Amplitudes meet BSM pheno



Alex Pomarol, CERN & UAB (Barcelona)

of course, not the first encounter...

I. Amplitude methods: useful for simplifying calculations (shortcut from the Feynman way)

But not much used in BSM phenomenology!

Use of amplitudes for calculating one-loop corrections from indirect BSM effects

many surprises known!

Crucial role plaid by helicity selection rules

I. Bottom-up approach to theories of Goldstones:

composite Higgs

Consistently from $\mathcal{A}(1234) \rightarrow q_i$ (for $q_i \rightarrow 0$)

EFT capturing the (indirect) impact of BSMs

Assuming new-physics scale Λ is heavier than M_w , we can perform an expansion in derivatives and SM fields

(assuming lepton & baryon number)

$$\mathcal{L}_{\text{eff}} = \frac{\Lambda^4}{g_*^2} \mathcal{L} \left(\frac{D_{\mu}}{\Lambda} , \frac{g_H H}{\Lambda} , \frac{g_{f_{L,R}} f_{L,R}}{\Lambda^{3/2}} , \frac{gF_{\mu\nu}}{\Lambda^2} \right) \simeq \mathcal{L}_4 + \mathcal{L}_6 + \cdots$$

$$SM \qquad \text{leading deviations} \qquad \text{from the SM}$$

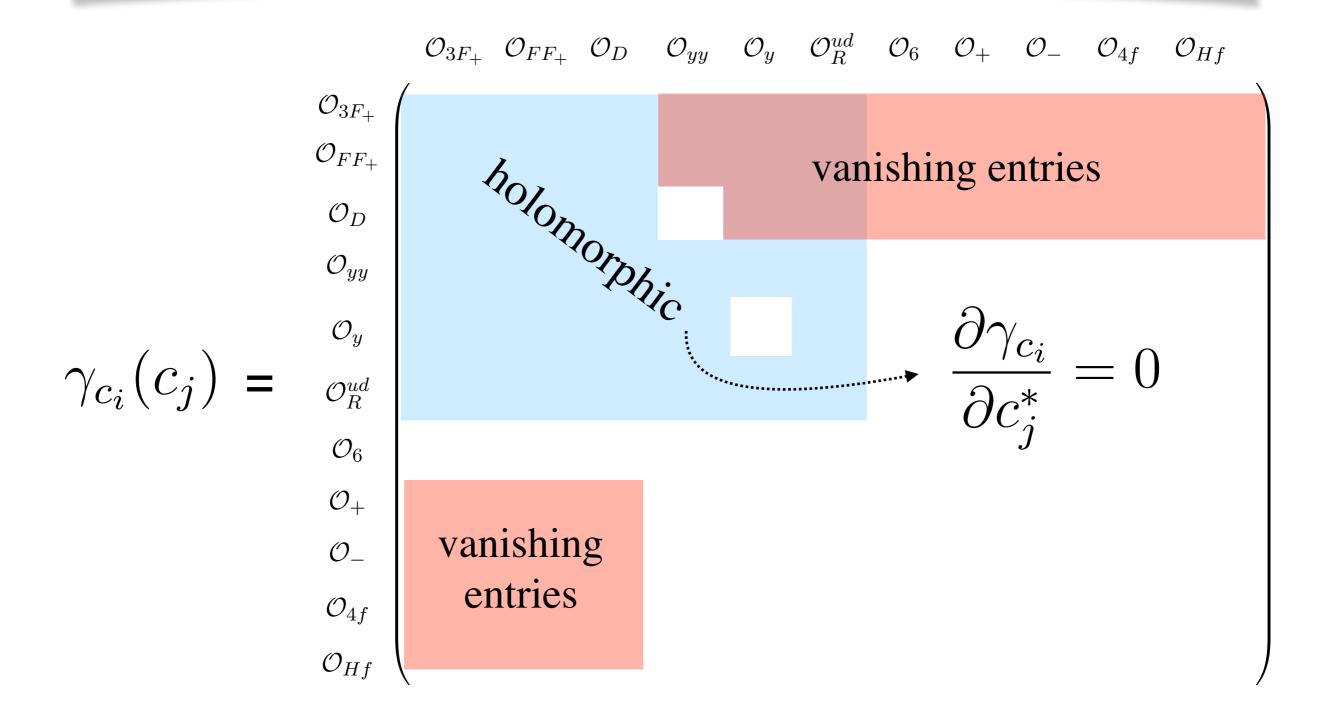
I. EFT capturing the (indirect) impact of BSMs

Assuming new-physics scale Λ is heavier than M_w , we can perform an expansion in derivatives and SM fields

(assuming lepton & baryon number)

 $\mathcal{L}_{\text{eff}} = \frac{\Lambda^4}{g_*^2} \mathcal{L}\left(\frac{D_{\mu}}{\Lambda} , \frac{g_H H}{\Lambda} , \frac{g_{f_{L,R}} f_{L,R}}{\Lambda^{3/2}} , \frac{gF_{\mu\nu}}{\Lambda^2}\right) \simeq \mathcal{L}_4 + \mathcal{L}_6 + \cdots$ leading deviations $--\mathcal{O}_i, \mathcal{O}_i, \dots$ from the SM **One-loop operator mixing important:** (tells us how BSM enter in observables) \mathcal{O}_i $\gamma_{c_i} = \frac{dc_i}{d\log\mu} = \gamma_{c_i}(c_j) \begin{vmatrix} \mathbf{c_j} = \text{Wilson} \\ \text{coefficient} \end{vmatrix}$

One-loop anomalous dimension of <u>dim-6 operators</u>



arXiv:1412.7151 (explained from susy)

Very practical example:

Renormalization of electron EDM

Recent strong bound by ACME experiment:

$$|d_e| < 1.1 \cdot 10^{-29} \,\mathrm{e} \cdot \mathrm{cm}$$

Can provide important constraints even if BSM enters at the 2-loop level!

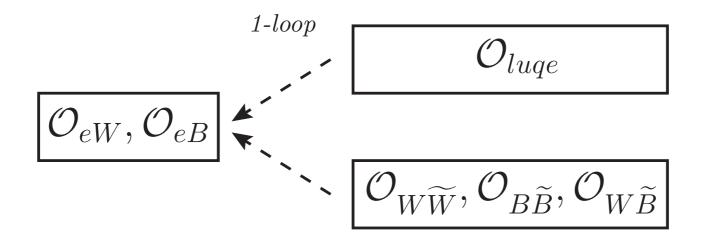
$$rac{d_e}{e} \sim rac{1}{(16\pi^2)^2} rac{m_e}{\Lambda^2} \qquad
ightarrow \Lambda > 3 \, {
m TeV}$$
 ma

Best weapon of BSM mass destruction!

or even on dimension-8 operators!

One-loop mixing:

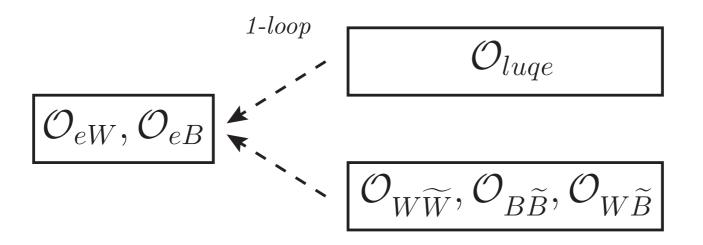
Panico, AP, Riembau arXiv:1810.09413



out of 59 operators

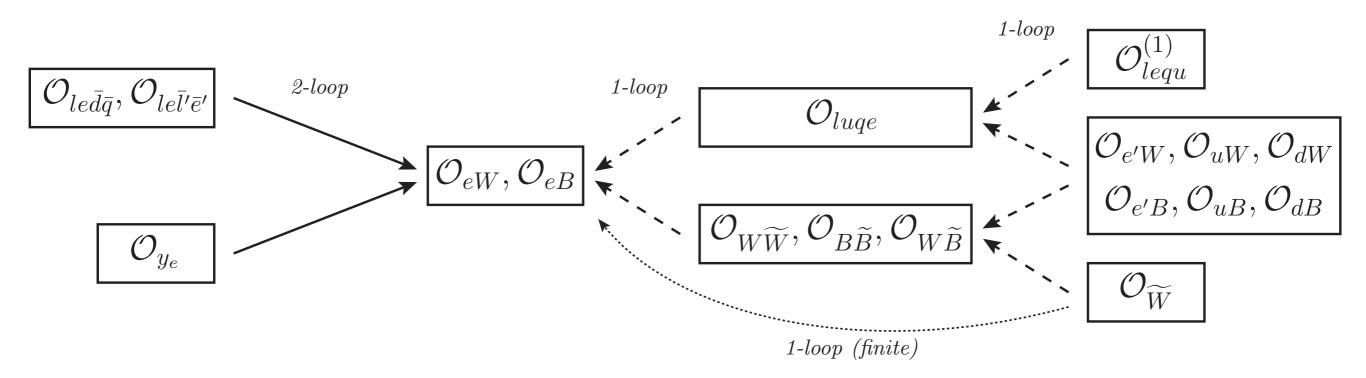
One-loop mixing:

Panico, AP, Riembau arXiv:1810.09413

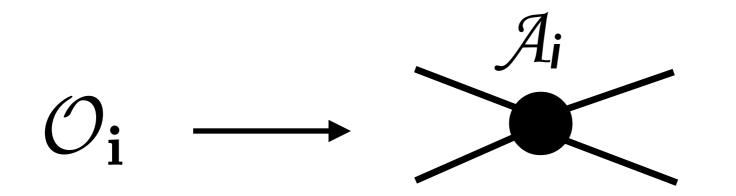


Two-loop mixing:

out of 59 operators



From operators to on-shell amplitudes



n = number of external statesh = helicity of the amplitude

Example
$$O(\partial^2 H^4)$$
:

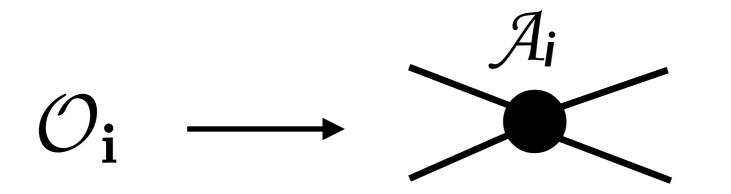
$$\mathcal{O}_{II} = \frac{1}{2} (\partial^{\mu} |H|^2)^2$$

$$\mathcal{O}_{T} = \frac{1}{2} (H^{\dagger} \overset{\circ}{D}_{\mu} H)^2$$

$$\overset{\circ}{H_{\beta}} \overset{\circ}{H_{\beta}} \overset{\circ}{H$$

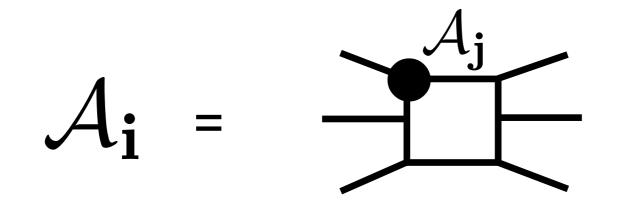
flavor-momentum "anti-alignment"

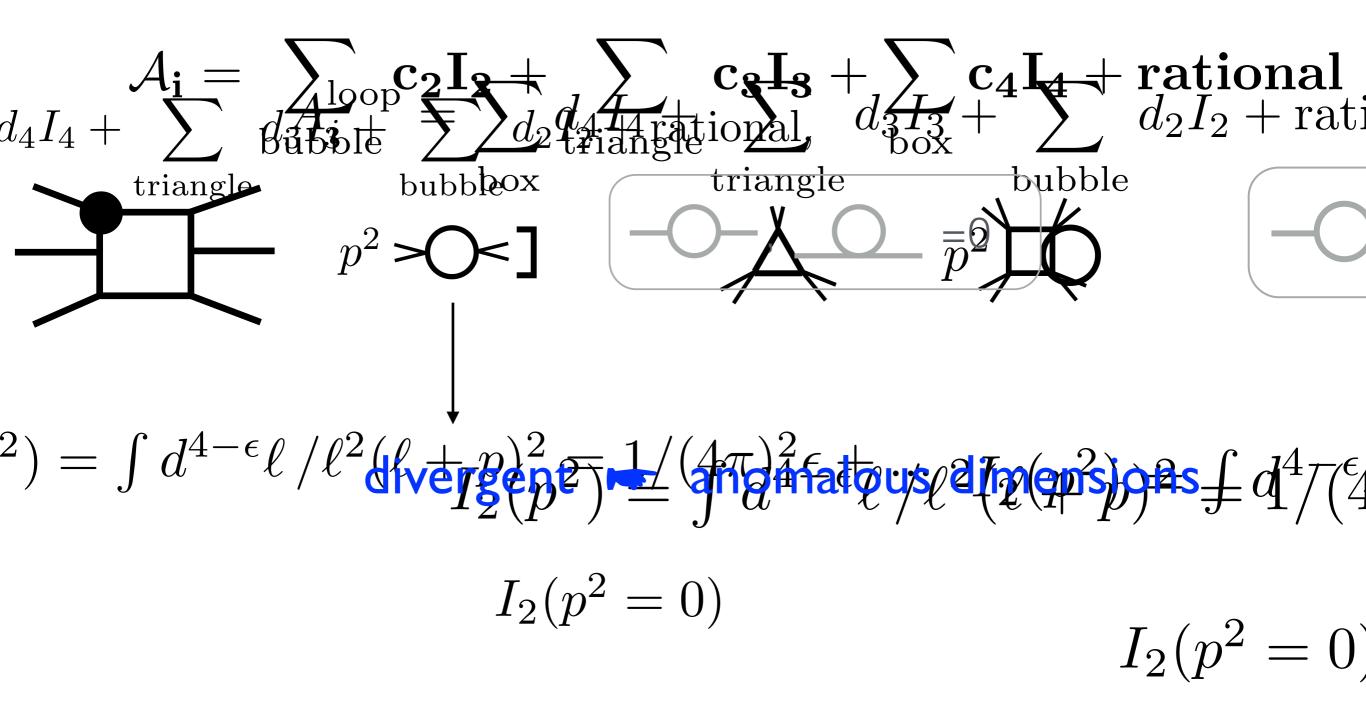
From operators to on-shell amplitudes

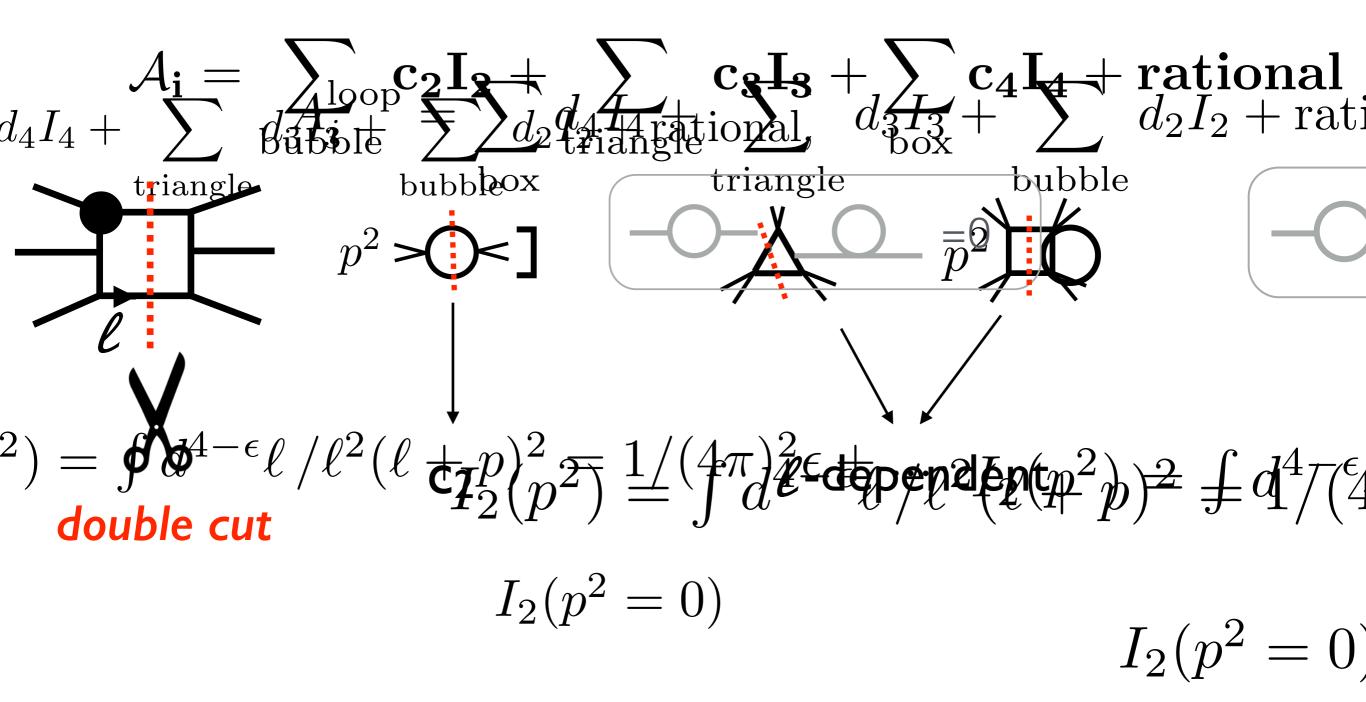


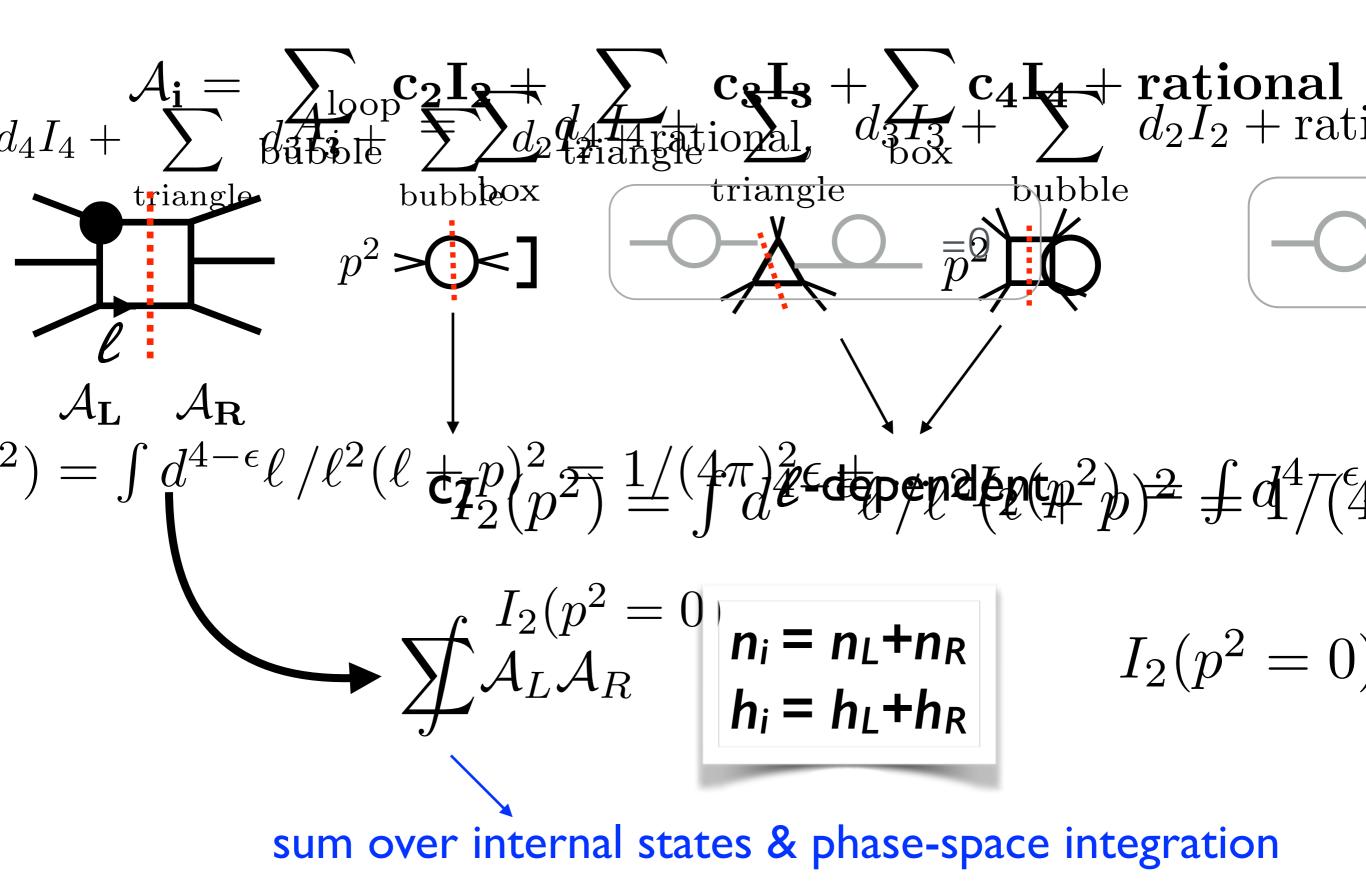
n = number of external statesh = helicity of the amplitude

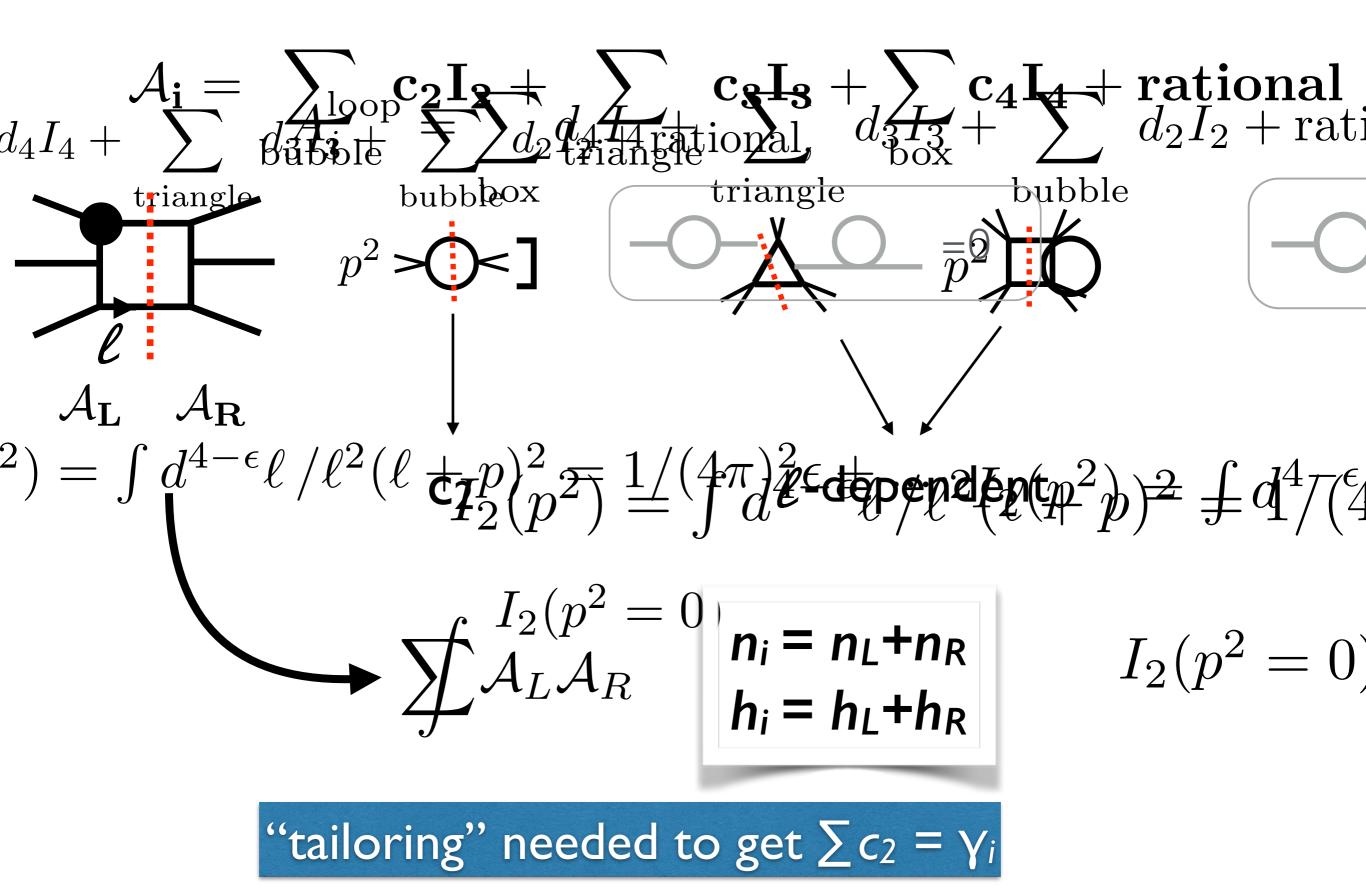
Interested here in one-loop corrections:

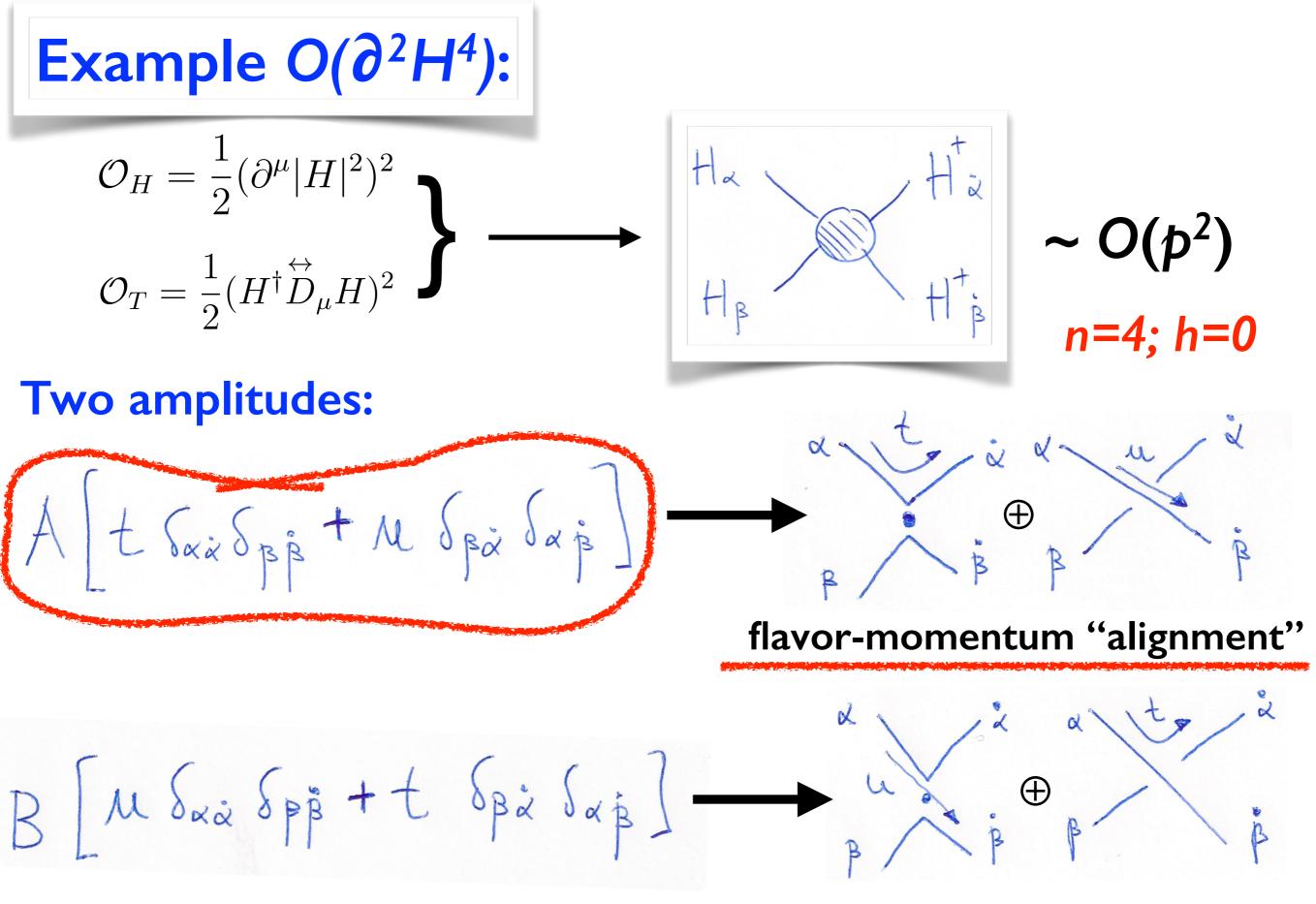




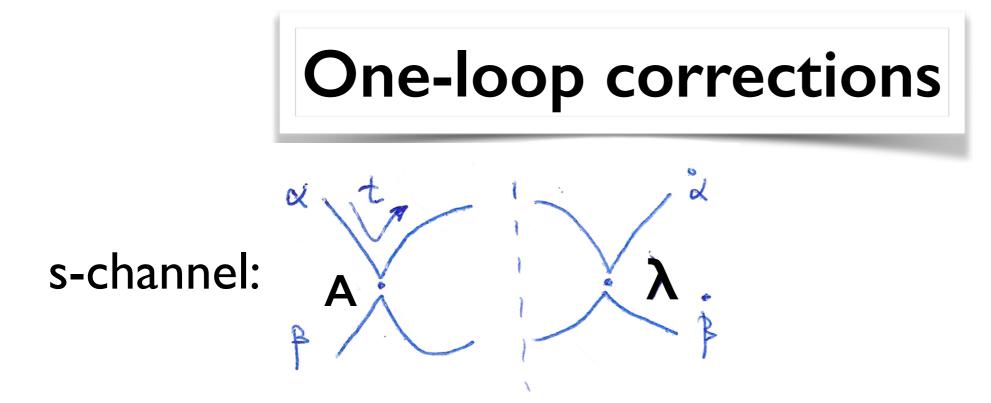




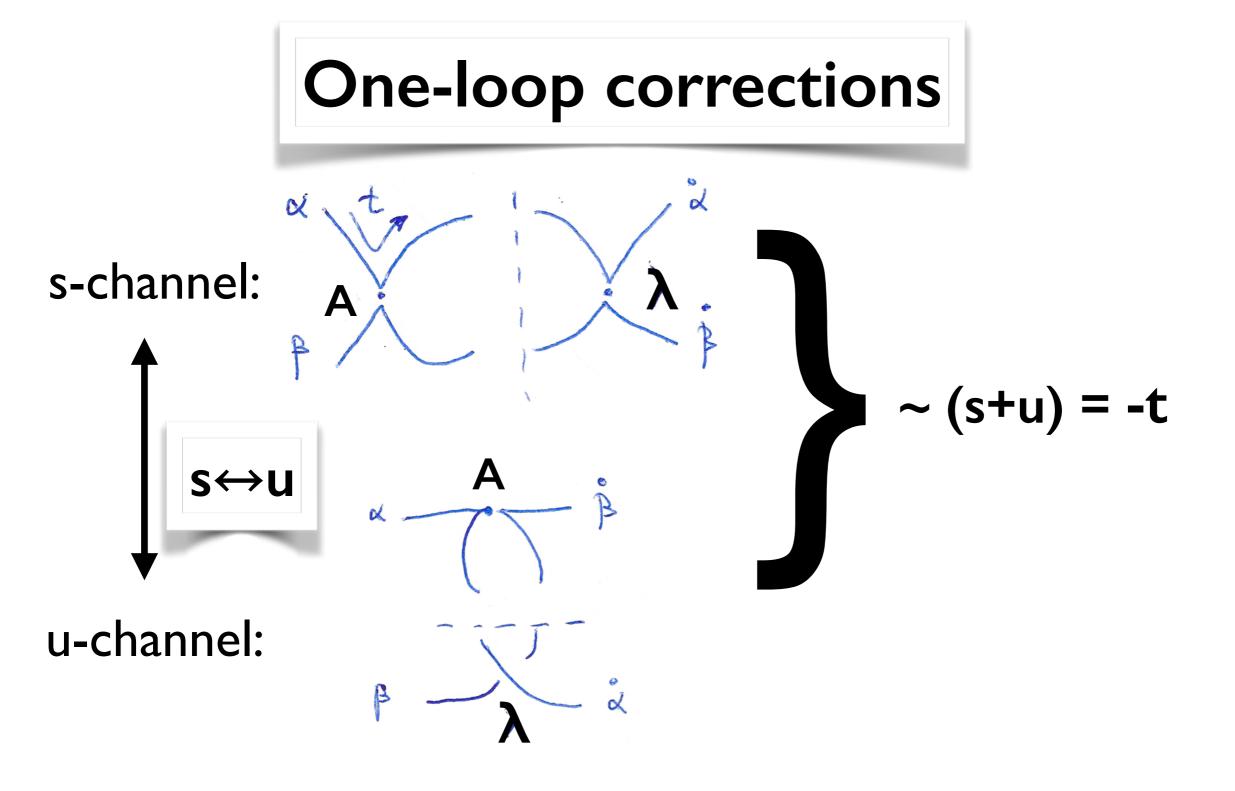


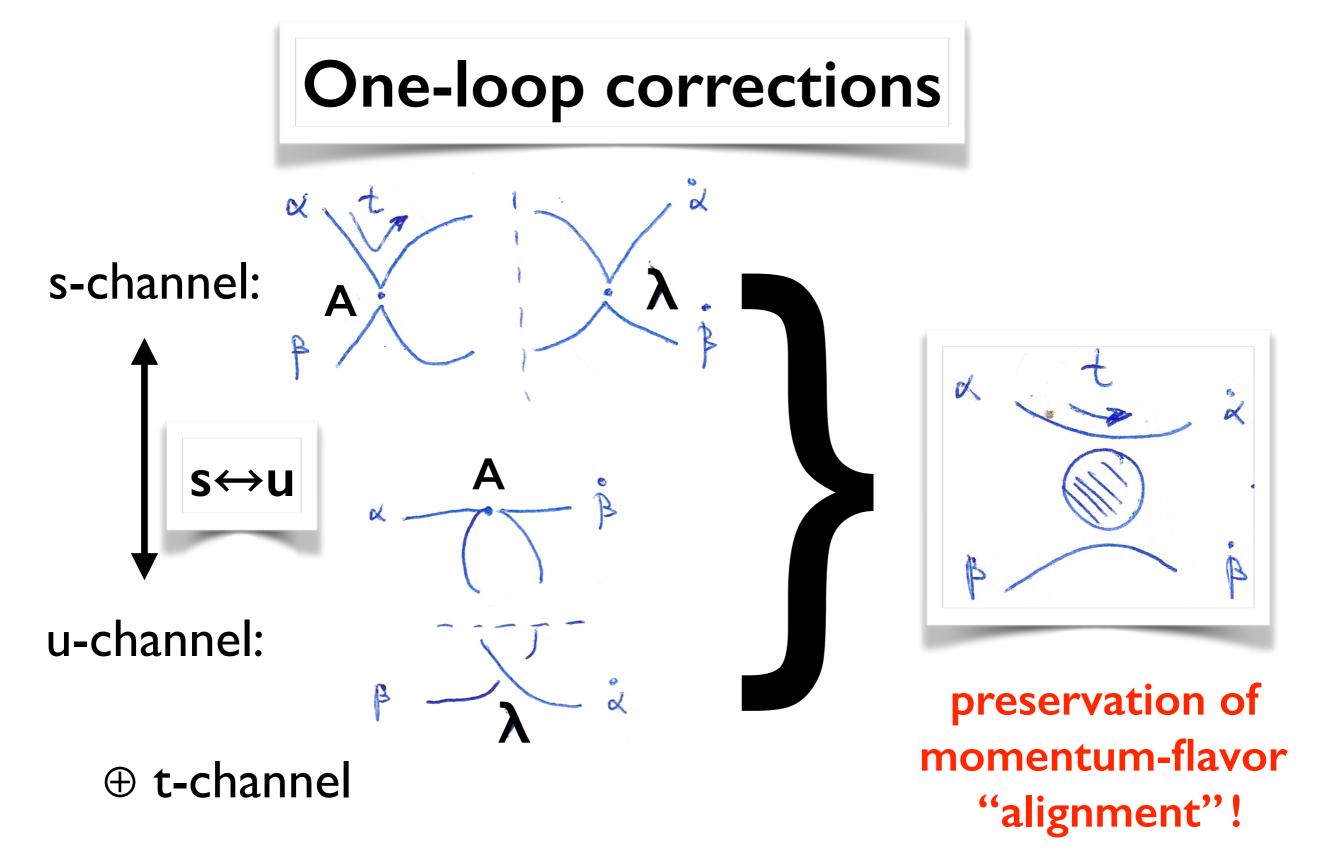


flavor-momentum "anti-alignment"

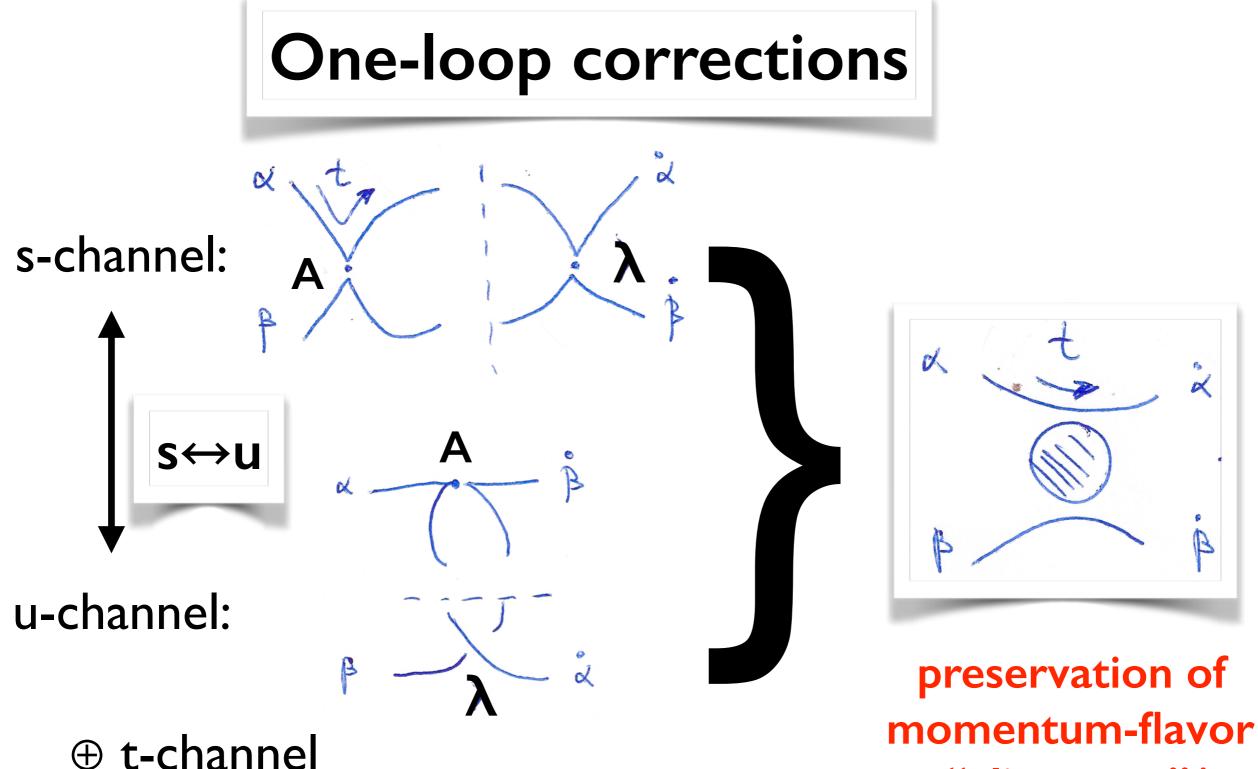


\oplus t-channel \oplus u-channel





Custodial sym.!



"alignment"!

also preservation of momentum-flavor "anti-alignment" <u>for doublets</u>

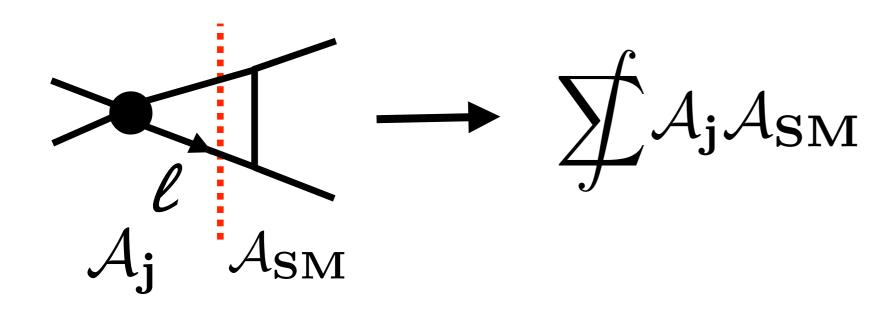
Custodial sym.!

Helicity selection rules

arXiv:1505.01844

Helicity selection rules

arXiv:1505.01844



$n_j, h_j = 10^{-10} n_j$

(no contribution from n=3)

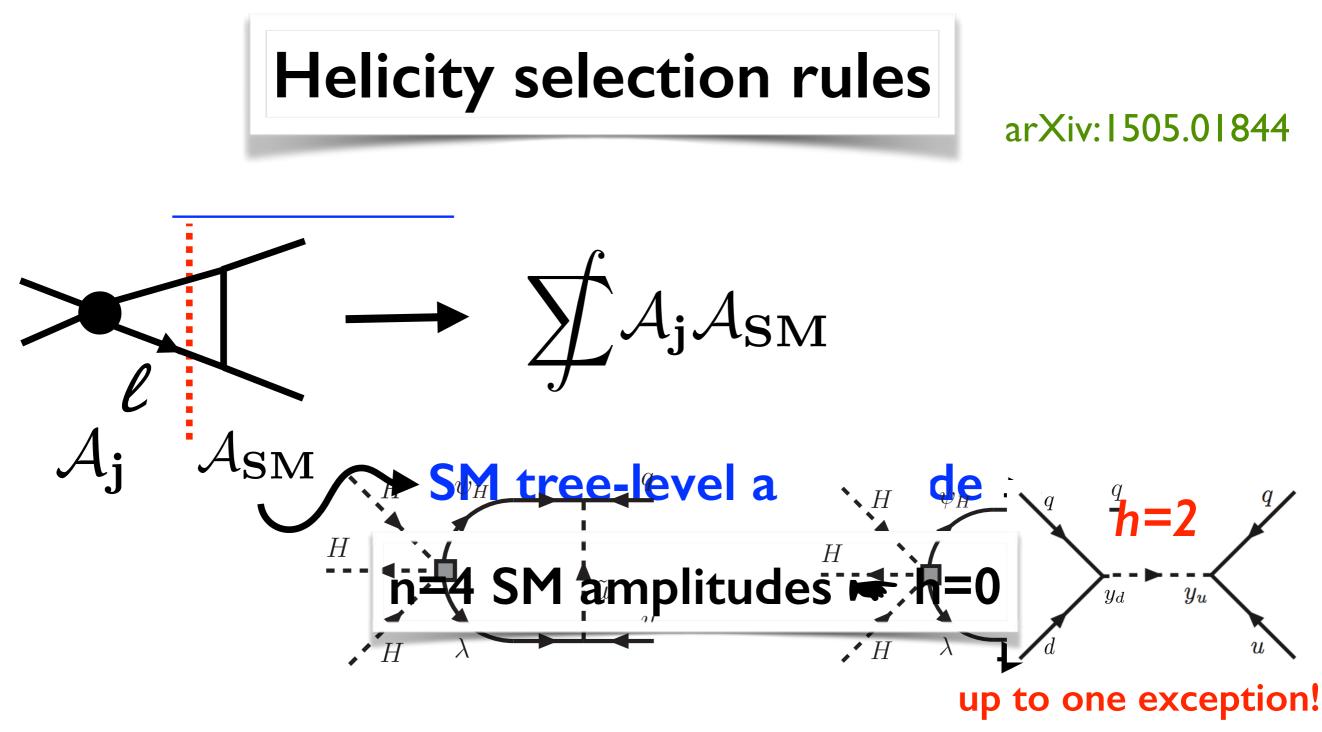
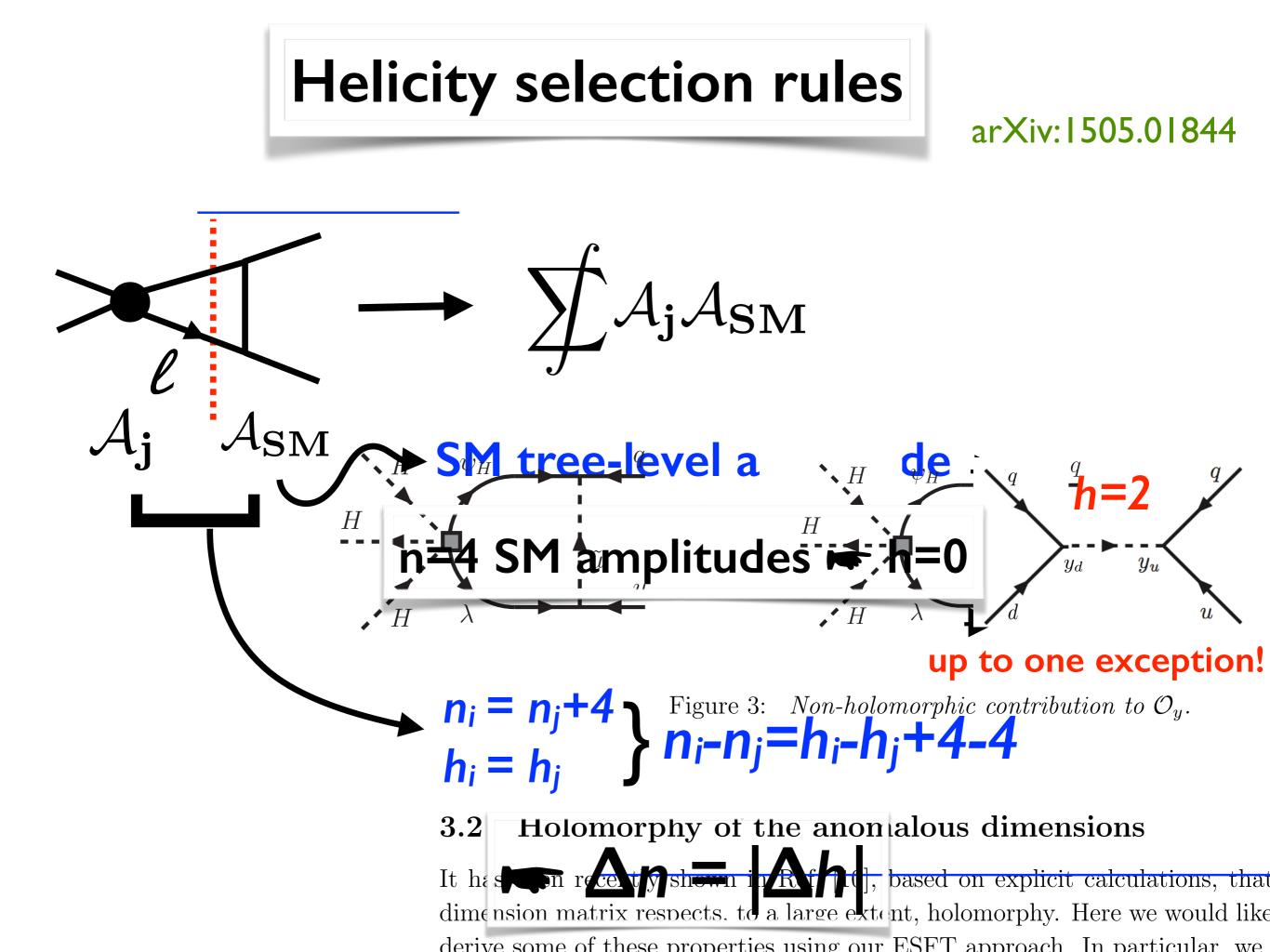


Figure 3: Non-holomorphic contribution to \mathcal{O}_y .

3.2 Holomorphy of the anomalous dimensions

It has been recently shown in Ref. [10], based on explicit calculations, that dimension matrix respects, to a large extent, holomorphy. Here we would like derive some of these properties using our ESET approach. In particular, we



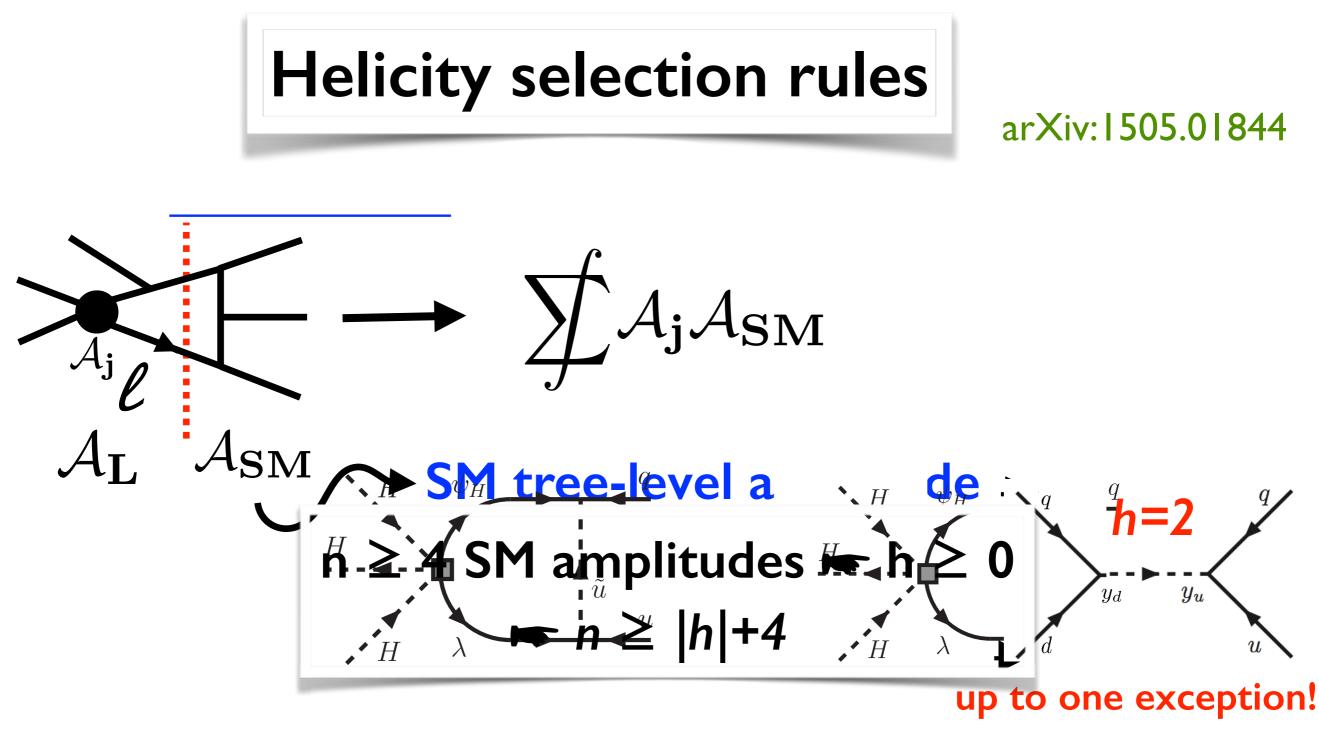


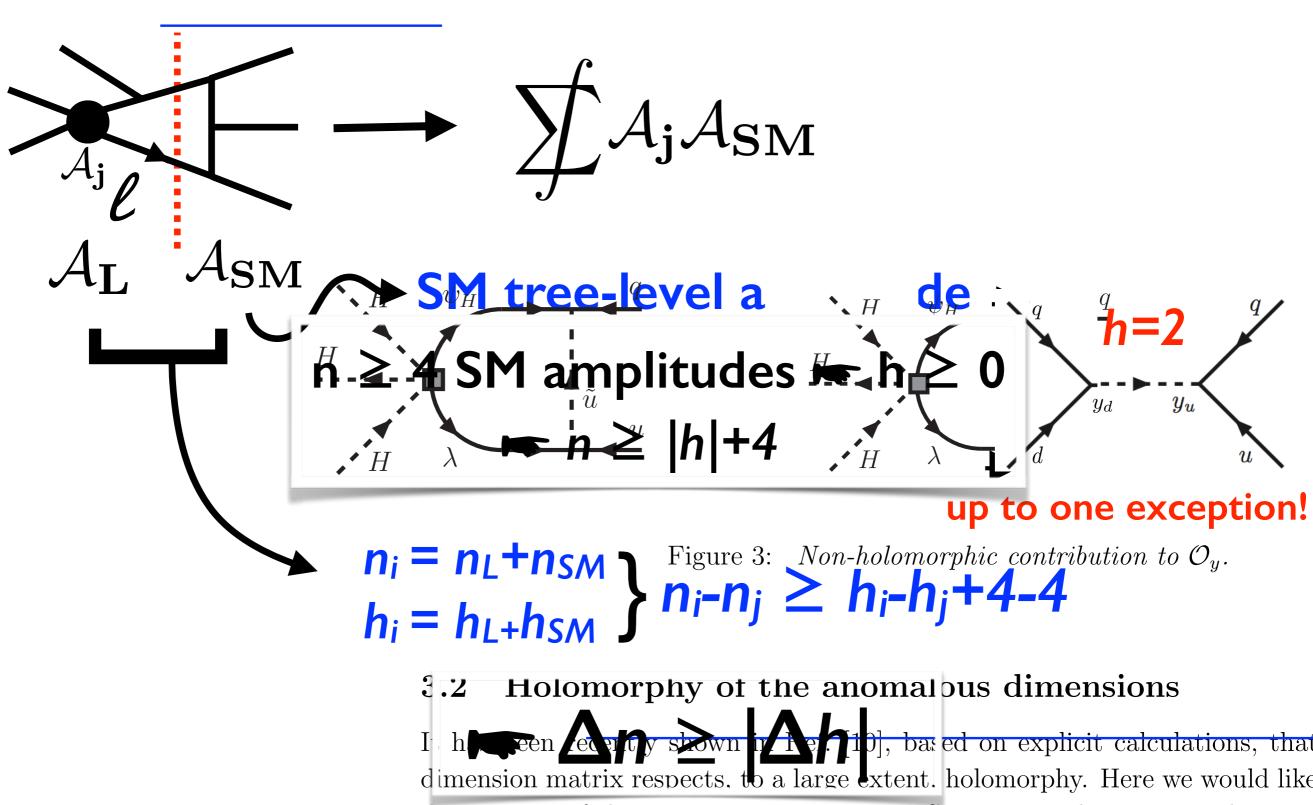
Figure 3: Non-holomorphic contribution to \mathcal{O}_y .

3.2 Holomorphy of the anomalous dimensions

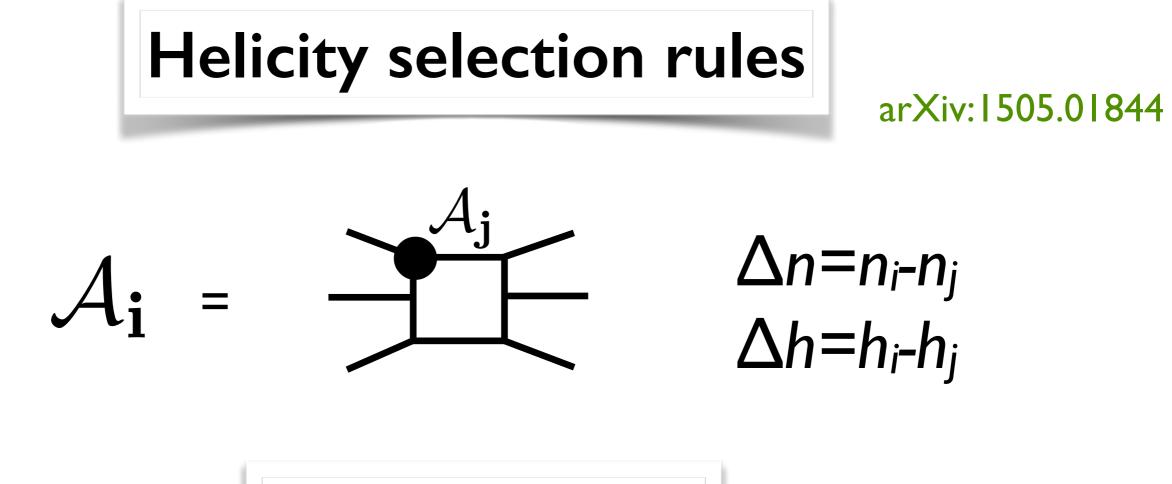
It has been recently shown in Ref. [10], based on explicit calculations, that dimension matrix respects, to a large extent, holomorphy. Here we would like derive some of these properties using our ESET approach. In particular, we

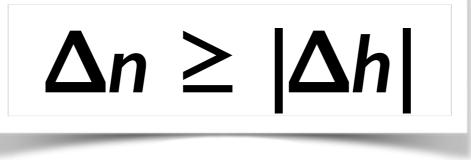
Helicity selection rules

arXiv:1505.01844



derive some of these properties using our ESFT approach. In particular, we

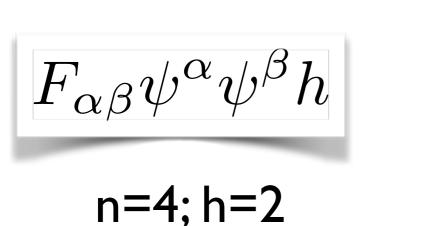


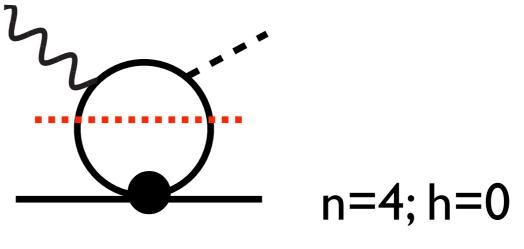


up to the exception!

Examples:

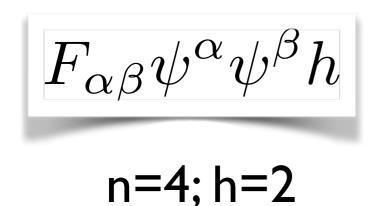
I. No 4-fermion $(\overline{\psi}\gamma^{\mu}\psi)^2$ corrections to dipoles





Examples:

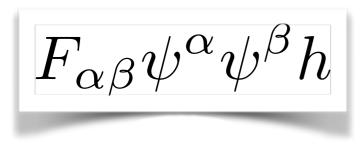
I. No 4-fermion $(\overline{\psi}\psi)^2$ corrections to dipoles



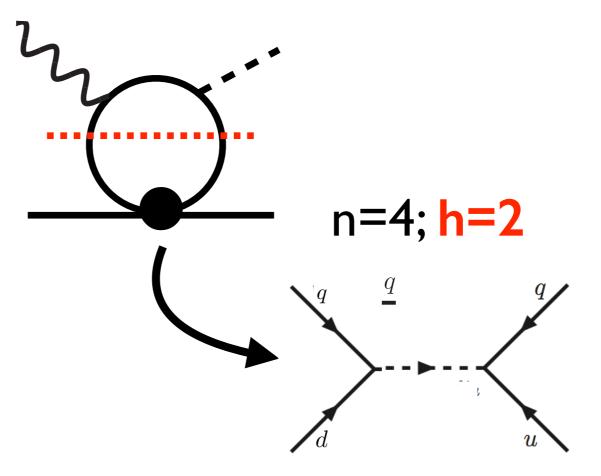
n=4; h=2

Examples:

I. No 4-fermion $(\overline{\psi}\psi)^2$ corrections to dipoles



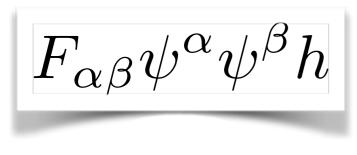
n=4; h=2



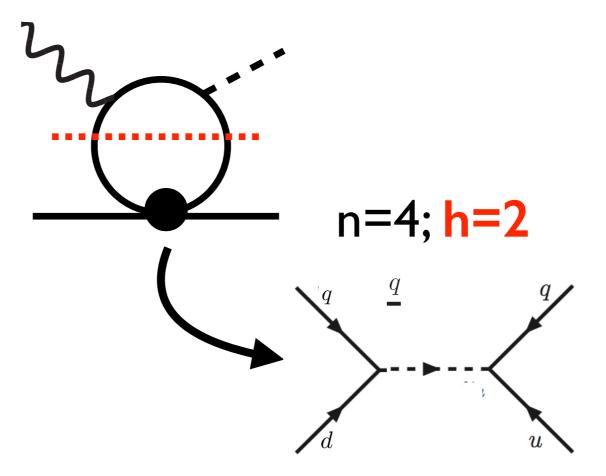
from scalar leptoquarks: (3,2,7/6),(3,1,-1/3) & extra Higgses

Examples:

I. No 4-fermion $(\overline{\psi}\psi)^2$ corrections to dipoles



n=4; h=2

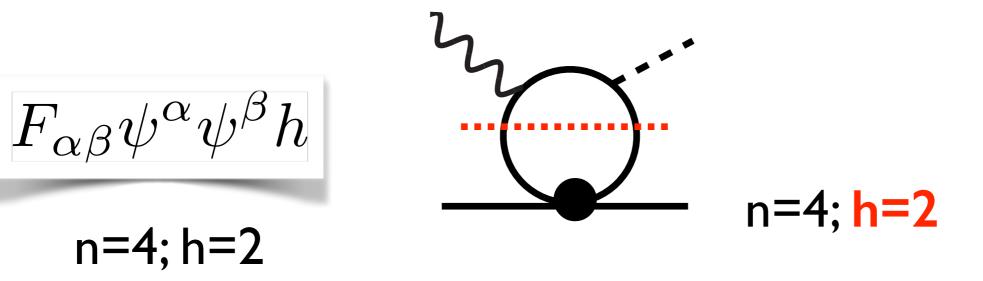


from scalar leptoquarks: (3,2,7/6),(3,1,-1/3) & extra Higgses

EDM ACME bound can reach:

Examples:

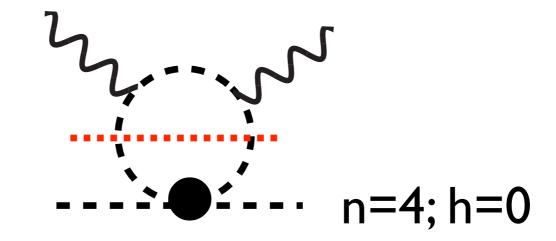
I. No 4-fermion $(\Psi\Psi)^2$ corrections to dipoles



II. No p^2H^4 corrections to $H\gamma\gamma$

$$F_{\alpha\beta}F^{\alpha\beta}h^2$$

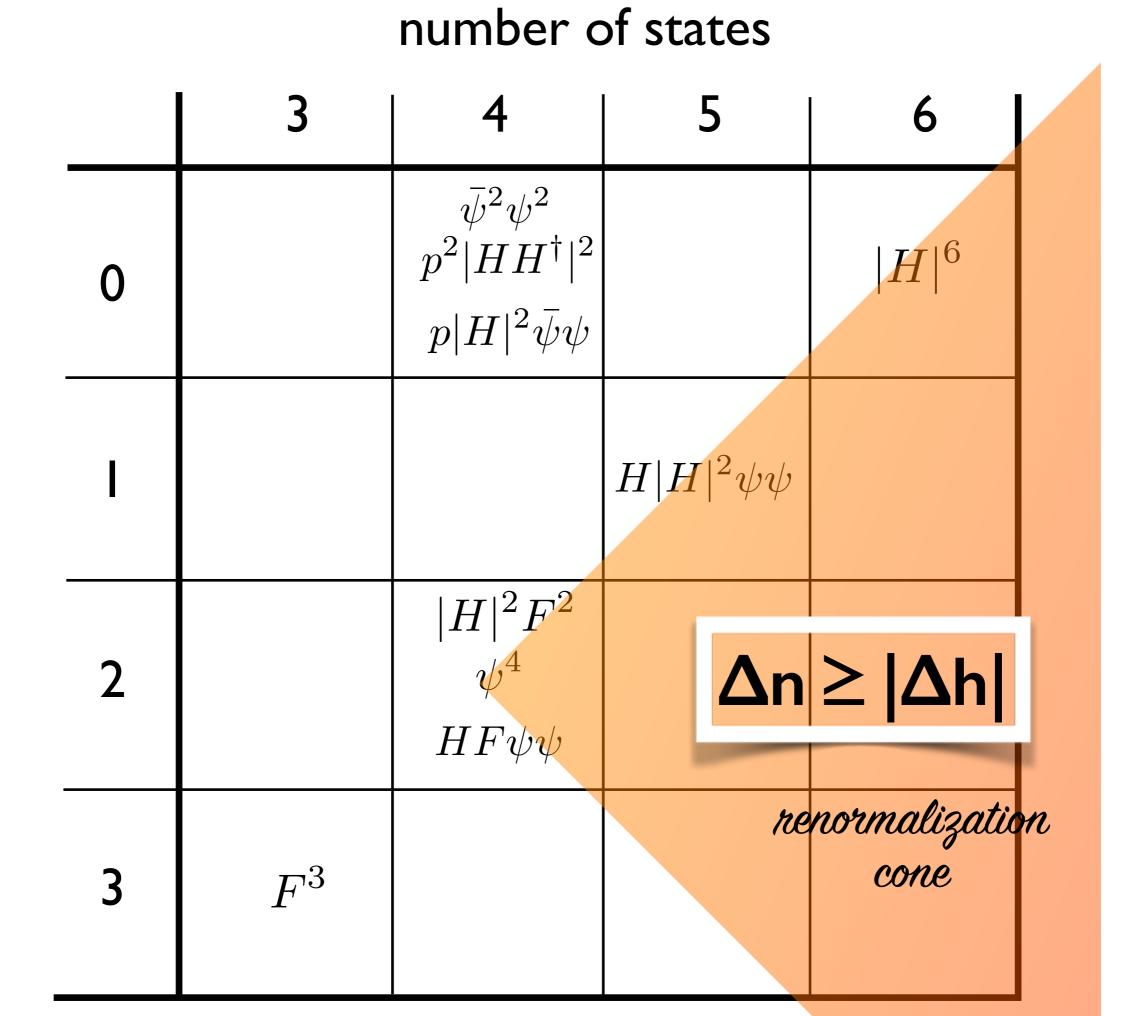
n=4; h=2



number of states

	3	4	5	6
0		$\begin{aligned} & \bar{\psi}^2 \psi^2 \\ & p^2 HH^{\dagger} ^2 \\ & p H ^2 \bar{\psi} \psi \end{aligned}$		$ H ^6$
I			$H H ^2\psi\psi$	
2		$ H ^2 F^2$ ψ^4 $HF\psi\psi$		
3	F^3			

helicity



helicity

II.

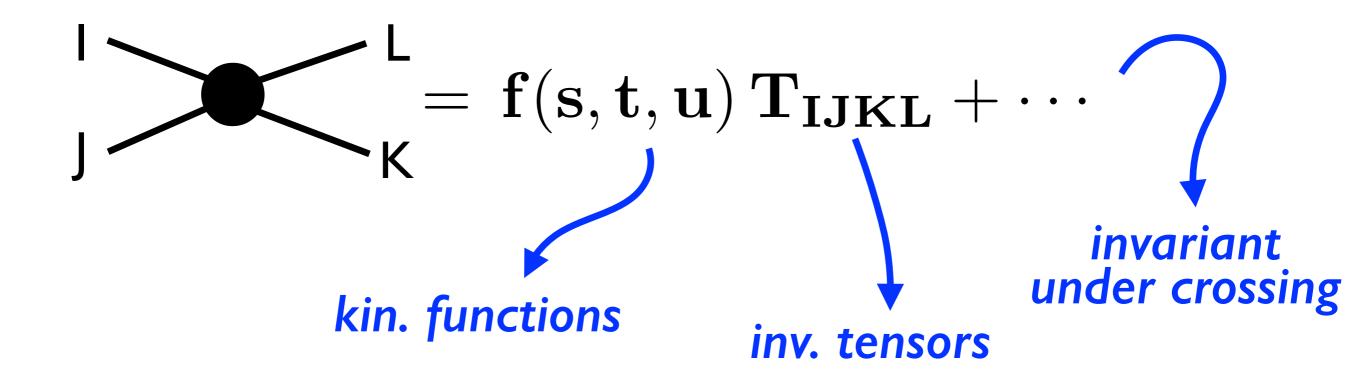
Bottom-up approach to Goldstone amplitudes:

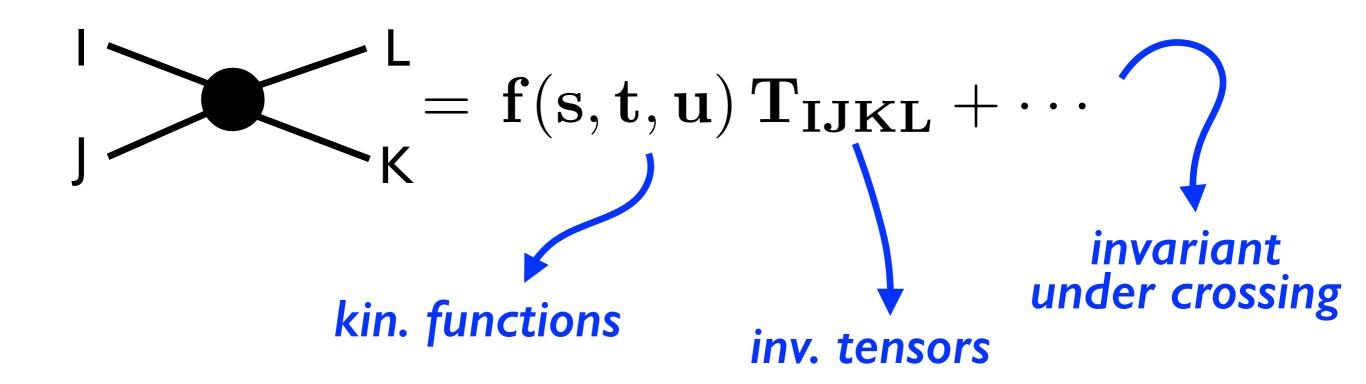
Only assume:

a) $\pi_i \in reps \text{ of } \mathcal{H}$ (no coset input)

b) $\mathcal{A}(1234) \rightarrow q_i$ (for $q_i \rightarrow 0$) (Adler's zeros)

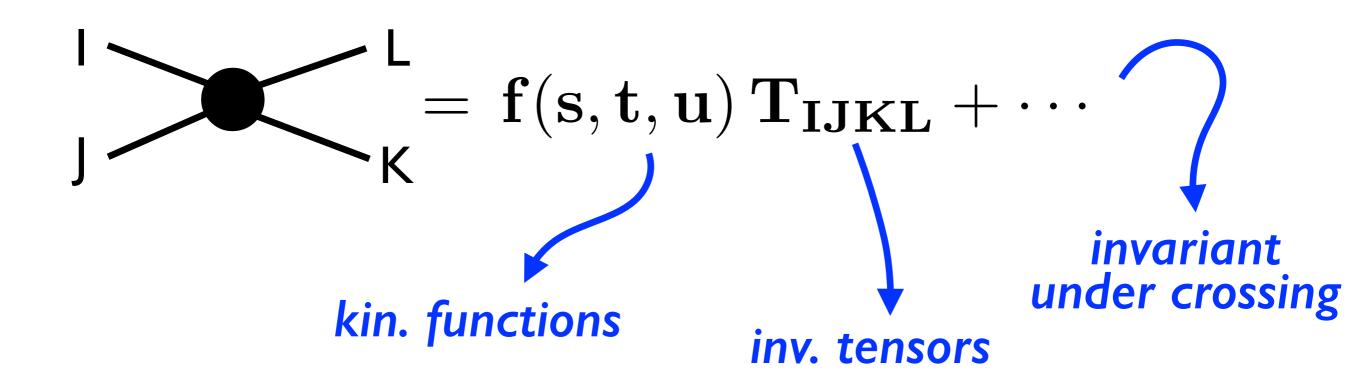
in collaboration with P. Baratella & B. Harling





Tensor invariants (for $\pi \in Adj$ of SU(N)):

- single trace (6): $tr(t_I t_J t_K t_L)$
- double trace (3): $tr(t_I t_J) tr(t_K t_L)$

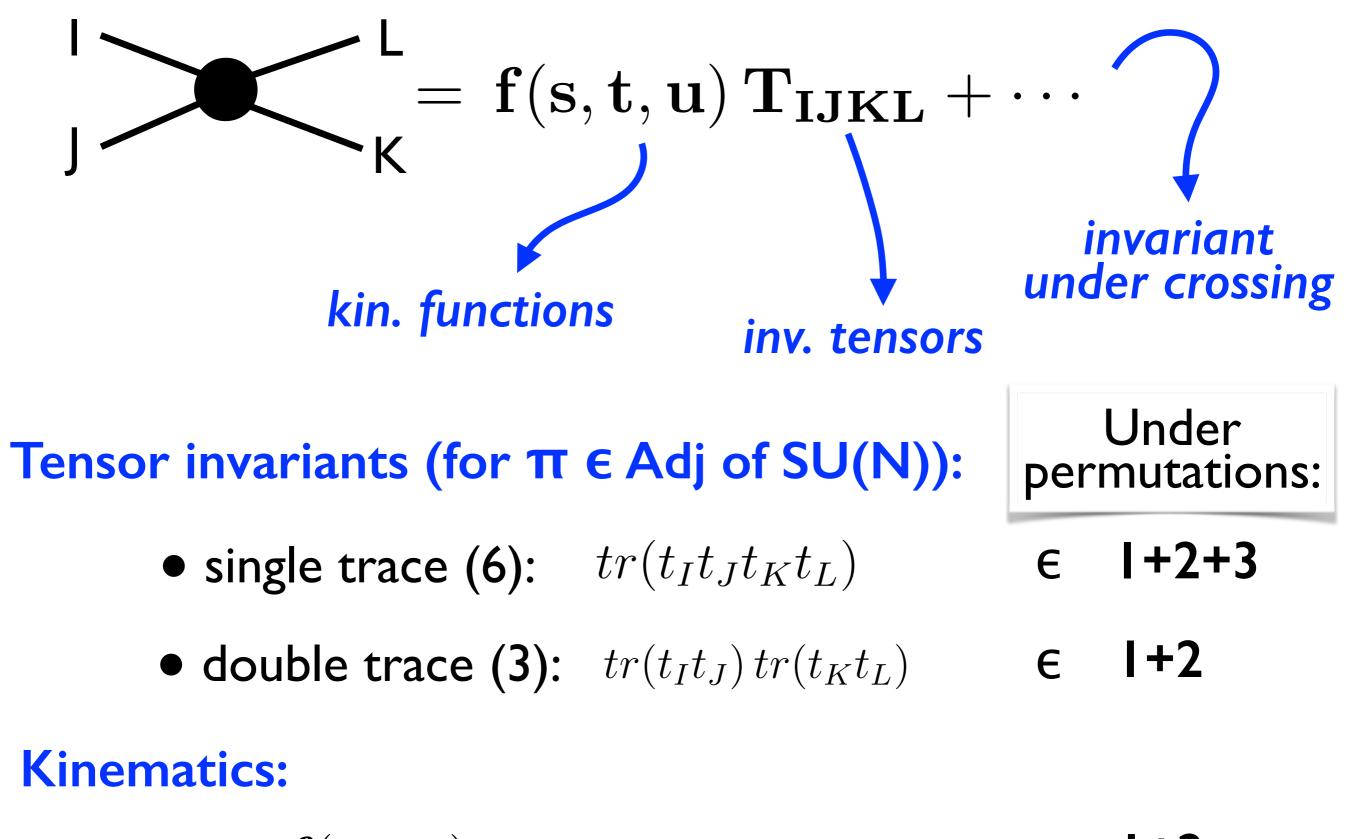


Tensor invariants (for $\pi \in Adj$ of SU(N)):

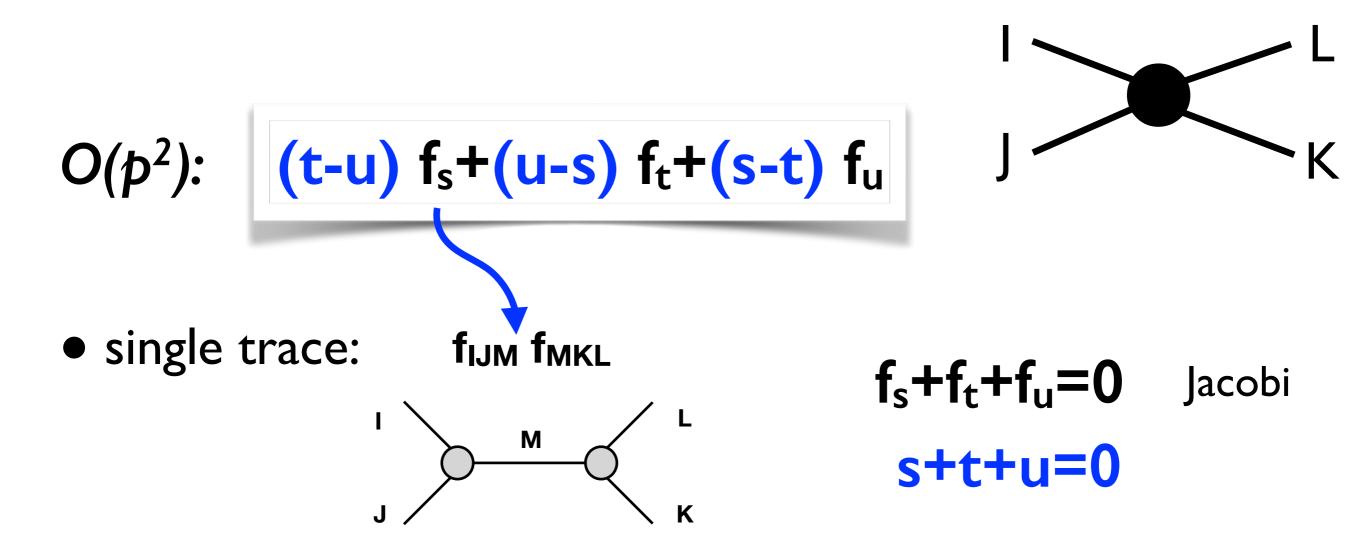
- single trace (6): $tr(t_I t_J t_K t_L)$
- double trace (3): $tr(t_I t_J) tr(t_K t_L)$

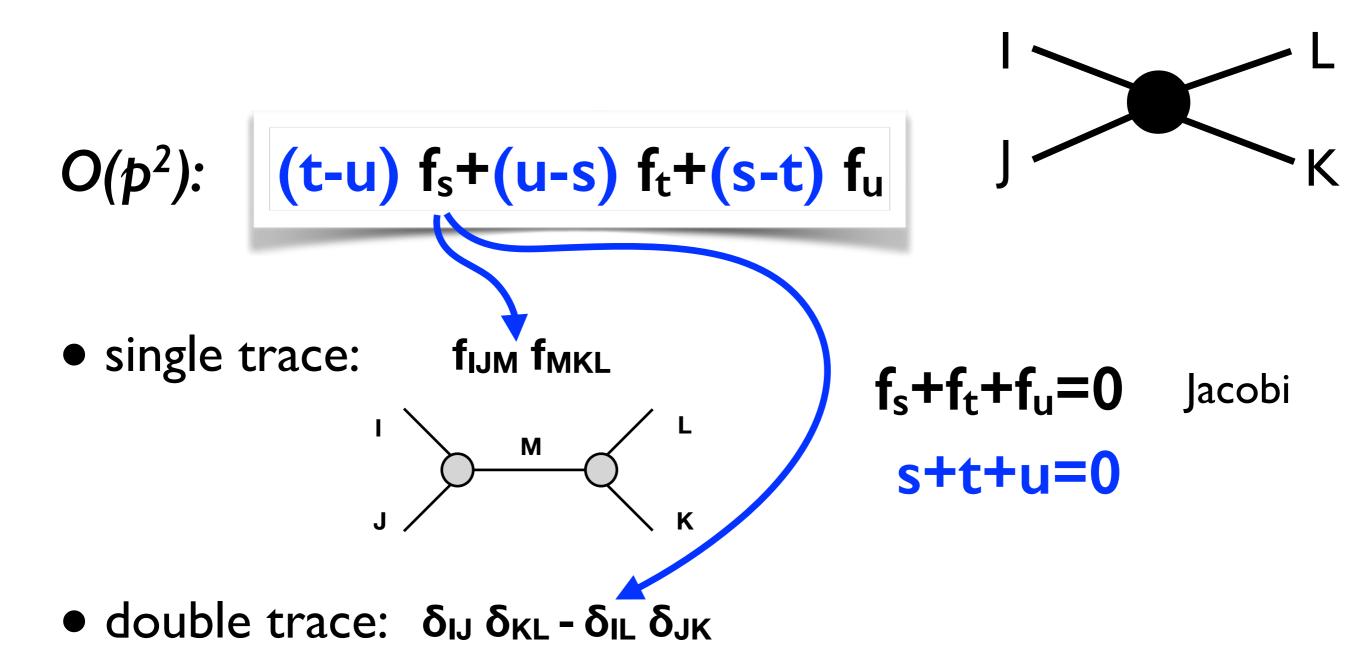
Kinematics:

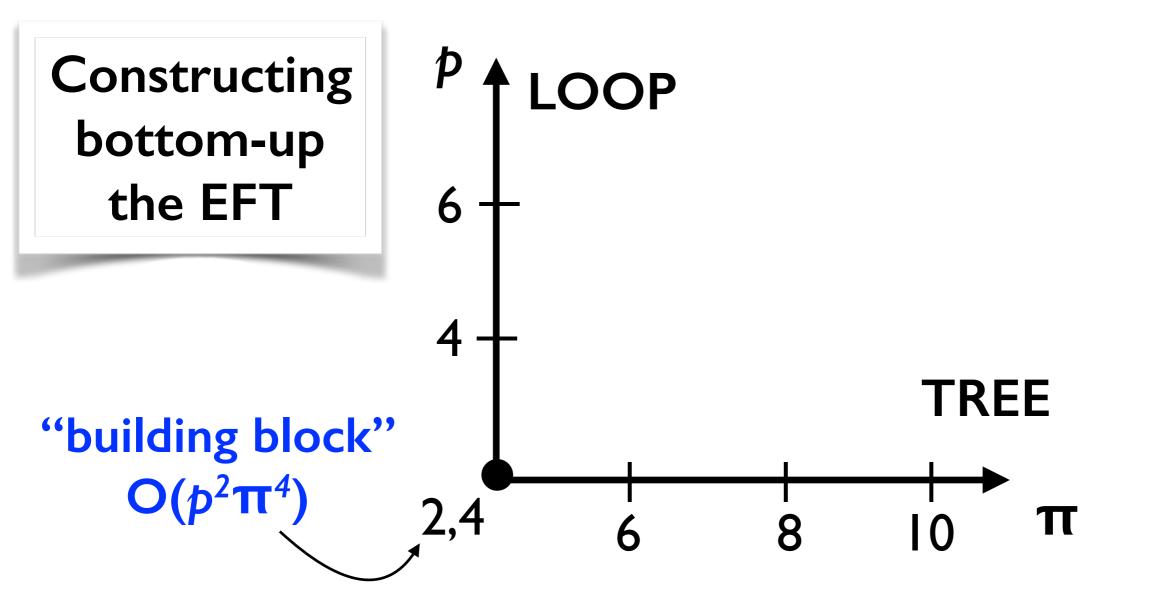
 $\mathbf{f}(\mathbf{s}, \mathbf{t}, \mathbf{u}) \qquad s + t + u = 0$

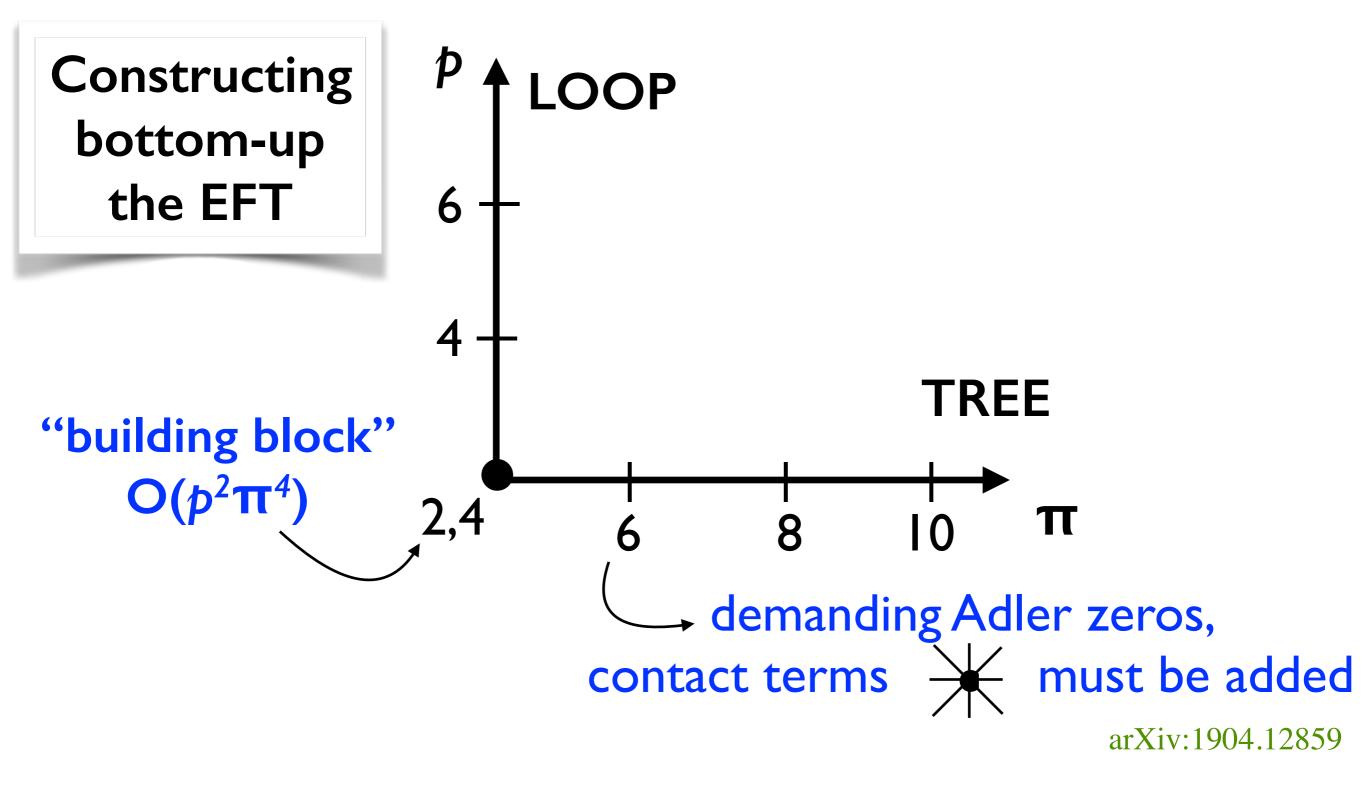


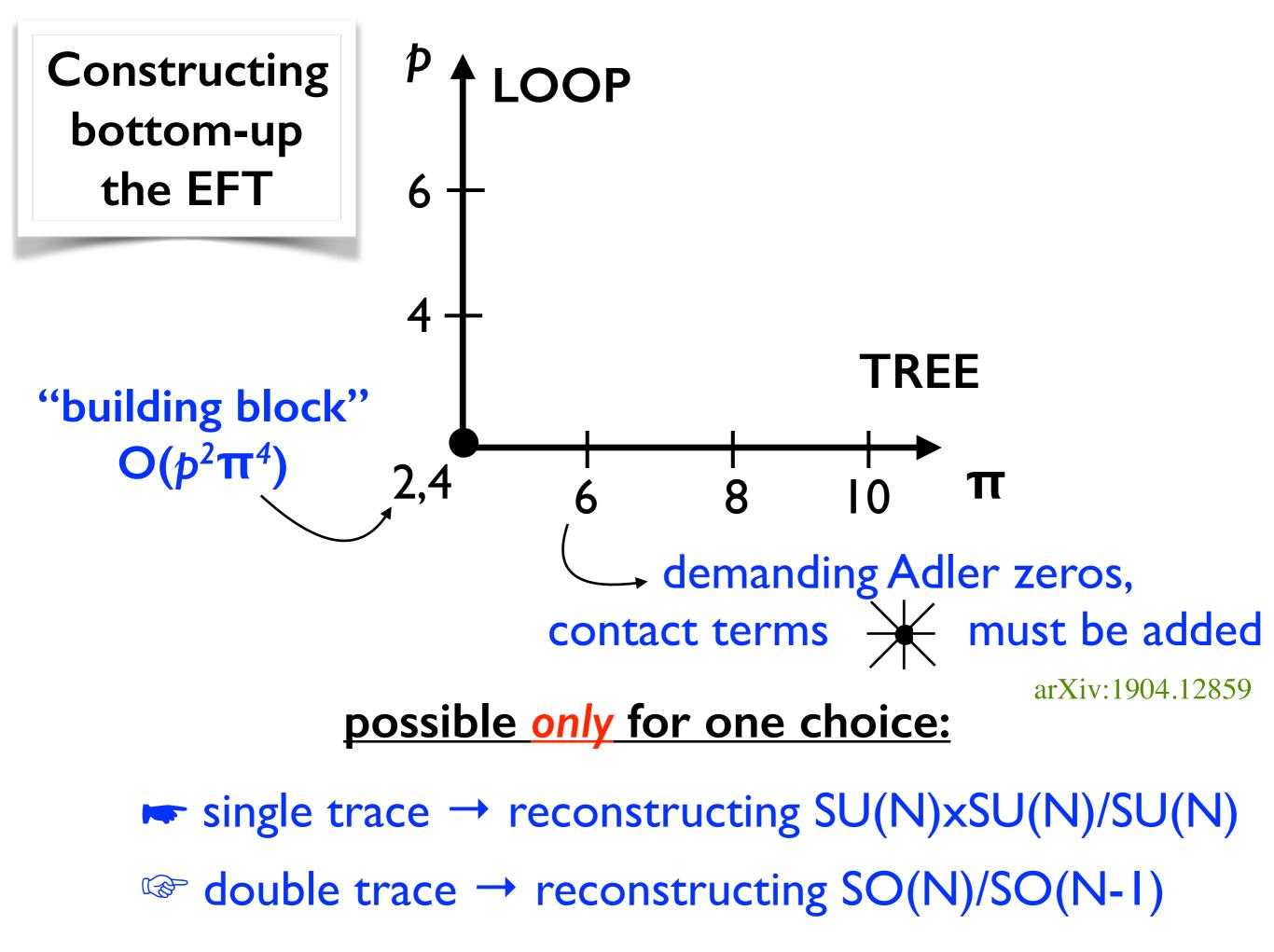
$$f(s, t, u)$$
 $s + t + u = 0$ ϵ $l+2$

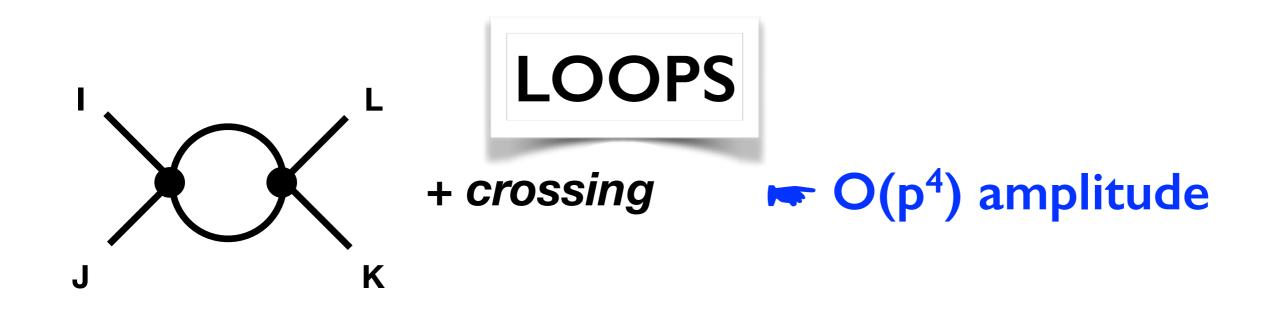


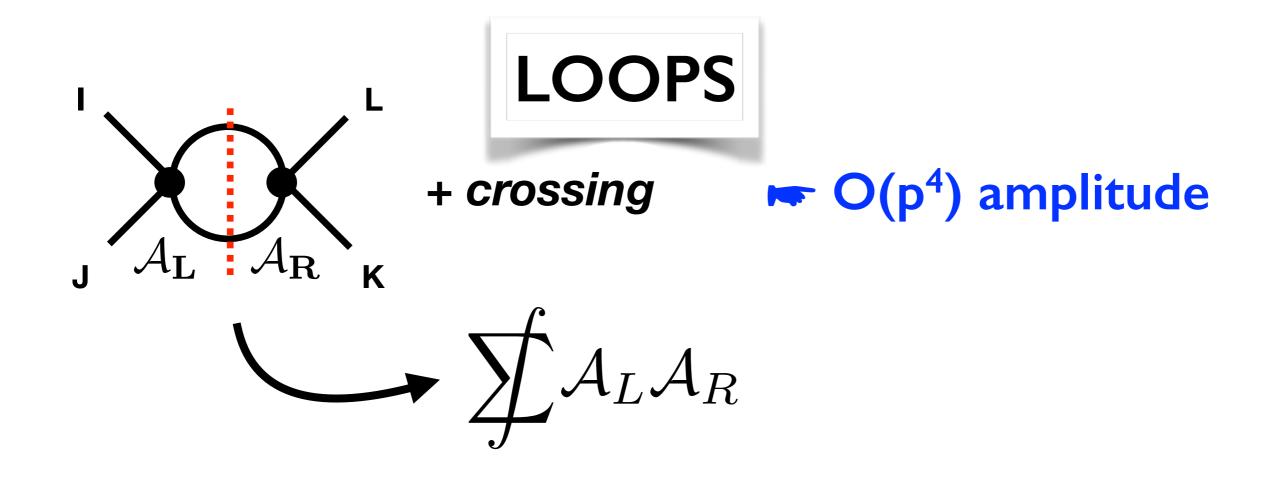


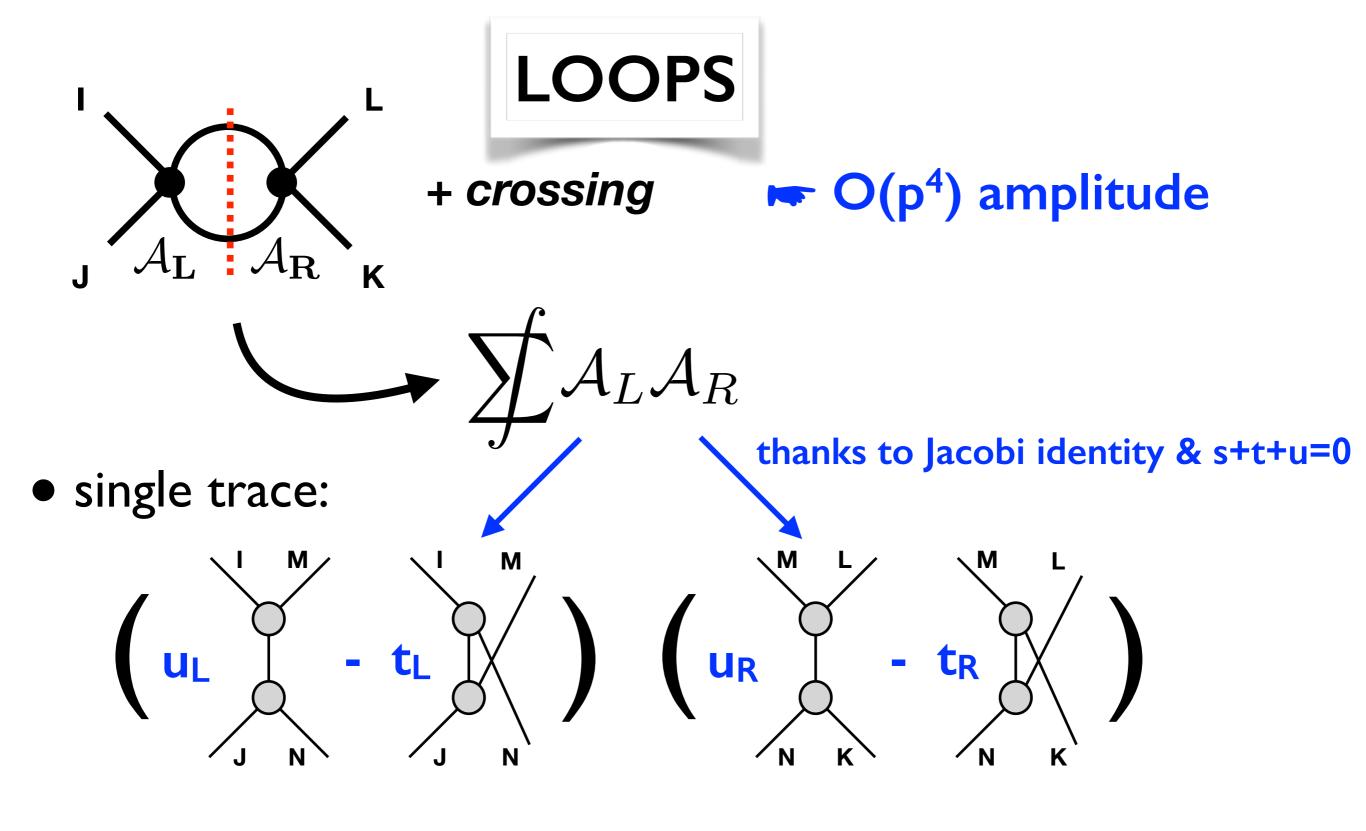


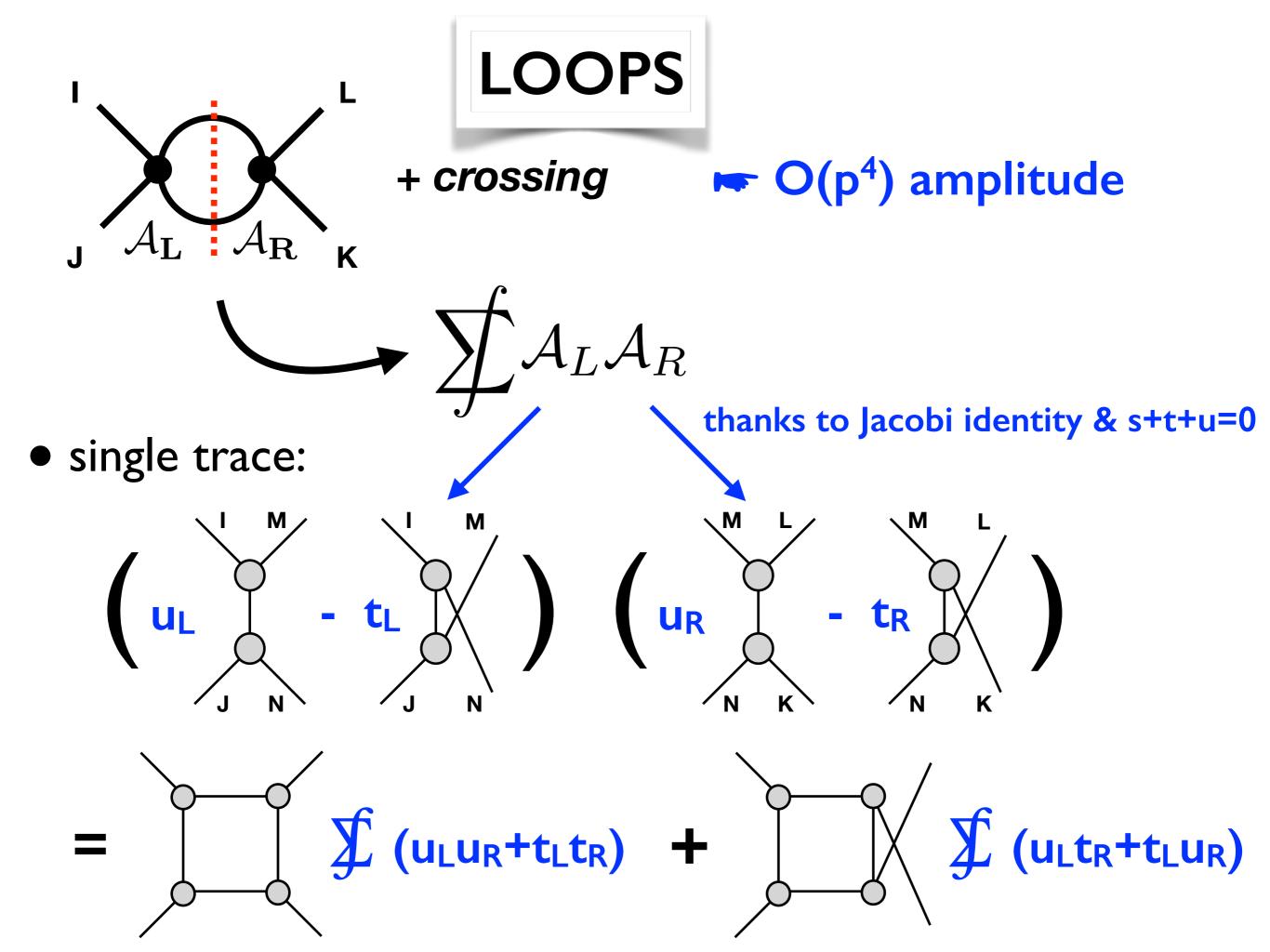


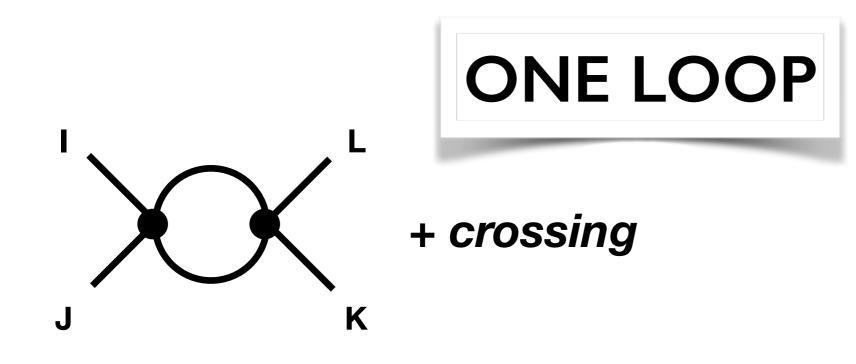








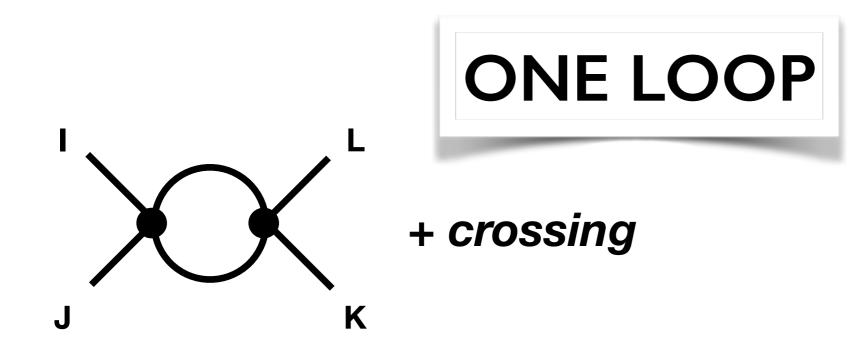




• single trace:

$$= (s^{2} + t^{2} + u^{2}) (Tr[F^{I}F^{J}F^{K}F^{L}] + crossing)$$
$$(F^{I})_{JK} = f_{IJK}$$

Unclear why so simple!



• single trace:

$$= (s^{2} + t^{2} + u^{2}) (Tr[F^{I}F^{J}F^{K}F^{L}] + crossing)$$
$$(F^{I})_{JK} = f_{IJK}$$
Unclear why so simple!

• double trace:

= $((3N-7)/2 s^2 + t^2 + u^2) \delta_{IJ} \delta_{KL}$ + crossing

- Amplitude methods seems quite suited for calculating indirect BSM effects reg. anomalous dimensions of 06
- Helps to obtain selections rules
- Allows to construct models from bottom-up
- Further work: Automatize AD calculations, going beyond one-loop, unravel the π^mpⁿ structure, ...