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The physics of the early universe is encoded in the spatial correlations between
cosmological structures at late times:
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A central challenge of modern cosmology is to construct a consistent history
of the universe that explains these correlations:
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Time Without Time

All cosmological correlations can be traced back to the spacelike boundary of
the inflationary quasi-de Sitter spacetime:
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The time dependence of bulk interactions is encoded in the momentum
dependence of these boundary correlators.

In this talk, | will describe a new approach to determine these correlations
from consistency conditions alone = bootstrap.



A Lamppost

We will work under the lamppost of single-field slow-roll inflation with
weak couplings to massive particles:
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This provide a maximal degree of theoretical control, but limits the strength
of the allowed interactions:

InL < 1



The S-Matrix Bootstrap

We will take inspiration from the S-matrix bootstrap, where the structure of
scattering amplitudes is fixed by Lorentz invariance, locality and unitarity:
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* No Lagrangian or Feynman diagrams are needed to derive this.
e Basic principles allow only a small menu of possibilities.



The Cosmological Bootstrap
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fixed by
symmetries and singularities

* No Lagrangian or Feynman diagrams are needed to derive this.
e Basic principles allow only a small menu of possibilities.



Outline

The fundamental object will be the 4-pt function
of conformally-coupled scalars in de Sitter space.

m? = 2H?

M,S =0

Arkani-Hamed, DB, Lee and Pimentel [2018]



Outline

A weight-shifting operator relates this to the 4-pt m? =0
function of massless scalars in de Sitter space. T
weight-shifting
operator
m? = 2H?

M,S =0

Arkani-Hamed, DB, Lee and Pimentel [2018]



Outline

A spin-raising operator relates this to m2 =0
the exchange of spinning particles. T
weight-shifting
operator
m? = 2H?

_ (\ ___ sSpin-raising
M, 5 =0 operator 5 >0

Arkani-Hamed, DB, Lee and Pimentel [2018]



Outline

A spin-raising operator relates this to m2 =0
correlators of external fields with spin. T
weight-shifting
operator
spin-raising I
O < operator ¢ ¢ ¢ ¢ 5 5
m® = 2H

_ (\ ___ sSpin-raising
M,5=0 operator 5 >0

Arkani-Hamed, DB, Lee and Pimentel [2018]



Outline

Evaluating one leg on the background m2 =0
gives inflationary 3-pt functions. T
weight-shifting
operator
66 6o 0o |
m* = 2H?

soft limit — @(t)

_ (\ ___ sSpin-raising
M, 5 =0 operator 5 >0

Arkani-Hamed, DB, Lee and Pimentel [2018]



De Sitter Four-Point Functions



Symmetries

Boundary correlators in de Sitter are constrained by conformal symmetry:

rotations
+
translations
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Symmetries

The Ward identity of special conformal transformations implies

(A, — A)F =0

where A, = v?(1 —u?)02 — 2u®0, .

Arkani-Hamed, DB, Lee and Pimentel [2018]



Singularities

For the Bunch-Davies vacuum, the solutions should have no singularities
in the folded limit:

regular

Together with the correct normalization of a factorization channel, this
provides the boundary conditions of the problem.

Arkani-Hamed, DB, Lee and Pimentel [2018]



Exchange Interactions

For tree exchange, the conformal Ward identity reduces to:

(A, + MHF = F,




Exchange Interactions

For tree exchange, the conformal Ward identity reduces to:

(A, + MHF = F,




EFT Expansion

A formal solution of the conformal Ward identity is

n

EFT expansion

This misses the effect of particle production!

X FC(O) A, n FC(O)
L
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Particle Production

The boundary conditions of the problem require adding homogeneous
solutions that capture the effect of particle production:

For small u, the solution is

analytic non-analytic
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EFT expansion particle production

The general solution has a similar form.



Soft Limit

The particle production piece dominates in the collapsed limit of the four-
point function (or the squeezed limit of the three-point function):
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In this limit, the signal oscillates with a frequency given by the mass of the
new particles.

This is the analog of resonances in collider physics.

Arkani-Hamed and Maldacena [2015]
Arkani-Hamed, DB, Lee and Pimentel [2018]



Particle Spectroscopy
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Arkani-Hamed and Maldacena [2015]
Arkani-Hamed, DB, Lee and Pimentel [2018]



Exchange of Spinning Particles

with Carlos Duaso and Austin Joyce



Strategy

We wish to find differential operators that relate scalar exchange to spin
exchange:
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spin-raising
operator

It turns out that the spin raising is best implemented in embedding space
and then Fourier transformed.



CFTs in Embedding Space

Consider the following embedding of d-dimensional Euclidean space into
(d+2)-dimensional Minkowski space:

Rd

Rl,d—l—l

Dirac [1936]
Costa, Penedones, Poland and Rychkov [2011]



CFTs in Embedding Space

Lorentz transformations in embedding space become conformal
transformations on the Euclidean section:

Rd

y
Adz R1d+1

Dirac [1936]
Costa, Penedones, Poland and Rychkov [2011]



CFTs in Embedding Space

Conformal correlators in embedding space are simply the most general
Lorentz-invariant expressions with the correct scaling behavior:
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Dirac [1936]
Costa, Penedones, Poland and Rychkov [2011]



Spin-Raising Operator

Correlators of spinning fields can be written in terms of scalar seeds.
For example:

X" Xo3 — X3" X3
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In Fourier space, this becomes
i k:

Karateev, Kravchuk and Simmons-Duffin [2018]
Costa, Penedones, Poland and Rychkov [2011]



Bootstrapping Spin Exchange

Using this spin-raising operator, we have
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spin-exchange polarization spin-raising scalar-exchange
solution tensor operator solution

which can be written as

Z IIs \(angles) D<S AN By
A=0

e.g. D) = [(uv)?9,0,)°

Arkani-Hamed, DB, Lee and Pimentel [2018]



Soft Limit

The spin of the new particles is encoded in the angular dependence of the
collapsed limit:

x Pg(cos6)

This is the analog of the angular dependence of the final state particles
In collider physics.

Arkani-Hamed and Maldacena [2015]
Arkani-Hamed, DB, Lee and Pimentel [2018]



Particle Spectroscopy
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Arkani-Hamed and Maldacena [2015]
Arkani-Hamed, DB, Lee and Pimentel [2018]



Inflationary Correlators



Weight-Shifting Operators

Four-point functions with massless external fields (= inflatons) can be
obtained by acting with suitable weight-shifting operators:

I m=0 — L m=+2H
massless weight-shifting conformally
scalars operators coupled scalars

e.g. acting on the scalar exchange solution

Wi() = % (1 - kklf; akm) [1 S &u(u-)}

U2

For massless spin-2 exchange, this reproduces the four-point function
f slow-roll inflation.
Oor sio O atlo Seery, Sloth and Vernizzi [2008]
Kundu, Shukla and Trivedi [2014]
Arkani-Hamed, DB, Lee and Pimentel [2018]



Inflationary Correlators

To obtain inflationary three-point functions, we evaluate one of the external
legs on the time-dependent background:
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For spin exchange, only the longitudinal mode contributes.



Slow-Roll Inflation

e For the simplest contact interaction, (9,,¢)" , this gives

B(kfl,kQ)kS — E2 (Zk5 - Z 2k4 o Sk’ik?n)

n#*m

+ Y (kkwky — AKLEZ k)
n#m#l Creminelli [2003]

e For graviton exchange, this reproduces the standard 3-point function
of slow-roll inflation:

B(k1, ko, ks) = Z ke k2, +— > kaQ

L nFm n>m

Maldacena [2002]



Massive Particles

* The effects of massive particles during inflation are characterized in terms
of just two basis functions:

B(kla k27 k3) — WL

+ perms

This result is valid for all momenta, not just soft limits.

Arkani-Hamed, DB, Lee and Pimentel [2018]



Future Directions



Amplitudes Meet Cosmology

Remarkably, correlation functions contain scattering amplitudes:

P1
k
k1 :
: 1 P2
lim —
E—0 ED
~ Raju [2012]
where F = E ‘]gn‘ _ Maldacena and Pimentel [2011]
mn

Insights from modern scattering amplitudes methods should therefore
translate to cosmology.



Amplitudes Meet Cosmology

In special limits, correlation functions factorize into products of lower-point
amplitudes (and lower-point correlators):

AgXFg FSXAS




Amplitudes Meet Cosmology

In special limits, correlation functions factorize into products of lower-point
amplitudes (and lower-point correlators):

AgXFg FSXAS
EL ER

e Correlators of massless spinning particles can be constructed by
gluing together these factorization channels. BCFW [2005

: : . : : Benincasa and Cachazo [2007]
* Not all theories will be consistent with locality. McGady and Rodina [2014]
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Analytic Structure

The analytic structure of the solution is

Im |u]

Re|u
—1 — 0

e The branch cut arises from particle production.

e The discontinuity across the cut gives the scattering amplitude:

y Disc[F] 1 )
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Contact Interactions

The simplest solutions correspond to contact interactions:

which have poles at vanishing total energy:
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Arkani-Hamed, DB, Lee and Pimentel [2018]



