will have the electron with z~10^22! 

However, in three-dimensions, we have the special feature that the Wilson coefficients are  
dominated by the largest z and the smallest m! 

  

 



However, in three-dimensions, we have the special feature that the Wilson coefficients are  
dominated by the largest z and the smallest m! 

  

We can consider adding other neutral states, with β = m_e/m_0 
 

The presence of light neutral states alleviate the tension of having large z 



The presence of light neutral states alleviate the tension of having large z 

In general we would like to understand the analytic behavior of 



Implications for D=4

Let’s consider our standard model (with z~10^22 electron), and compactified to D=3.  
 and take the decoupling limit of the KK-modes.  The massless spectrum will be modified, 
 Photons                    Photons,  Dilatons, GraviPhotons

Assuming that the KK scale can be much higher than the string scale, such that  
asymptotic behavior satisfies <s^2 below the KK scale. 
 

The constraint only becomes more stringent! 



• The union of Lorentz invariance, Locality and Unitarity  bounds the 
couplings of (dimension eight and beyond) operators to live in the 
space defined by the intersection of positive geometries. We are 
scratching the surface (no longer tip). 

• Remarkably, this polytope has appeared in a wide range of 
problems in the past few years, CFT bootstrap, Modular 
bootstrap, amplitudes for gauge theories and scalar field theories, 
and Sphere packing problems 


