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of course, not the first encounter…



Two little applications:

Use of amplitudes for calculating one-loop corrections  
from indirect BSM effects

II.   Bottom-up approach to theories of Goldstones:

I.     Amplitude methods: useful for simplifying calculations             
                         (shortcut from the Feynman way) 

Consistently from A(1234)→qi    (for  qi→0)

☛ Crucial role plaid by helicity selection rules

But not much used in BSM phenomenology!

many surprises known!

composite 
Higgs



1 Introduction

2 Dimension-six operator basis

Let us consider a sector beyond the SM (BSM) characterised by a new mass-scale ⇤ much

larger than the electroweak scale mW . We will assume, among other requirements to be

specified later, that this sector preserves lepton and baryon number. By integrating out this

sector and performing an expansion of SM fields and their derivatives Dµ over ⇤, we can

obtain an e↵ective Lagrangian made of local operators:

Le↵ =
⇤4

g2⇤
L
✓

Dµ

⇤
,
gHH

⇤
,
gfL,R

fL,R
⇤3/2

,
gFµ⌫

⇤2

◆

' L4 + L6 + · · · , (1)

where Ln denotes the term in the expansion made of operators of dimension n. By g⇤ we denote

a generic coupling of the BSM, while gH and gfL,R
are respectively the couplings of the Higgs-

doublet H (of hypercharge Y = 1/2) and SM fermion fL,R to the BSM sector, and g and Fµ⌫

are respectively the SM gauge couplings and field-strengths. The Lagrangian Eq. (1) is based

on dimensional grounds where the dependence on the couplings is easily obtained when the

Planck constant ~ is put back in place. The dominant e↵ects of the BSM sector are encoded

in L6, as L4 leads only to an unphysical redefinition of the SM couplings. There are di↵erent

basis used in the literature for the set of independent dimension-six operators appearing in L6.

Although physics is independent of the choice of basis, it is clear that some basis are better

suited than others for extracting the relevant information for, for example, Higgs physics.

A convenient basis can be that which capture in few operators the impact of di↵erent new-

physics scenarios, at least for the most interesting cases. For example, in the basis of ref. [],

universal theories only generate 11 CP-conserving operators, but this number can be larger

in other basis, as that of ref. [], with the corresponding correlation in their coe�cients. If

only ff ! ff processes are considered, only 4 operators can parametrize universal theories

if we use the basis []. Another important consideration for the choice of basis is to avoid

mixing operators whose coe�cients are naturally expected to have di↵erent sizes (again, at

least in main theories of interest). For example, it is convenient to keep separated operators

that can be induced at tree-level from integrating weakly-coupled states from those that can

only be generated at the one-loop level. This helps to determine what are the most relevant

operators when dealing with a large class of the BSM such as supersymmetric, composite

Higgs or little Higgs models among others. As shown in ref. [] this criteria is also useful when

considering one-loop operator mixing, since one finds that tree-level induced operators do not

contribute to the RG flow of one-loop induced ones, independently, of course, of the origin of

the operators. In this sense the basis of [] is better suited than that of []. It is obvious that

all the criteria given above are not at all in contradiction with being generic, that is also the

propose of these analysis, as soon as we keep all operators, as we do in this analysis.

In our bases we broadly distinguish three classes of operators. The first two classes consist

of operators that can in principle be generated at tree-level when integrating out heavy states

1
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from the SM

EFT capturing the (indirect) impact of BSMsI.
Assuming new-physics scale Λ is heavier than MW , 

we can perform an expansion in derivatives and SM fields
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SM leading deviations  
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One-loop operator mixing important:   
(tells us how BSM enter in observables)

cj = Wilson  
coefficient

5 Running e↵ects from ⇤ to MW

So far, we have implicitly assumed that the Wilson coe�cients were evaluated at the elec-

troweak scale, at which their e↵ects can be eventually measured. However, particular UV

completions predict the values of those coe�cients at the scale ⇤ where the heavy BSM is

integrated out. The RG evolution from ⇤ down to the electroweak scale, described by the

corresponding anomalous dimensions, can be important in many cases.

Our main interest is to calculate the anomalous dimensions of the Wilson coe�cients that

can have the largest impact on Higgs physics. As we explained in the previous section, these

are the coe�cients listed in Eq. (37). In Ref. [7] we already calculated the most relevant

anomalous dimensions of the i in Eq. (37). We showed that tree-level Wilson coe�cients do

not enter, at the one-loop level, in the RGEs of the i, a property that allowed us to complete

the calculation of [6] for the anomalous dimensions relevant for h ! ��, Z�. In this section

we extend the analysis by calculating the anomalous dimensions for the 5 tree-level Wilson

coe�cients:

{cH , c6, cyt , cyb , cy⌧} . (51)

We notice that even in the future, with better measurements of the Higgs couplings, and

then better bounds on Eq. (51), we still expect Eq. (51) to give the main BSM contributions

to Higgs physics, since other Wilson coe�cients, such as cW , are expected to receive even

stronger constraints from LHC (for a given ⇤).

Generically, the anomalous dimensions are functions of other Wilson coe�cients:

�ci =
dci

d log µ
= �ci(cj) , (52)

where µ is the renormalization scale. In the RHS of Eq. (52) we keep the cj coe�cients

that can potentially give the most significant contributions to the RG running. We keep the

following cj. First, those of Eq. (51) as they have no important experimental constraints

and also are the most relevant in BSM scenarios with g⇤ large. We also keep the Wilson

coe�cients of operators involving the top quark, departing from the MFV assumption. These

are Oq3
L , Ot

R, O(3) q3
L and Otb

R , in addition to the 4-fermion operators, Oq3
LL, O(8) q3

LL , Ot
LR,

O(8) t
LR , Oytyb , O(8)

ytyb , Oyty⌧ and O0
yty⌧ . We have several motivations to keep them. First, they

have no large constraints from experiments. Second, they can induce large e↵ects on the

anomalous dimensions of Eq. (51), since they are proportional to the top Yukawa coupling.

Also their Wilson coe�cients can be sizable in many BSM models, such as composite Higgs

or supersymmetric theories, as we will discuss. To summarize, we consider in the RHS of

Eq. (52) the following Wilson coe�cients:

{cj} = {cH , c6, cyt , cyb , cy⌧ , cL, cR, c(3)L , ctbR, cLL, c
(8)

LL, cLR, c
(8)

LR, cytyb , c
(8)

ytyb
, cyty⌧ , c

0
yty⌧} , (53)

where, from now on, we suppress the q
3

and t superindices in the coe�cients for simplicity.

We would like to mention that, even for those Wilson coe�cients that receive experimental

constraints, as those discussed in the previous section, the fact that the constraints apply
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One-loop anomalous dimension of dim-6 operators
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Figure 2: Blue-shaded entries vanish and are understood by means of ESFT.
Red-shaded area satisfies holomorphicity and is understood as consequence
of Lorentz symmetry.

(X+)3 |H|2X+ O+
D Oyy Oy |H|6 J2

H J2
f JH · Jf

|H|2X+

(X+)3

O+
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Oyy
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H
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Table 1: bla bla bla .
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Figure 3: Non-holomorphic contribution to Oy.

3.2 Holomorphy of the anomalous dimensions

It has been recently shown in Ref. [10], based on explicit calculations, that the anomalous

dimension matrix respects, to a large extent, holomorphy. Here we would like to show how to

derive some of these properties using our ESFT approach. In particular, we will derive that,

with the exception of one case, the one-loop anomalous dimensions of the complex Wilson-

coe�cients ci = {c3F+ , cFF+ , cD, cy, cyy, cud
R } do not depend on their complex-conjugates c⇤

j :

@�ci

@c⇤
j

= 0 . (34)

We start by showing when Eq. (34) is satisfied just by simple inspection of the SM diagrams.

For example, it is easy to realize that holomorphy must be respected in contributions from

dimension-six operators in which fermions with a given chirality, e.g., f↵ or f↵f 0
�, are kept

as external legs; indeed, the corresponding Hermitian-conjugate operator can only contribute

to operators with fermions in the opposite chirality. Interestingly, we can extend the same

argument to operators with field-strengths if we write the loop-operators as

O3F+ = �1

4
tr F �

↵ F �
� F ↵

� , OFF+ =
1

4
H†tatbH(Fa)↵�(F b)�↵ , OD = H†f↵(Fa)↵�taf 0

� , (35)

where we have defined F↵� ⌘ (F a
µ⌫t

a�µ⌫)↵� that transforms as a (1,0) under the Lorentz

group, and write the Hermitian-conjugate of Eq. (35) with F ↵̇�̇, a (0,1) under the Lorentz

group, as for example, O†
3F+ = O3F� = �1

4tr F �̇
↵̇ F �̇

�̇
F ↵̇

�̇
. From Eq. (35) it is clear that any

diagram with an external F↵� respects holomorphy, as it can only generate the operators of

Eq. (35) and not their Hermitian conjugates. One-loop contributions from OFF+ in which

H†tatbH is kept among the external fields, however, do not necessarily respect holomorphy.

An explicit calculation is needed, and while contributions to OFF+ vanish by the reasoning

given in [1], contributions to Oy are found not to be holomorphic.

Following our previous supersymmetric approach, it is quite simple to check whether or

not loop contributions are holomorphic. In the ESFT, holomorphy is trivially respected as

super-operators with an ⌘†-spurion renormalize among themselves and cannot induce the

Hermitian-conjugate super-operators since those contain an ⌘, and vice versa. This means
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then better bounds on Eq. (51), we still expect Eq. (51) to give the main BSM contributions
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Generically, the anomalous dimensions are functions of other Wilson coe�cients:
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where µ is the renormalization scale. In the RHS of Eq. (52) we keep the cj coe�cients

that can potentially give the most significant contributions to the RG running. We keep the

following cj. First, those of Eq. (51) as they have no important experimental constraints

and also are the most relevant in BSM scenarios with g⇤ large. We also keep the Wilson
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anomalous dimensions of Eq. (51), since they are proportional to the top Yukawa coupling.

Also their Wilson coe�cients can be sizable in many BSM models, such as composite Higgs

or supersymmetric theories, as we will discuss. To summarize, we consider in the RHS of

Eq. (52) the following Wilson coe�cients:
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, cyty⌧ , c

0
yty⌧} , (53)

where, from now on, we suppress the q
3

and t superindices in the coe�cients for simplicity.

We would like to mention that, even for those Wilson coe�cients that receive experimental

constraints, as those discussed in the previous section, the fact that the constraints apply
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Very practical example:

Renormalization of electron EDM

Recent strong bound by ACME experiment:
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1 Introduction

Electric dipole moments (EDM) provide one of the best indirect probes for new-physics. Since a
non-zero EDM requires a violation of the CP symmetry, and the Standard Model (SM) contributions
are accidentally highly suppressed, the EDM is an exceptionally clean observable to uncover beyond
the SM (BSM) physics. Indeed, if BSM physics lies at the TeV scale, we expect new interactions
and therefore new sources of CP to be present,1 inducing sizable EDM to be observed in the near
future. For this reason, experimental bounds on the electron and neutron EDM have provided
the most substantial constraints on the best motivated BSM scenarios, such as supersymmetry or
composite Higgs models.

The ACME experiment has recently released a new bound on the electron EDM that improve
by a factor ⇠ 8.6 their previous bound [1]:

|de| < 1.1 · 10�29 e · cm . (1.1)

1As in the SM, we can expect that any parameter of the BSM that can be complex will be complex, providing
unavoidably large new sources of CP violation.
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Can provide important constraints  
even if BSM enters at the 2-loop level!
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Transla0on of ACME constraints to par0cle physics:

Two loops Chirality �ip log enhanced

Relevant constraints even at two loops.

We want to characterize all e5ects that enter with

This is the key to help organize 

the contributions

or even on dimension-8 operators!

Best weapon  
of BSM  

mass destruction!



One-loop mixing:

out of 59 operators
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Figure 1: Corrections to the electron EDM (imaginary part of CeW,eB) induced up to the 2-loop
level. The dashed and solid arrows denote mixing at 1-loop and 2-loop order respectively. On the
right we list the operators that generate contributions enhanced by a double logarithm (showing the
1-loop mixing patterns that generate it), whereas on the left we list operators giving rise to a single
logarithm.

only interested in calculating the leading correction to the EDM. For Wilson coe�cients a↵ecting
the EDM already at the one-loop level, such as Cluqe, the two-loop corrections would only provide
a small correction to their bound.

New dimension-6 operators can contribute to the electron EDM by mixing with the dipoles
OeW and OeB in two di↵erent ways. Either by mixing at the one-loop level with the operators we
discussed in the previous section, Oluqe and OV Ṽ (V = W,B), that contribute at the one-loop level
to the dipoles, or by direct two-loop contribution to the anomalous dimension of OeW and OeB (see
Table 1).

The first case can potentially give larger corrections, as in the leading-log approximation, they
will contain two logarithms, i.e. / ln2(⇤2/m2

W ). From the selection rules of Table 2, we see that
only two classes of operators can contribute at this order. One is given by the  4 operators that
could not generate an electron dipole at the one-loop due to the absence of Feynman diagrams,

namely the O(1)
lequ operator. The second class is given by dipole operators involving the second and

third lepton generations, Oe0W and Oe0B, or the quarks, OuW , OuB, OdW and OdB.
Notice that, as we pointed out before, there is an exception to the selection rules of Table 2,

corresponding to a possible mixing of  ̄2 2 operators into  4 when the pair of Yukawas either yuye
or yuyd is involved in the loop [3, 4]. Nevertheless, by working in the basis in which the lepton
and up-type quark Yukawa matrices are real and diagonal, one can easily find that there are not
 ̄2 2 operators contributing to the imaginary part of Oluqe at the one-loop level. Indeed, in this
basis yuye is real and diagonal, and the only  ̄2 2 operators that could contribute to Oluqe are the
ones involving two electron fields and two same-generation quarks. The Wilson coe�cients of these
operators are necessarily real and do not induce CP-violating e↵ects.

Therefore the one-loop mixing pattern and RGEs are the following. The Olequ operator can
mix with Oluqe at the one-loop level [6]:

d

d lnµ
Cluqe =

g2

16⇡2
⇥
4(YL + Ye)(YQ + Yu)t

2
✓W

� 3
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discussed in the previous section, Oluqe and OV Ṽ (V = W,B), that contribute at the one-loop level
to the dipoles, or by direct two-loop contribution to the anomalous dimension of OeW and OeB (see
Table 1).

The first case can potentially give larger corrections, as in the leading-log approximation, they
will contain two logarithms, i.e. / ln2(⇤2/m2

W ). From the selection rules of Table 2, we see that
only two classes of operators can contribute at this order. One is given by the  4 operators that
could not generate an electron dipole at the one-loop due to the absence of Feynman diagrams,

namely the O(1)
lequ operator. The second class is given by dipole operators involving the second and

third lepton generations, Oe0W and Oe0B, or the quarks, OuW , OuB, OdW and OdB.
Notice that, as we pointed out before, there is an exception to the selection rules of Table 2,

corresponding to a possible mixing of  ̄2 2 operators into  4 when the pair of Yukawas either yuye
or yuyd is involved in the loop [3, 4]. Nevertheless, by working in the basis in which the lepton
and up-type quark Yukawa matrices are real and diagonal, one can easily find that there are not
 ̄2 2 operators contributing to the imaginary part of Oluqe at the one-loop level. Indeed, in this
basis yuye is real and diagonal, and the only  ̄2 2 operators that could contribute to Oluqe are the
ones involving two electron fields and two same-generation quarks. The Wilson coe�cients of these
operators are necessarily real and do not induce CP-violating e↵ects.

Therefore the one-loop mixing pattern and RGEs are the following. The Olequ operator can
mix with Oluqe at the one-loop level [6]:

d

d lnµ
Cluqe =

g2

16⇡2
⇥
4(YL + Ye)(YQ + Yu)t

2
✓W

� 3
⇤
C

(1)
lequ . (2.14)

8

Panico, AP, Riembau arXiv:1810.09413

out of 59 operators

OeW ,OeB

Oluqe

O
WfW ,OB eB,OW eB

1-loop

Oye

Oled̄q̄,Olel̄0ē0
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Two amplitudes:

We then classify the d = 6 operators as

L
6

=
X

i1

g2⇤
ci1
⇤2

Oi1 +
X

i2

ci2
⇤2

Oi2 +
X

i3

i3

⇤2

Oi3 , (2)

where, for notational convenience, we introduce the one-loop suppressed coe�cients

i3 ⌘
g2⇤

16⇡2

ci3 , (3)

for the third class of operators. In weakly-coupled theories, ci ⇠ fi(g/g⇤, gH/g⇤, ...), where

fi(g/g⇤, gH/g⇤, ...) are functions that depend on ratios of couplings. We refer to the opera-

tors Oi1 and Oi2 as ”current-current” or ”tree-level” operators, while we call Oi3 ”one-loop”

operators.4

Although our basis follows a classification inspired by renormalizable weakly-coupled theo-

ries, it can also be useful when dealing with strongly-coupled BSM models. For example, if the

Higgs or SM fermions arise as composite mesonic states of a strongly-interacting gauge theory

with no small parameter, our basis can still give the right parametrization by taking g⇤ ⇠ 4⇡.

Also, strongly-coupled models that admit a weakly-coupled holographic description generate

d = 6 operators that follow the above classification. In this case we have g⇤ ⇠ 4⇡/
p
N where

N plays the role of the number of colors of the strong sector.

Let us start defining our basis by considering first operators made of SM bosons only [4].

In the first class of operators, Oi1 , we have

OH =
1

2
(@µ|H|2)2 , OT =

1

2
(H†

$
DµH)2 , Or = |H|2|DµH|2 , O

6

= �|H|6 . (4)

Here we have defined H†
$
DµH ⌘ H†DµH � (DµH)†H, with DµH = @µH � ig�aW a

µH/2 �
ig0BµH/2 (H is taken to have hypercharge YH = 1/2). For O

6

, which involves six Higgs

fields, an extra factor g2⇤ could be present. Nevertheless, we have substituted this by �, the

Higgs self-coupling defined as V = �m2|H|2 + �|H|4. This is motivated by the fact that the

lightness of the Higgs suggests that there is a symmetry protecting the Higgs self-coupling to

be of order � ⇠ m2

h/(2v
2) ⇠ 0.13. Examples are supersymmetry or global symmetries as in

composite Higgs models.

In the second class of operators, Oi2 , we have

OW =
ig

2
(H†�a

$
DµH)D⌫W a

µ⌫ , OB =
ig0

2
(H†

$
DµH)@⌫Bµ⌫ ,

O
2W = �1

2
(DµW a

µ⌫)
2 , O

2B = �1

2
(@µBµ⌫)

2 , O
2G = �1

2
(DµGA

µ⌫)
2 . (5)

Since the last three operators involve two field strengths, we expect c
2W ⇠ g2/g2⇤, c2B ⇠ g0 2/g2⇤,

and c
2G ⇠ g2s/g

2

⇤.

4 For a classification of operators similar in spirit to ours, see [10].
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Example O(∂2H4):

n=4; h=0
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n = number of external states 
h = helicity of the amplitude

Interested here in one-loop corrections:
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• Recycling known scalar integrals: 
 
 

• UV (log) divergence only from bubble integrals: 
 

• Tadpole and “massless” bubble,                , are scaleless. 

‣ vanish in dimensional regularization 

‣ Important caveat in massless bubble

Aloop
i =

�

box

d4I4 +
�

triangle

d3I3 +
�

bubble

d2I2 + rational,

I2(p2 = 0)

         ,              =0

I2(p2) =
�

d4��� /�2(� + p)2 = 1/(4�)2� + ...

p2

RadCor-Loopfest

Passarino-Veltman Decomposition

• Recycling known scalar integrals: 
 
 

• UV (log) divergence only from bubble integrals: 
 

• Tadpole and “massless” bubble,                , are scaleless. 

‣ vanish in dimensional regularization 

‣ Important caveat in massless bubble

Aloop
i =

�

box

d4I4 +
�

triangle

d3I3 +
�

bubble

d2I2 + rational,

I2(p2 = 0)

         ,              =0

I2(p2) =
�

d4��� /�2(� + p)2 = 1/(4�)2� + ...

p2

RadCor-Loopfest

Passarino-Veltman Decomposition

• Recycling known scalar integrals: 
 
 

• UV (log) divergence only from bubble integrals: 
 

• Tadpole and “massless” bubble,                , are scaleless. 

‣ vanish in dimensional regularization 

‣ Important caveat in massless bubble

Aloop
i =

�

box

d4I4 +
�

triangle

d3I3 +
�

bubble

d2I2 + rational,

I2(p2 = 0)

         ,              =0

I2(p2) =
�

d4��� /�2(� + p)2 = 1/(4�)2� + ...

p2

divergent  ☛  anomalous dimensions

●

After one-loop reduction to Passarino-Veltman integrals
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6 Loops I: Unitarity methods 6.1 Unitarity and the generalized unitarity method
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Figure 2: The sum of residues from all Feynman diagrams with propagators `2 and (`�p1�p2)2 on-shell
must give the product of two tree-amplitudes.

6.1 Unitarity and the generalized unitarity method

We begin with a concrete example: the color-ordered planar 5-point 1-loop gluon amplitude in

pure Yang-Mills theory. Suppose we identify31 the loop-momentum such that in each Feynman

diagram, ` is the momentum that flows between legs 1 and 5, as indicated in Figure 2. Then

we can collect all the distinct Feynman diagrams under one integral,Z
dD`

X
j

Jj . (6.2)

The integrands Jj take the form indicated in (6.1). To compute the full amplitude we need to

integrate ` over R4 (after Wick rotation from R1,3), but let us focus on the subplane where the

loop-momentum satisfies the two cut conditions

`2 = (` � p1 � p2)
2 = 0 . (6.3)

On this subplane, integrands of the form

Ji =
1

Si

cini

· · · (`2) · · · (` � p1 � p2)2 · · · (6.4)

become singular. The singularity corresponds to a kinematic configuration where two propa-

gators go on-shell. So the sum of the corresponding residues from all such integrands must be

equivalent to the product of two on-shell tree amplitudes, as shown schematically in Figure 2.

In other words, if the enemy gives us an integrand and claims that it corresponds to the 1-loop

amplitude of some (unitary) theory, we can test the claim by checking if the integrand factorizes

correctly into products of tree amplitudes. This way, our knowledge of tree amplitudes can be

recycled into information about the loop-integrand! The operation of taking loop propagators

on-shell is called a unitarity cut. It originates from the unitary constraint of the S-matrix.

To see how, recall that unitarity requires S†S = 1. Writing S = 1 + iT , where T represents

the interacting part of the S-matrix, unitarity requires �i(T � T †) = T †T . If we examine

this constraint order by order in perturbation theory, it tells us that the imaginary part of the

T -matrix at a given order is related to the product of lower-order results. In particular, the

imaginary part of the 1-loop amplitude is given by a product of two tree amplitudes. This is

31More about this choice in Section 7.1.
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We begin with a concrete example: the color-ordered planar 5-point 1-loop gluon amplitude in

pure Yang-Mills theory. Suppose we identify31 the loop-momentum such that in each Feynman

diagram, ` is the momentum that flows between legs 1 and 5, as indicated in Figure 2. Then

we can collect all the distinct Feynman diagrams under one integral,Z
dD`

X
j

Jj . (6.2)

The integrands Jj take the form indicated in (6.1). To compute the full amplitude we need to

integrate ` over R4 (after Wick rotation from R1,3), but let us focus on the subplane where the

loop-momentum satisfies the two cut conditions

`2 = (` � p1 � p2)
2 = 0 . (6.3)

On this subplane, integrands of the form

Ji =
1

Si

cini

· · · (`2) · · · (` � p1 � p2)2 · · · (6.4)

become singular. The singularity corresponds to a kinematic configuration where two propa-

gators go on-shell. So the sum of the corresponding residues from all such integrands must be

equivalent to the product of two on-shell tree amplitudes, as shown schematically in Figure 2.

In other words, if the enemy gives us an integrand and claims that it corresponds to the 1-loop

amplitude of some (unitary) theory, we can test the claim by checking if the integrand factorizes

correctly into products of tree amplitudes. This way, our knowledge of tree amplitudes can be

recycled into information about the loop-integrand! The operation of taking loop propagators

on-shell is called a unitarity cut. It originates from the unitary constraint of the S-matrix.

To see how, recall that unitarity requires S†S = 1. Writing S = 1 + iT , where T represents

the interacting part of the S-matrix, unitarity requires �i(T � T †) = T †T . If we examine

this constraint order by order in perturbation theory, it tells us that the imaginary part of the

T -matrix at a given order is related to the product of lower-order results. In particular, the

imaginary part of the 1-loop amplitude is given by a product of two tree amplitudes. This is

31More about this choice in Section 7.1.
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Figure 2: The sum of residues from all Feynman diagrams with propagators `2 and (`�p1�p2)2 on-shell
must give the product of two tree-amplitudes.

6.1 Unitarity and the generalized unitarity method

We begin with a concrete example: the color-ordered planar 5-point 1-loop gluon amplitude in

pure Yang-Mills theory. Suppose we identify31 the loop-momentum such that in each Feynman

diagram, ` is the momentum that flows between legs 1 and 5, as indicated in Figure 2. Then

we can collect all the distinct Feynman diagrams under one integral,Z
dD`

X
j

Jj . (6.2)

The integrands Jj take the form indicated in (6.1). To compute the full amplitude we need to

integrate ` over R4 (after Wick rotation from R1,3), but let us focus on the subplane where the

loop-momentum satisfies the two cut conditions

`2 = (` � p1 � p2)
2 = 0 . (6.3)

On this subplane, integrands of the form

Ji =
1

Si

cini

· · · (`2) · · · (` � p1 � p2)2 · · · (6.4)

become singular. The singularity corresponds to a kinematic configuration where two propa-

gators go on-shell. So the sum of the corresponding residues from all such integrands must be

equivalent to the product of two on-shell tree amplitudes, as shown schematically in Figure 2.

In other words, if the enemy gives us an integrand and claims that it corresponds to the 1-loop

amplitude of some (unitary) theory, we can test the claim by checking if the integrand factorizes

correctly into products of tree amplitudes. This way, our knowledge of tree amplitudes can be

recycled into information about the loop-integrand! The operation of taking loop propagators

on-shell is called a unitarity cut. It originates from the unitary constraint of the S-matrix.

To see how, recall that unitarity requires S†S = 1. Writing S = 1 + iT , where T represents

the interacting part of the S-matrix, unitarity requires �i(T � T †) = T †T . If we examine

this constraint order by order in perturbation theory, it tells us that the imaginary part of the

T -matrix at a given order is related to the product of lower-order results. In particular, the

imaginary part of the 1-loop amplitude is given by a product of two tree amplitudes. This is

31More about this choice in Section 7.1.
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must give the product of two tree-amplitudes.

6.1 Unitarity and the generalized unitarity method

We begin with a concrete example: the color-ordered planar 5-point 1-loop gluon amplitude in

pure Yang-Mills theory. Suppose we identify31 the loop-momentum such that in each Feynman

diagram, ` is the momentum that flows between legs 1 and 5, as indicated in Figure 2. Then

we can collect all the distinct Feynman diagrams under one integral,Z
dD`

X
j

Jj . (6.2)

The integrands Jj take the form indicated in (6.1). To compute the full amplitude we need to

integrate ` over R4 (after Wick rotation from R1,3), but let us focus on the subplane where the

loop-momentum satisfies the two cut conditions

`2 = (` � p1 � p2)
2 = 0 . (6.3)

On this subplane, integrands of the form

Ji =
1

Si

cini

· · · (`2) · · · (` � p1 � p2)2 · · · (6.4)

become singular. The singularity corresponds to a kinematic configuration where two propa-

gators go on-shell. So the sum of the corresponding residues from all such integrands must be

equivalent to the product of two on-shell tree amplitudes, as shown schematically in Figure 2.

In other words, if the enemy gives us an integrand and claims that it corresponds to the 1-loop

amplitude of some (unitary) theory, we can test the claim by checking if the integrand factorizes

correctly into products of tree amplitudes. This way, our knowledge of tree amplitudes can be

recycled into information about the loop-integrand! The operation of taking loop propagators

on-shell is called a unitarity cut. It originates from the unitary constraint of the S-matrix.

To see how, recall that unitarity requires S†S = 1. Writing S = 1 + iT , where T represents

the interacting part of the S-matrix, unitarity requires �i(T � T †) = T †T . If we examine

this constraint order by order in perturbation theory, it tells us that the imaginary part of the

T -matrix at a given order is related to the product of lower-order results. In particular, the

imaginary part of the 1-loop amplitude is given by a product of two tree amplitudes. This is

31More about this choice in Section 7.1.
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Figure 2: The sum of residues from all Feynman diagrams with propagators `2 and (`�p1�p2)2 on-shell
must give the product of two tree-amplitudes.

6.1 Unitarity and the generalized unitarity method

We begin with a concrete example: the color-ordered planar 5-point 1-loop gluon amplitude in

pure Yang-Mills theory. Suppose we identify31 the loop-momentum such that in each Feynman

diagram, ` is the momentum that flows between legs 1 and 5, as indicated in Figure 2. Then

we can collect all the distinct Feynman diagrams under one integral,Z
dD`

X
j

Jj . (6.2)

The integrands Jj take the form indicated in (6.1). To compute the full amplitude we need to

integrate ` over R4 (after Wick rotation from R1,3), but let us focus on the subplane where the

loop-momentum satisfies the two cut conditions

`2 = (` � p1 � p2)
2 = 0 . (6.3)

On this subplane, integrands of the form

Ji =
1

Si

cini

· · · (`2) · · · (` � p1 � p2)2 · · · (6.4)

become singular. The singularity corresponds to a kinematic configuration where two propa-

gators go on-shell. So the sum of the corresponding residues from all such integrands must be

equivalent to the product of two on-shell tree amplitudes, as shown schematically in Figure 2.

In other words, if the enemy gives us an integrand and claims that it corresponds to the 1-loop

amplitude of some (unitary) theory, we can test the claim by checking if the integrand factorizes

correctly into products of tree amplitudes. This way, our knowledge of tree amplitudes can be

recycled into information about the loop-integrand! The operation of taking loop propagators

on-shell is called a unitarity cut. It originates from the unitary constraint of the S-matrix.

To see how, recall that unitarity requires S†S = 1. Writing S = 1 + iT , where T represents

the interacting part of the S-matrix, unitarity requires �i(T � T †) = T †T . If we examine

this constraint order by order in perturbation theory, it tells us that the imaginary part of the

T -matrix at a given order is related to the product of lower-order results. In particular, the

imaginary part of the 1-loop amplitude is given by a product of two tree amplitudes. This is

31More about this choice in Section 7.1.
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6.1 Unitarity and the generalized unitarity method

We begin with a concrete example: the color-ordered planar 5-point 1-loop gluon amplitude in

pure Yang-Mills theory. Suppose we identify31 the loop-momentum such that in each Feynman

diagram, ` is the momentum that flows between legs 1 and 5, as indicated in Figure 2. Then

we can collect all the distinct Feynman diagrams under one integral,Z
dD`

X
j

Jj . (6.2)

The integrands Jj take the form indicated in (6.1). To compute the full amplitude we need to

integrate ` over R4 (after Wick rotation from R1,3), but let us focus on the subplane where the

loop-momentum satisfies the two cut conditions

`2 = (` � p1 � p2)
2 = 0 . (6.3)

On this subplane, integrands of the form

Ji =
1

Si

cini

· · · (`2) · · · (` � p1 � p2)2 · · · (6.4)

become singular. The singularity corresponds to a kinematic configuration where two propa-

gators go on-shell. So the sum of the corresponding residues from all such integrands must be

equivalent to the product of two on-shell tree amplitudes, as shown schematically in Figure 2.

In other words, if the enemy gives us an integrand and claims that it corresponds to the 1-loop

amplitude of some (unitary) theory, we can test the claim by checking if the integrand factorizes

correctly into products of tree amplitudes. This way, our knowledge of tree amplitudes can be

recycled into information about the loop-integrand! The operation of taking loop propagators

on-shell is called a unitarity cut. It originates from the unitary constraint of the S-matrix.

To see how, recall that unitarity requires S†S = 1. Writing S = 1 + iT , where T represents

the interacting part of the S-matrix, unitarity requires �i(T � T †) = T †T . If we examine

this constraint order by order in perturbation theory, it tells us that the imaginary part of the

T -matrix at a given order is related to the product of lower-order results. In particular, the

imaginary part of the 1-loop amplitude is given by a product of two tree amplitudes. This is

31More about this choice in Section 7.1.
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~ O(p2)

flavor-momentum “alignment”

flavor-momentum “anti-alignment”

⊕

Two amplitudes:

We then classify the d = 6 operators as

L
6

=
X

i1

g2⇤
ci1
⇤2

Oi1 +
X

i2

ci2
⇤2

Oi2 +
X

i3

i3

⇤2

Oi3 , (2)

where, for notational convenience, we introduce the one-loop suppressed coe�cients

i3 ⌘
g2⇤

16⇡2

ci3 , (3)

for the third class of operators. In weakly-coupled theories, ci ⇠ fi(g/g⇤, gH/g⇤, ...), where

fi(g/g⇤, gH/g⇤, ...) are functions that depend on ratios of couplings. We refer to the opera-

tors Oi1 and Oi2 as ”current-current” or ”tree-level” operators, while we call Oi3 ”one-loop”

operators.4

Although our basis follows a classification inspired by renormalizable weakly-coupled theo-

ries, it can also be useful when dealing with strongly-coupled BSM models. For example, if the

Higgs or SM fermions arise as composite mesonic states of a strongly-interacting gauge theory

with no small parameter, our basis can still give the right parametrization by taking g⇤ ⇠ 4⇡.

Also, strongly-coupled models that admit a weakly-coupled holographic description generate

d = 6 operators that follow the above classification. In this case we have g⇤ ⇠ 4⇡/
p
N where

N plays the role of the number of colors of the strong sector.

Let us start defining our basis by considering first operators made of SM bosons only [4].

In the first class of operators, Oi1 , we have

OH =
1

2
(@µ|H|2)2 , OT =

1

2
(H†

$
DµH)2 , Or = |H|2|DµH|2 , O

6

= �|H|6 . (4)

Here we have defined H†
$
DµH ⌘ H†DµH � (DµH)†H, with DµH = @µH � ig�aW a

µH/2 �
ig0BµH/2 (H is taken to have hypercharge YH = 1/2). For O

6

, which involves six Higgs

fields, an extra factor g2⇤ could be present. Nevertheless, we have substituted this by �, the

Higgs self-coupling defined as V = �m2|H|2 + �|H|4. This is motivated by the fact that the

lightness of the Higgs suggests that there is a symmetry protecting the Higgs self-coupling to

be of order � ⇠ m2

h/(2v
2) ⇠ 0.13. Examples are supersymmetry or global symmetries as in

composite Higgs models.

In the second class of operators, Oi2 , we have

OW =
ig

2
(H†�a

$
DµH)D⌫W a

µ⌫ , OB =
ig0

2
(H†

$
DµH)@⌫Bµ⌫ ,

O
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(DµGA
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Since the last three operators involve two field strengths, we expect c
2W ⇠ g2/g2⇤, c2B ⇠ g0 2/g2⇤,

and c
2G ⇠ g2s/g

2

⇤.

4 For a classification of operators similar in spirit to ours, see [10].
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We then classify the d = 6 operators as
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i2

ci2
⇤2

Oi2 +
X

i3

i3
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Oi3 , (2)

where, for notational convenience, we introduce the one-loop suppressed coe�cients
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g2⇤

16⇡2

ci3 , (3)

for the third class of operators. In weakly-coupled theories, ci ⇠ fi(g/g⇤, gH/g⇤, ...), where

fi(g/g⇤, gH/g⇤, ...) are functions that depend on ratios of couplings. We refer to the opera-

tors Oi1 and Oi2 as ”current-current” or ”tree-level” operators, while we call Oi3 ”one-loop”

operators.4
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p
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Let us start defining our basis by considering first operators made of SM bosons only [4].
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2) ⇠ 0.13. Examples are supersymmetry or global symmetries as in

composite Higgs models.
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Since the last three operators involve two field strengths, we expect c
2W ⇠ g2/g2⇤, c2B ⇠ g0 2/g2⇤,

and c
2G ⇠ g2s/g

2

⇤.

4 For a classification of operators similar in spirit to ours, see [10].
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}
Example O(∂2H4):

n=4; h=0



One-loop corrections

⊕ t-channel ⊕ u-channel

s-channel: A λ



u-channel:

s-channel: A λ }
λ

As↔u
~ (s+u) = -t

One-loop corrections



u-channel:

s-channel: A λ

preservation of 
momentum-flavor 

 “alignment” !

}
Custodial sym.!

λ

As↔u

⊕ t-channel

One-loop corrections



u-channel:

s-channel: A λ

preservation of 
momentum-flavor 

 “alignment” !

}
also preservation of momentum-flavor  

“anti-alignment” for doublets
Custodial sym.!

λ

As↔u

⊕ t-channel

One-loop corrections
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6 Loops I: Unitarity methods 6.1 Unitarity and the generalized unitarity method
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Figure 2: The sum of residues from all Feynman diagrams with propagators `2 and (`�p1�p2)2 on-shell
must give the product of two tree-amplitudes.

6.1 Unitarity and the generalized unitarity method

We begin with a concrete example: the color-ordered planar 5-point 1-loop gluon amplitude in

pure Yang-Mills theory. Suppose we identify31 the loop-momentum such that in each Feynman

diagram, ` is the momentum that flows between legs 1 and 5, as indicated in Figure 2. Then

we can collect all the distinct Feynman diagrams under one integral,Z
dD`

X
j

Jj . (6.2)

The integrands Jj take the form indicated in (6.1). To compute the full amplitude we need to

integrate ` over R4 (after Wick rotation from R1,3), but let us focus on the subplane where the

loop-momentum satisfies the two cut conditions

`2 = (` � p1 � p2)
2 = 0 . (6.3)

On this subplane, integrands of the form

Ji =
1

Si

cini

· · · (`2) · · · (` � p1 � p2)2 · · · (6.4)

become singular. The singularity corresponds to a kinematic configuration where two propa-

gators go on-shell. So the sum of the corresponding residues from all such integrands must be

equivalent to the product of two on-shell tree amplitudes, as shown schematically in Figure 2.

In other words, if the enemy gives us an integrand and claims that it corresponds to the 1-loop

amplitude of some (unitary) theory, we can test the claim by checking if the integrand factorizes

correctly into products of tree amplitudes. This way, our knowledge of tree amplitudes can be

recycled into information about the loop-integrand! The operation of taking loop propagators

on-shell is called a unitarity cut. It originates from the unitary constraint of the S-matrix.

To see how, recall that unitarity requires S†S = 1. Writing S = 1 + iT , where T represents

the interacting part of the S-matrix, unitarity requires �i(T � T †) = T †T . If we examine

this constraint order by order in perturbation theory, it tells us that the imaginary part of the

T -matrix at a given order is related to the product of lower-order results. In particular, the

imaginary part of the 1-loop amplitude is given by a product of two tree amplitudes. This is

31More about this choice in Section 7.1.
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up to one exception!

Holomorphy:
Again, we can either look at SM field loop or super-partner loop: 

The simplest, the diagrams with fermions, as you can follow 
the fermion-line to see if it changes direction. Only cases:
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Figure 3: Non-holomorphic contribution to Oy.

3.2 Holomorphy of the anomalous dimensions

It has been recently shown in Ref. [10], based on explicit calculations, that the anomalous

dimension matrix respects, to a large extent, holomorphy. Here we would like to show how to

derive some of these properties using our ESFT approach. In particular, we will derive that,

with the exception of one case, the one-loop anomalous dimensions of the complex Wilson-

coe�cients ci = {c3F+ , cFF+ , cD, cy, cyy, cud
R } do not depend on their complex-conjugates c⇤

j :

@�ci

@c⇤
j

= 0 . (34)

We start by showing when Eq. (34) is satisfied just by simple inspection of the SM diagrams.

For example, it is easy to realize that holomorphy must be respected in contributions from

dimension-six operators in which fermions with a given chirality, e.g., f↵ or f↵f 0
�, are kept

as external legs; indeed, the corresponding Hermitian-conjugate operator can only contribute

to operators with fermions in the opposite chirality. Interestingly, we can extend the same

argument to operators with field-strengths if we write the loop-operators as

O3F+ = �1

4
tr F �

↵ F �
� F ↵

� , OFF+ =
1

4
H†tatbH(Fa)↵�(F b)�↵ , OD = H†f↵(Fa)↵�taf 0

� , (35)

where we have defined F↵� ⌘ (F a
µ⌫t

a�µ⌫)↵� that transforms as a (1,0) under the Lorentz

group, and write the Hermitian-conjugate of Eq. (35) with F ↵̇�̇, a (0,1) under the Lorentz

group, as for example, O†
3F+ = O3F� = �1

4tr F �̇
↵̇ F �̇

�̇
F ↵̇

�̇
. From Eq. (35) it is clear that any

diagram with an external F↵� respects holomorphy, as it can only generate the operators of

Eq. (35) and not their Hermitian conjugates. One-loop contributions from OFF+ in which

H†tatbH is kept among the external fields, however, do not necessarily respect holomorphy.

An explicit calculation is needed, and while contributions to OFF+ vanish by the reasoning

given in [1], contributions to Oy are found not to be holomorphic.

Following our previous supersymmetric approach, it is quite simple to check whether or

not loop contributions are holomorphic. In the ESFT, holomorphy is trivially respected as

super-operators with an ⌘†-spurion renormalize among themselves and cannot induce the

Hermitian-conjugate super-operators since those contain an ⌘, and vice versa. This means

15
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At the component level:

Holomorphy is preserved beyond SUSY

Holomorphy:
Again, we can either look at SM field loop or super-partner loop: 
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3.2Holomorphyoftheanomalousdimensions

IthasbeenrecentlyshowninRef.[10],basedonexplicitcalculations,thattheanomalous

dimensionmatrixrespects,toalargeextent,holomorphy.Herewewouldliketoshowhowto

derivesomeofthesepropertiesusingourESFTapproach.Inparticular,wewillderivethat,

withtheexceptionofonecase,theone-loopanomalousdimensionsofthecomplexWilson-

coe�cientsci={c3F+,cFF+,cD,cy,cyy,cud
R}donotdependontheircomplex-conjugatesc⇤

j:

@�ci

@c⇤
j

=0.(34)

WestartbyshowingwhenEq.(34)issatisfiedjustbysimpleinspectionoftheSMdiagrams.

Forexample,itiseasytorealizethatholomorphymustberespectedincontributionsfrom

dimension-sixoperatorsinwhichfermionswithagivenchirality,e.g.,f↵orf↵f0
�,arekept

asexternallegs;indeed,thecorrespondingHermitian-conjugateoperatorcanonlycontribute

tooperatorswithfermionsintheoppositechirality.Interestingly,wecanextendthesame

argumenttooperatorswithfield-strengthsifwewritetheloop-operatorsas

O3F+=�1

4
trF�

↵F�
�F↵

�,OFF+=
1

4
H†tatbH(Fa)↵�(Fb)�↵,OD=H†f↵(Fa)↵�taf0

�,(35)

wherewehavedefinedF↵�⌘(Fa
µ⌫t

a�µ⌫)↵�thattransformsasa(1,0)undertheLorentz

group,andwritetheHermitian-conjugateofEq.(35)withF˙↵˙�,a(0,1)undertheLorentz

group,asforexample,O†
3F+=O3F�=�1

4trF˙�
˙↵F�̇

˙�
F˙↵

�̇
.FromEq.(35)itisclearthatany

diagramwithanexternalF↵�respectsholomorphy,asitcanonlygeneratetheoperatorsof

Eq.(35)andnottheirHermitianconjugates.One-loopcontributionsfromOFF+inwhich

H†tatbHiskeptamongtheexternalfields,however,donotnecessarilyrespectholomorphy.

Anexplicitcalculationisneeded,andwhilecontributionstoOFF+vanishbythereasoning

givenin[1],contributionstoOyarefoundnottobeholomorphic.

Followingourprevioussupersymmetricapproach,itisquitesimpletocheckwhetheror

notloopcontributionsareholomorphic.IntheESFT,holomorphyistriviallyrespectedas

super-operatorswithan⌘†-spurionrenormalizeamongthemselvesandcannotinducethe

Hermitian-conjugatesuper-operatorssincethosecontainan⌘,andviceversa.Thismeans
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6 Loops I: Unitarity methods 6.1 Unitarity and the generalized unitarity method
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Figure 2: The sum of residues from all Feynman diagrams with propagators `2 and (`�p1�p2)2 on-shell
must give the product of two tree-amplitudes.

6.1 Unitarity and the generalized unitarity method

We begin with a concrete example: the color-ordered planar 5-point 1-loop gluon amplitude in

pure Yang-Mills theory. Suppose we identify31 the loop-momentum such that in each Feynman

diagram, ` is the momentum that flows between legs 1 and 5, as indicated in Figure 2. Then

we can collect all the distinct Feynman diagrams under one integral,Z
dD`

X
j

Jj . (6.2)

The integrands Jj take the form indicated in (6.1). To compute the full amplitude we need to

integrate ` over R4 (after Wick rotation from R1,3), but let us focus on the subplane where the

loop-momentum satisfies the two cut conditions

`2 = (` � p1 � p2)
2 = 0 . (6.3)

On this subplane, integrands of the form

Ji =
1

Si

cini

· · · (`2) · · · (` � p1 � p2)2 · · · (6.4)

become singular. The singularity corresponds to a kinematic configuration where two propa-

gators go on-shell. So the sum of the corresponding residues from all such integrands must be

equivalent to the product of two on-shell tree amplitudes, as shown schematically in Figure 2.

In other words, if the enemy gives us an integrand and claims that it corresponds to the 1-loop

amplitude of some (unitary) theory, we can test the claim by checking if the integrand factorizes

correctly into products of tree amplitudes. This way, our knowledge of tree amplitudes can be

recycled into information about the loop-integrand! The operation of taking loop propagators

on-shell is called a unitarity cut. It originates from the unitary constraint of the S-matrix.

To see how, recall that unitarity requires S†S = 1. Writing S = 1 + iT , where T represents

the interacting part of the S-matrix, unitarity requires �i(T � T †) = T †T . If we examine

this constraint order by order in perturbation theory, it tells us that the imaginary part of the

T -matrix at a given order is related to the product of lower-order results. In particular, the

imaginary part of the 1-loop amplitude is given by a product of two tree amplitudes. This is

31More about this choice in Section 7.1.
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Holomorphy:
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3.2 Holomorphy of the anomalous dimensions

It has been recently shown in Ref. [10], based on explicit calculations, that the anomalous

dimension matrix respects, to a large extent, holomorphy. Here we would like to show how to

derive some of these properties using our ESFT approach. In particular, we will derive that,

with the exception of one case, the one-loop anomalous dimensions of the complex Wilson-

coe�cients ci = {c3F+ , cFF+ , cD, cy, cyy, cud
R } do not depend on their complex-conjugates c⇤

j :

@�ci

@c⇤
j

= 0 . (34)

We start by showing when Eq. (34) is satisfied just by simple inspection of the SM diagrams.

For example, it is easy to realize that holomorphy must be respected in contributions from

dimension-six operators in which fermions with a given chirality, e.g., f↵ or f↵f 0
�, are kept

as external legs; indeed, the corresponding Hermitian-conjugate operator can only contribute

to operators with fermions in the opposite chirality. Interestingly, we can extend the same

argument to operators with field-strengths if we write the loop-operators as

O3F+ = �1

4
tr F �

↵ F �
� F ↵

� , OFF+ =
1

4
H†tatbH(Fa)↵�(F b)�↵ , OD = H†f↵(Fa)↵�taf 0

� , (35)

where we have defined F↵� ⌘ (F a
µ⌫t

a�µ⌫)↵� that transforms as a (1,0) under the Lorentz

group, and write the Hermitian-conjugate of Eq. (35) with F ↵̇�̇, a (0,1) under the Lorentz

group, as for example, O†
3F+ = O3F� = �1

4tr F �̇
↵̇ F �̇

�̇
F ↵̇

�̇
. From Eq. (35) it is clear that any

diagram with an external F↵� respects holomorphy, as it can only generate the operators of

Eq. (35) and not their Hermitian conjugates. One-loop contributions from OFF+ in which

H†tatbH is kept among the external fields, however, do not necessarily respect holomorphy.

An explicit calculation is needed, and while contributions to OFF+ vanish by the reasoning

given in [1], contributions to Oy are found not to be holomorphic.

Following our previous supersymmetric approach, it is quite simple to check whether or

not loop contributions are holomorphic. In the ESFT, holomorphy is trivially respected as

super-operators with an ⌘†-spurion renormalize among themselves and cannot induce the

Hermitian-conjugate super-operators since those contain an ⌘, and vice versa. This means
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6 Loops I: Unitarity methods 6.1 Unitarity and the generalized unitarity method
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Figure 2: The sum of residues from all Feynman diagrams with propagators `2 and (`�p1�p2)2 on-shell
must give the product of two tree-amplitudes.

6.1 Unitarity and the generalized unitarity method

We begin with a concrete example: the color-ordered planar 5-point 1-loop gluon amplitude in

pure Yang-Mills theory. Suppose we identify31 the loop-momentum such that in each Feynman

diagram, ` is the momentum that flows between legs 1 and 5, as indicated in Figure 2. Then

we can collect all the distinct Feynman diagrams under one integral,Z
dD`

X
j

Jj . (6.2)

The integrands Jj take the form indicated in (6.1). To compute the full amplitude we need to

integrate ` over R4 (after Wick rotation from R1,3), but let us focus on the subplane where the

loop-momentum satisfies the two cut conditions

`2 = (` � p1 � p2)
2 = 0 . (6.3)

On this subplane, integrands of the form

Ji =
1

Si

cini

· · · (`2) · · · (` � p1 � p2)2 · · · (6.4)

become singular. The singularity corresponds to a kinematic configuration where two propa-

gators go on-shell. So the sum of the corresponding residues from all such integrands must be

equivalent to the product of two on-shell tree amplitudes, as shown schematically in Figure 2.

In other words, if the enemy gives us an integrand and claims that it corresponds to the 1-loop

amplitude of some (unitary) theory, we can test the claim by checking if the integrand factorizes

correctly into products of tree amplitudes. This way, our knowledge of tree amplitudes can be

recycled into information about the loop-integrand! The operation of taking loop propagators

on-shell is called a unitarity cut. It originates from the unitary constraint of the S-matrix.

To see how, recall that unitarity requires S†S = 1. Writing S = 1 + iT , where T represents

the interacting part of the S-matrix, unitarity requires �i(T � T †) = T †T . If we examine

this constraint order by order in perturbation theory, it tells us that the imaginary part of the

T -matrix at a given order is related to the product of lower-order results. In particular, the

imaginary part of the 1-loop amplitude is given by a product of two tree amplitudes. This is

31More about this choice in Section 7.1.
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3.2 Holomorphy of the anomalous dimensions

It has been recently shown in Ref. [10], based on explicit calculations, that the anomalous

dimension matrix respects, to a large extent, holomorphy. Here we would like to show how to

derive some of these properties using our ESFT approach. In particular, we will derive that,

with the exception of one case, the one-loop anomalous dimensions of the complex Wilson-

coe�cients ci = {c3F+ , cFF+ , cD, cy, cyy, cud
R } do not depend on their complex-conjugates c⇤

j :

@�ci

@c⇤
j

= 0 . (34)

We start by showing when Eq. (34) is satisfied just by simple inspection of the SM diagrams.

For example, it is easy to realize that holomorphy must be respected in contributions from

dimension-six operators in which fermions with a given chirality, e.g., f↵ or f↵f 0
�, are kept

as external legs; indeed, the corresponding Hermitian-conjugate operator can only contribute

to operators with fermions in the opposite chirality. Interestingly, we can extend the same

argument to operators with field-strengths if we write the loop-operators as

O3F+ = �1

4
tr F �

↵ F �
� F ↵

� , OFF+ =
1

4
H†tatbH(Fa)↵�(F b)�↵ , OD = H†f↵(Fa)↵�taf 0

� , (35)

where we have defined F↵� ⌘ (F a
µ⌫t

a�µ⌫)↵� that transforms as a (1,0) under the Lorentz

group, and write the Hermitian-conjugate of Eq. (35) with F ↵̇�̇, a (0,1) under the Lorentz

group, as for example, O†
3F+ = O3F� = �1

4tr F �̇
↵̇ F �̇

�̇
F ↵̇

�̇
. From Eq. (35) it is clear that any

diagram with an external F↵� respects holomorphy, as it can only generate the operators of

Eq. (35) and not their Hermitian conjugates. One-loop contributions from OFF+ in which

H†tatbH is kept among the external fields, however, do not necessarily respect holomorphy.

An explicit calculation is needed, and while contributions to OFF+ vanish by the reasoning

given in [1], contributions to Oy are found not to be holomorphic.

Following our previous supersymmetric approach, it is quite simple to check whether or

not loop contributions are holomorphic. In the ESFT, holomorphy is trivially respected as

super-operators with an ⌘†-spurion renormalize among themselves and cannot induce the

Hermitian-conjugate super-operators since those contain an ⌘, and vice versa. This means
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Eq.(35)andnottheirHermitianconjugates.One-loopcontributionsfromOFF+inwhich
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Figure 2: The sum of residues from all Feynman diagrams with propagators `2 and (`�p1�p2)2 on-shell
must give the product of two tree-amplitudes.

6.1 Unitarity and the generalized unitarity method

We begin with a concrete example: the color-ordered planar 5-point 1-loop gluon amplitude in

pure Yang-Mills theory. Suppose we identify31 the loop-momentum such that in each Feynman

diagram, ` is the momentum that flows between legs 1 and 5, as indicated in Figure 2. Then

we can collect all the distinct Feynman diagrams under one integral,Z
dD`

X
j

Jj . (6.2)

The integrands Jj take the form indicated in (6.1). To compute the full amplitude we need to

integrate ` over R4 (after Wick rotation from R1,3), but let us focus on the subplane where the

loop-momentum satisfies the two cut conditions

`2 = (` � p1 � p2)
2 = 0 . (6.3)

On this subplane, integrands of the form

Ji =
1

Si

cini

· · · (`2) · · · (` � p1 � p2)2 · · · (6.4)

become singular. The singularity corresponds to a kinematic configuration where two propa-

gators go on-shell. So the sum of the corresponding residues from all such integrands must be

equivalent to the product of two on-shell tree amplitudes, as shown schematically in Figure 2.

In other words, if the enemy gives us an integrand and claims that it corresponds to the 1-loop

amplitude of some (unitary) theory, we can test the claim by checking if the integrand factorizes

correctly into products of tree amplitudes. This way, our knowledge of tree amplitudes can be

recycled into information about the loop-integrand! The operation of taking loop propagators

on-shell is called a unitarity cut. It originates from the unitary constraint of the S-matrix.

To see how, recall that unitarity requires S†S = 1. Writing S = 1 + iT , where T represents

the interacting part of the S-matrix, unitarity requires �i(T � T †) = T †T . If we examine

this constraint order by order in perturbation theory, it tells us that the imaginary part of the

T -matrix at a given order is related to the product of lower-order results. In particular, the

imaginary part of the 1-loop amplitude is given by a product of two tree amplitudes. This is

31More about this choice in Section 7.1.
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up to one exception!

Holomorphy:
Again, we can either look at SM field loop or super-partner loop: 

The simplest, the diagrams with fermions, as you can follow 
the fermion-line to see if it changes direction. Only cases:
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Figure 3: Non-holomorphic contribution to Oy.

3.2 Holomorphy of the anomalous dimensions

It has been recently shown in Ref. [10], based on explicit calculations, that the anomalous

dimension matrix respects, to a large extent, holomorphy. Here we would like to show how to

derive some of these properties using our ESFT approach. In particular, we will derive that,

with the exception of one case, the one-loop anomalous dimensions of the complex Wilson-

coe�cients ci = {c3F+ , cFF+ , cD, cy, cyy, cud
R } do not depend on their complex-conjugates c⇤

j :

@�ci

@c⇤
j

= 0 . (34)

We start by showing when Eq. (34) is satisfied just by simple inspection of the SM diagrams.

For example, it is easy to realize that holomorphy must be respected in contributions from

dimension-six operators in which fermions with a given chirality, e.g., f↵ or f↵f 0
�, are kept

as external legs; indeed, the corresponding Hermitian-conjugate operator can only contribute

to operators with fermions in the opposite chirality. Interestingly, we can extend the same

argument to operators with field-strengths if we write the loop-operators as

O3F+ = �1

4
tr F �

↵ F �
� F ↵

� , OFF+ =
1

4
H†tatbH(Fa)↵�(F b)�↵ , OD = H†f↵(Fa)↵�taf 0

� , (35)

where we have defined F↵� ⌘ (F a
µ⌫t

a�µ⌫)↵� that transforms as a (1,0) under the Lorentz

group, and write the Hermitian-conjugate of Eq. (35) with F ↵̇�̇, a (0,1) under the Lorentz

group, as for example, O†
3F+ = O3F� = �1

4tr F �̇
↵̇ F �̇

�̇
F ↵̇

�̇
. From Eq. (35) it is clear that any

diagram with an external F↵� respects holomorphy, as it can only generate the operators of

Eq. (35) and not their Hermitian conjugates. One-loop contributions from OFF+ in which

H†tatbH is kept among the external fields, however, do not necessarily respect holomorphy.

An explicit calculation is needed, and while contributions to OFF+ vanish by the reasoning

given in [1], contributions to Oy are found not to be holomorphic.

Following our previous supersymmetric approach, it is quite simple to check whether or

not loop contributions are holomorphic. In the ESFT, holomorphy is trivially respected as

super-operators with an ⌘†-spurion renormalize among themselves and cannot induce the

Hermitian-conjugate super-operators since those contain an ⌘, and vice versa. This means
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Holomorphy is preserved beyond SUSY
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3.2Holomorphyoftheanomalousdimensions

IthasbeenrecentlyshowninRef.[10],basedonexplicitcalculations,thattheanomalous

dimensionmatrixrespects,toalargeextent,holomorphy.Herewewouldliketoshowhowto

derivesomeofthesepropertiesusingourESFTapproach.Inparticular,wewillderivethat,

withtheexceptionofonecase,theone-loopanomalousdimensionsofthecomplexWilson-

coe�cientsci={c3F+,cFF+,cD,cy,cyy,cud
R}donotdependontheircomplex-conjugatesc⇤

j:

@�ci

@c⇤
j

=0.(34)

WestartbyshowingwhenEq.(34)issatisfiedjustbysimpleinspectionoftheSMdiagrams.

Forexample,itiseasytorealizethatholomorphymustberespectedincontributionsfrom

dimension-sixoperatorsinwhichfermionswithagivenchirality,e.g.,f↵orf↵f0
�,arekept

asexternallegs;indeed,thecorrespondingHermitian-conjugateoperatorcanonlycontribute

tooperatorswithfermionsintheoppositechirality.Interestingly,wecanextendthesame

argumenttooperatorswithfield-strengthsifwewritetheloop-operatorsas

O3F+=�1

4
trF�

↵F�
�F↵

�,OFF+=
1

4
H†tatbH(Fa)↵�(Fb)�↵,OD=H†f↵(Fa)↵�taf0

�,(35)

wherewehavedefinedF↵�⌘(Fa
µ⌫t

a�µ⌫)↵�thattransformsasa(1,0)undertheLorentz

group,andwritetheHermitian-conjugateofEq.(35)withF˙↵˙�,a(0,1)undertheLorentz

group,asforexample,O†
3F+=O3F�=�1

4trF˙�
˙↵F�̇

˙�
F˙↵

�̇
.FromEq.(35)itisclearthatany

diagramwithanexternalF↵�respectsholomorphy,asitcanonlygeneratetheoperatorsof

Eq.(35)andnottheirHermitianconjugates.One-loopcontributionsfromOFF+inwhich

H†tatbHiskeptamongtheexternalfields,however,donotnecessarilyrespectholomorphy.

Anexplicitcalculationisneeded,andwhilecontributionstoOFF+vanishbythereasoning

givenin[1],contributionstoOyarefoundnottobeholomorphic.

Followingourprevioussupersymmetricapproach,itisquitesimpletocheckwhetheror

notloopcontributionsareholomorphic.IntheESFT,holomorphyistriviallyrespectedas

super-operatorswithan⌘†-spurionrenormalizeamongthemselvesandcannotinducethe

Hermitian-conjugatesuper-operatorssincethosecontainan⌘,andviceversa.Thismeans
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Figure 2: The sum of residues from all Feynman diagrams with propagators `2 and (`�p1�p2)2 on-shell
must give the product of two tree-amplitudes.

6.1 Unitarity and the generalized unitarity method

We begin with a concrete example: the color-ordered planar 5-point 1-loop gluon amplitude in

pure Yang-Mills theory. Suppose we identify31 the loop-momentum such that in each Feynman

diagram, ` is the momentum that flows between legs 1 and 5, as indicated in Figure 2. Then

we can collect all the distinct Feynman diagrams under one integral,Z
dD`

X
j

Jj . (6.2)

The integrands Jj take the form indicated in (6.1). To compute the full amplitude we need to

integrate ` over R4 (after Wick rotation from R1,3), but let us focus on the subplane where the

loop-momentum satisfies the two cut conditions

`2 = (` � p1 � p2)
2 = 0 . (6.3)

On this subplane, integrands of the form

Ji =
1

Si

cini

· · · (`2) · · · (` � p1 � p2)2 · · · (6.4)

become singular. The singularity corresponds to a kinematic configuration where two propa-

gators go on-shell. So the sum of the corresponding residues from all such integrands must be

equivalent to the product of two on-shell tree amplitudes, as shown schematically in Figure 2.

In other words, if the enemy gives us an integrand and claims that it corresponds to the 1-loop

amplitude of some (unitary) theory, we can test the claim by checking if the integrand factorizes

correctly into products of tree amplitudes. This way, our knowledge of tree amplitudes can be

recycled into information about the loop-integrand! The operation of taking loop propagators

on-shell is called a unitarity cut. It originates from the unitary constraint of the S-matrix.

To see how, recall that unitarity requires S†S = 1. Writing S = 1 + iT , where T represents

the interacting part of the S-matrix, unitarity requires �i(T � T †) = T †T . If we examine

this constraint order by order in perturbation theory, it tells us that the imaginary part of the

T -matrix at a given order is related to the product of lower-order results. In particular, the

imaginary part of the 1-loop amplitude is given by a product of two tree amplitudes. This is

31More about this choice in Section 7.1.
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Δn=ni-nj

Δh=hi-hj
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W↵ = �✓2OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:

�

�†eV��
�

�

Q†eVQQ
�

= ✓̄2✓2O�q + · · · ,
�

Q†eVQQ
�

�

Q†eVQQ
�

= �1

2
✓̄2✓2O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:

�

�†eV��
�

�QU = ✓2Oyu + · · · .
(18)
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n=4; h=2
n=4; h=0

also explained by susy techniques: arXiv:1412.7151

I.  No 4-fermion (ψγμψ)2  corrections to dipoles
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W↵ = �✓2OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:
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✓̄2✓2O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:
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�QU = ✓2Oyu + · · · .
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also explained by susy techniques: arXiv:1412.7151

I.  No 4-fermion (ψψ)2  corrections to dipoles
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W↵ = �✓2OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:
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Q†eVQQ
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= ✓̄2✓2O�q + · · · ,
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Q†eVQQ
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2
✓̄2✓2O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:
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�†eV��
�

�QU = ✓2Oyu + · · · .
(18)
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from scalar leptoquarks: 
 (3,2,7/6),(3,1,-1/3)  

& extra Higgses

also explained by susy techniques: arXiv:1412.7151

Holomorphy:
Again, we can either look at SM field loop or super-partner loop: 

The simplest, the diagrams with fermions, as you can follow 
the fermion-line to see if it changes direction. Only cases:
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ũ

q

u

Figure 3: Non-holomorphic contribution to Oy.

3.2 Holomorphy of the anomalous dimensions

It has been recently shown in Ref. [10], based on explicit calculations, that the anomalous

dimension matrix respects, to a large extent, holomorphy. Here we would like to show how to

derive some of these properties using our ESFT approach. In particular, we will derive that,

with the exception of one case, the one-loop anomalous dimensions of the complex Wilson-

coe�cients ci = {c3F+ , cFF+ , cD, cy, cyy, cud
R } do not depend on their complex-conjugates c⇤

j :

@�ci

@c⇤
j

= 0 . (34)

We start by showing when Eq. (34) is satisfied just by simple inspection of the SM diagrams.

For example, it is easy to realize that holomorphy must be respected in contributions from

dimension-six operators in which fermions with a given chirality, e.g., f↵ or f↵f 0
�, are kept

as external legs; indeed, the corresponding Hermitian-conjugate operator can only contribute

to operators with fermions in the opposite chirality. Interestingly, we can extend the same

argument to operators with field-strengths if we write the loop-operators as

O3F+ = �1

4
tr F �

↵ F �
� F ↵

� , OFF+ =
1

4
H†tatbH(Fa)↵�(F b)�↵ , OD = H†f↵(Fa)↵�taf 0

� , (35)

where we have defined F↵� ⌘ (F a
µ⌫t

a�µ⌫)↵� that transforms as a (1,0) under the Lorentz

group, and write the Hermitian-conjugate of Eq. (35) with F ↵̇�̇, a (0,1) under the Lorentz

group, as for example, O†
3F+ = O3F� = �1

4tr F �̇
↵̇ F �̇

�̇
F ↵̇

�̇
. From Eq. (35) it is clear that any

diagram with an external F↵� respects holomorphy, as it can only generate the operators of

Eq. (35) and not their Hermitian conjugates. One-loop contributions from OFF+ in which

H†tatbH is kept among the external fields, however, do not necessarily respect holomorphy.

An explicit calculation is needed, and while contributions to OFF+ vanish by the reasoning

given in [1], contributions to Oy are found not to be holomorphic.

Following our previous supersymmetric approach, it is quite simple to check whether or

not loop contributions are holomorphic. In the ESFT, holomorphy is trivially respected as

super-operators with an ⌘†-spurion renormalize among themselves and cannot induce the

Hermitian-conjugate super-operators since those contain an ⌘, and vice versa. This means
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3.2Holomorphyoftheanomalousdimensions

IthasbeenrecentlyshowninRef.[10],basedonexplicitcalculations,thattheanomalous

dimensionmatrixrespects,toalargeextent,holomorphy.Herewewouldliketoshowhowto

derivesomeofthesepropertiesusingourESFTapproach.Inparticular,wewillderivethat,

withtheexceptionofonecase,theone-loopanomalousdimensionsofthecomplexWilson-
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W↵ = �✓2OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:

�

�†eV��
�

�

Q†eVQQ
�

= ✓̄2✓2O�q + · · · ,
�

Q†eVQQ
�

�

Q†eVQQ
�

= �1

2
✓̄2✓2O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:

�

�†eV��
�

�QU = ✓2Oyu + · · · .
(18)
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Figure 3: Non-holomorphic contribution to Oy.

3.2 Holomorphy of the anomalous dimensions

It has been recently shown in Ref. [10], based on explicit calculations, that the anomalous

dimension matrix respects, to a large extent, holomorphy. Here we would like to show how to

derive some of these properties using our ESFT approach. In particular, we will derive that,

with the exception of one case, the one-loop anomalous dimensions of the complex Wilson-

coe�cients ci = {c3F+ , cFF+ , cD, cy, cyy, cud
R } do not depend on their complex-conjugates c⇤

j :

@�ci

@c⇤
j

= 0 . (34)

We start by showing when Eq. (34) is satisfied just by simple inspection of the SM diagrams.

For example, it is easy to realize that holomorphy must be respected in contributions from

dimension-six operators in which fermions with a given chirality, e.g., f↵ or f↵f 0
�, are kept

as external legs; indeed, the corresponding Hermitian-conjugate operator can only contribute

to operators with fermions in the opposite chirality. Interestingly, we can extend the same

argument to operators with field-strengths if we write the loop-operators as

O3F+ = �1

4
tr F �

↵ F �
� F ↵

� , OFF+ =
1

4
H†tatbH(Fa)↵�(F b)�↵ , OD = H†f↵(Fa)↵�taf 0

� , (35)

where we have defined F↵� ⌘ (F a
µ⌫t

a�µ⌫)↵� that transforms as a (1,0) under the Lorentz

group, and write the Hermitian-conjugate of Eq. (35) with F ↵̇�̇, a (0,1) under the Lorentz

group, as for example, O†
3F+ = O3F� = �1

4tr F �̇
↵̇ F �̇

�̇
F ↵̇

�̇
. From Eq. (35) it is clear that any

diagram with an external F↵� respects holomorphy, as it can only generate the operators of

Eq. (35) and not their Hermitian conjugates. One-loop contributions from OFF+ in which

H†tatbH is kept among the external fields, however, do not necessarily respect holomorphy.

An explicit calculation is needed, and while contributions to OFF+ vanish by the reasoning

given in [1], contributions to Oy are found not to be holomorphic.

Following our previous supersymmetric approach, it is quite simple to check whether or

not loop contributions are holomorphic. In the ESFT, holomorphy is trivially respected as

super-operators with an ⌘†-spurion renormalize among themselves and cannot induce the

Hermitian-conjugate super-operators since those contain an ⌘, and vice versa. This means
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Anexplicitcalculationisneeded,andwhilecontributionstoOFF+vanishbythereasoning
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W↵ = �✓2OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:

�

�†eV��
�

�

Q†eVQQ
�

= ✓̄2✓2O�q + · · · ,
�

Q†eVQQ
�

�

Q†eVQQ
�

= �1

2
✓̄2✓2O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:

�

�†eV��
�

�QU = ✓2Oyu + · · · .
(18)

7

F↵� 
↵ �h
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W↵ = �✓2OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:

�

�†eV��
�

�

Q†eVQQ
�

= ✓̄2✓2O�q + · · · ,
�

Q†eVQQ
�

�

Q†eVQQ
�

= �1

2
✓̄2✓2O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:

�
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�QU = ✓2Oyu + · · · .
(18)
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thattheJJ-operatorsO4fandO�fdonotrenormalizetheloop-operators.Forthispurpose,

itisimportanttorecallthatwecanwritefour-fermionoperators,suchas(q†̄�µq)(u
†̄�µu),in

theequivalentformq†u†qu.Fromthis,itisobviousthatclosingaloopoffermionscanonly

giveoperatorscontainingtheLorentzstructuref†forquthatcannotbecompletedtogive

adipoleoperator(noritsequivalentforms,q�µ⌫�⇢D
⇢q†Fµ⌫orDµ�qDµuH).Forthecaseof

O�f,theabsenceofrenormalizationofthedipoleoperator,asforexamplefromdiagrams

liketheoneinFig.1,canbeprovedjustbyrealizingthatwecanalwayskeeptheLorentz

structure�̄µDµ(�f)externaltotheloop;thisLorentzstructurecannotbecompletedtoform

adipoleoperator.ThecontributionofO�ftoOFFisalsoabsent,ascanbededucedfrom

Eq.(14):thefirstterm,afterclosingthefermionloop,givesthewrongLorentzstructure

togenerateOFF,whilethesecondtermgivesaninteractionwithtoomanyfieldsifweuse

thefermionEOM.Finally,OyucanonlycontributetotheLorentzstructure�qu,nottothe

dipoleoneinEq.(15).

WecanbemoresystematicandcompleteusingourESFTapproach.Letusseefirsthow

theoperatorsofEq.(12)canbeembeddedinsuper-operators.Byembeddingqanduinthe

chiralsupermultipletsQandU,wefindthatthedipoleloop-operatormustarisefromthe

✓2-termofanon-chiralsuperfield:

�(Q
$
D↵U)W↵=�✓2OD+···.

(16)

AmongtheJJ-operatorsofEq.(13),twoofthemcanarisefromsupersymmetricD-terms

andarethensupersymmetry-preserving:

�

�†eV��
�

�

Q†eVQQ
�

=✓̄2✓2O�q+···,
�

Q†eVQQ
�

�

Q†eVQQ
�

=�1

2
✓̄2✓2O4q+···,(17)

andsimilaroperatorsforQ!U,whereweagainusetheshort-handnotationVQ=2QqV.

Nevertheless,oneoftheJJ-operatorsmustcomefromthe✓2-componentofanon-chiral

superfieldthatisnotinvariantundersupersymmetry:

�

�†eV��
�

�QU=✓2Oyu+···.
(18)
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  Bottom-up approach to Goldstone amplitudes:

Only assume:

a) πi ϵ reps of H   (no coset input) 

b) A(1234)→qi    (for  qi→0)  (Adler’s zeros)

II.

in collaboration with P. Baratella & B. Harling
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= f(s, t,u)TIJKL + · · ·
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Tensor invariants (for π ϵ Adj of SU(N)):

●I

J

L

K

inv. tensors

invariant  
under crossingkin. functions

● single trace (6):

● double trace (3):

Figure 1: Representation of the amplitude AIJKL. All momenta are taken incoming.

2.1 (a) Adjoint of SU(N)

2.1.1 Invariant tensors

We start by listing the SU(N)-invariant tensors with four indexes in the adjoint. These can
be constructed out of traces of generators (tI)ij. With four indexes, given that tr(tI) = 0,
one can have only single or double traces

tr(tItJtKtL) , tr(tItJ) tr(tKtL) (2)

plus permutations. The (naively, at least) inequivalent permutations are 3!=6 for the single
traces (due to the ciclicity of the trace, one can always put I in the first position) and 3 for
the double traces.

The double traces are proportional to we will call the “��” tensors

�IJ�KL , �IL�JK , �IK�JL . (3)

For SU(N = 2, 3) not all the 9 tensors are independent. For N = 2, all single traces can be
expressed with double traces, and the independent tensors are 3. For N = 3, the permutation
invariant combination of the single traces is proportional to the sum of the �� tensors

X

�2S4

tr(t�·It�·Jt�·Kt�·L) = �IJ�KL + �IL�JK + �IK�JL (N = 3) (4)

and the independent tensors are 8. Notice that this expression is valid for generators nor-
malized as tr(tItJ) = �IJ/2. For N > 3, all 9 tensors are independent.

We call ⌧ (↵)IJKL a generic invariant tensors.

2.1.2 Kinematic invariant functions

Lorentz invariant 4pt amplitudes for scalars are function of the Mandelstam variables

s = 2p
1

· p
2

, t = 2p
1

· p
4

, u = 2p
1

· p
3

(5)

which are subject to the constraint, coming from momentum conservation

s+ t+ u = 0 . (6)

2

Figure 1: Representation of the amplitude AIJKL. All momenta are taken incoming.
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= f(s, t,u)TIJKL + · · ·
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<latexit sha1_base64="UDdXPv3C+aa859VN7uyiof5JyH0=">AAAB+HicbVBNS8NAEJ34WetHox69LBbBU0mqoMeqF49V7Ac0oWy2m3bpZhN2N0IN/SVePCji1Z/izX/jps1BWx8MPN6bYWZekHCmtON8Wyura+sbm6Wt8vbO7l7F3j9oqziVhLZIzGPZDbCinAna0kxz2k0kxVHAaScY3+R+55FKxWLxoCcJ9SM8FCxkBGsj9e2KF4Qo8wjm6Gravy/37apTc2ZAy8QtSBUKNPv2lzeISRpRoQnHSvVcJ9F+hqVmhNNp2UsVTTAZ4yHtGSpwRJWfzQ6fohOjDFAYS1NCo5n6eyLDkVKTKDCdEdYjtejl4n9eL9XhpZ8xkaSaCjJfFKYc6RjlKaABk5RoPjEEE8nMrYiMsMREm6zyENzFl5dJu15zz2r1u/Nq47qIowRHcAyn4MIFNOAWmtACAik8wyu8WU/Wi/VufcxbV6xi5hD+wPr8AT1Wkik=</latexit>

● ●

thanks to Jacobi identity & s+t+u=0
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⨋ (uLuR+tLtR) + ⨋ (uLtR+tLuR)=

● single trace:



ONE LOOP

+ crossing

= (s2 + t2 + u2) ( Tr[ FI FJ FK FL
 ] + crossing )

I

J K

L

● ●

Unclear why so simple!

(FI)JK = fIJK

● single trace:



ONE LOOP

+ crossing

= (s2 + t2 + u2) ( Tr[ FI FJ FK FL
 ] + crossing )

I

J K

L

● ●

Unclear why so simple!

(FI)JK = fIJK

● single trace:

● double trace:

= ((3N-7)/2 s2 + t2 + u2) δIJ δKL + crossing



Conclusions

• Amplitude methods seems quite suited for calculating 
indirect BSM effects  ☛ e.g. anomalous dimensions of O6 

• Further work:  Automatize AD calculations, going beyond 
one-loop, unravel the πmpn structure, …

• Helps to obtain selections rules  

• Allows to construct models from bottom-up


