Paolo Creminelli, ICTP (Trieste)

EFT of Dark Energy and GW Observations

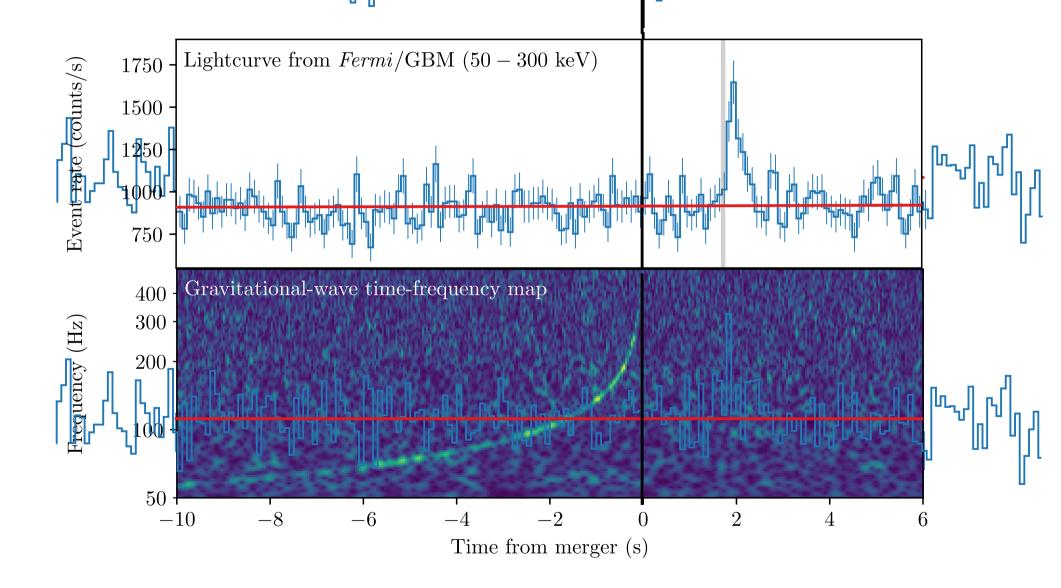
with F. Vernizzi, 1710.05877, with M. Lewandowski, G. Tambalo and F. Vernizzi, 1809.03484

+ work in progress with G. Tambalo, F. Vernizzi and V. Yingcharoenrat

Saclay, 5 June 2019

╔┍╷ᡗᡃᡳᡊᠺ᠋╟╝┍╓ᡗ᠋ᠭᡳᢋᡊᢔᡊᡅᠺ᠋ ᡛᡛᠧᡀᡪᢧᢘᡅᡀᠺᠿᢩᡗ╱ᢩᡩ**ᡔᠿᢓᡅ᠊᠋ᡔ᠋ᡃᢩ᠋᠋ᡬᠿᡛᠺ᠍ᡛᡘ**

11 1100



PJW

20

- 1-1

GWI708I7 = GRBI708I7A

 $-3 \cdot 10^{-15} \le c_g/c - 1 \le 7 \cdot 10^{-16}$

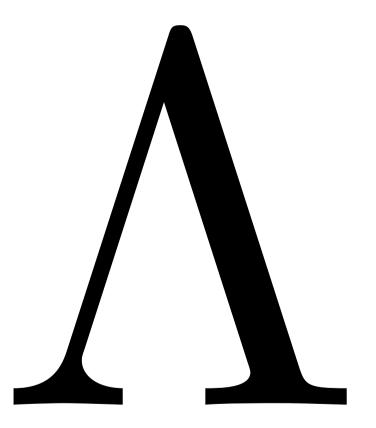
- Previous tight limit for GWs slower than light, Cherenkov radiation One-sided and only valid for high energy
- Over ~ cosmological distances: 40 Mpc

Screening can (probably) be neglected

• Low energy: $\lambda \sim 10\ 000\ \text{km}$

Reasonable one can use the same EFT as for cosmo scales

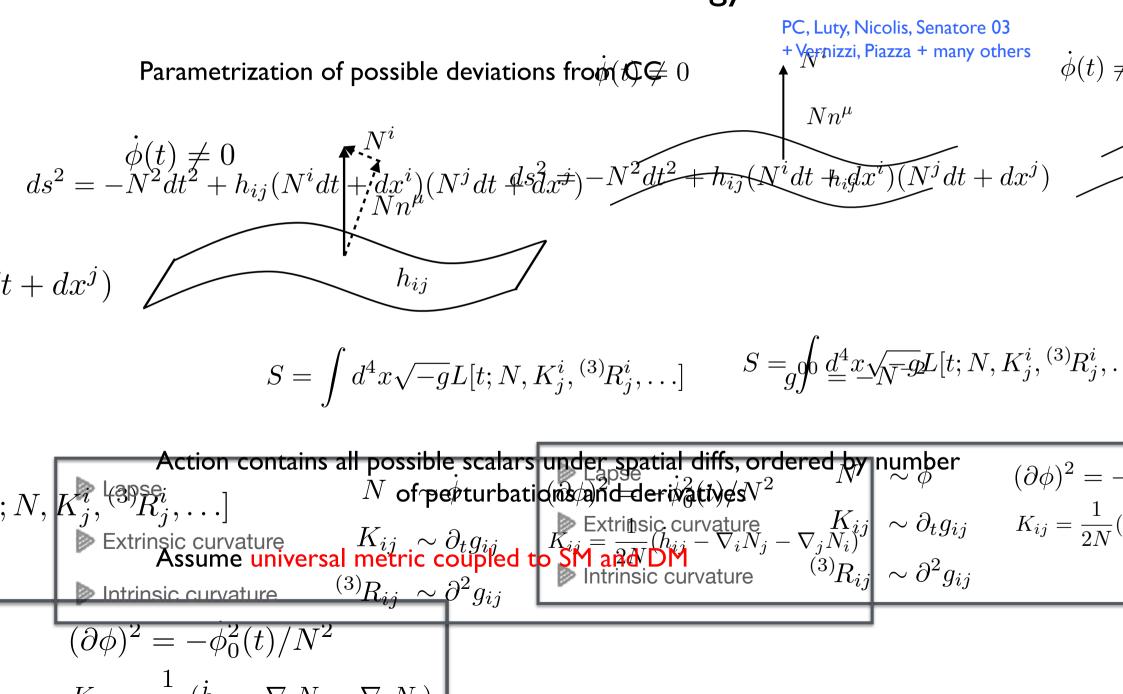
The Universe accelerates



Dark Energy = Lorentz-violating Medium

In general the speed of GWs is different from photons, GWs can be absorbed and have dispersion

Use GWs to probe Dark Energy as light probes a material



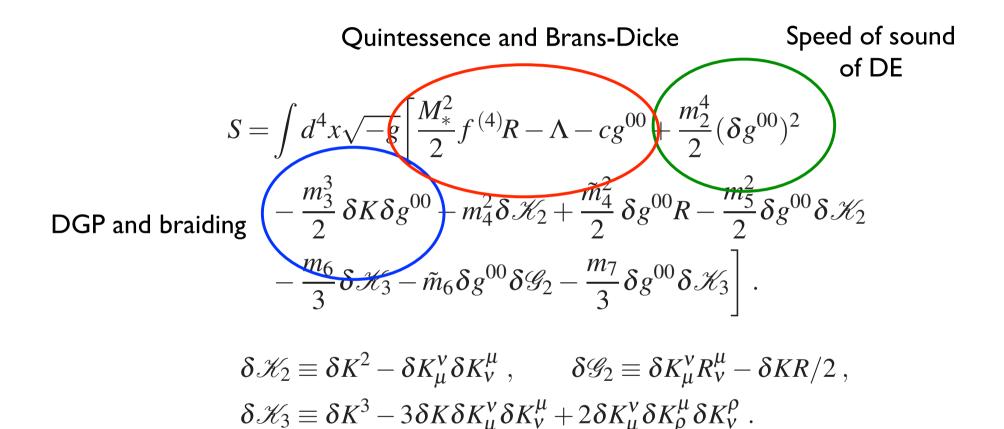
Focus on theories with second order EOM

$$\begin{split} S &= \int d^4 x \sqrt{-g} \left[\frac{M_*^2}{2} f^{(4)} R - \Lambda - cg^{00} + \frac{m_2^4}{2} (\delta g^{00})^2 \right. \\ &- \frac{m_3^3}{2} \, \delta K \delta g^{00} - m_4^2 \delta \mathscr{K}_2 + \frac{\tilde{m}_4^2}{2} \, \delta g^{00} R - \frac{m_5^2}{2} \delta g^{00} \delta \mathscr{K}_2 \right. \\ &- \frac{m_6}{3} \, \delta \mathscr{K}_3 - \tilde{m}_6 \delta g^{00} \delta \mathscr{G}_2 - \frac{m_7}{3} \delta g^{00} \delta \mathscr{K}_3 \right] \, . \end{split}$$

$$\delta \mathscr{K}_{2} \equiv \delta K^{2} - \delta K^{\nu}_{\mu} \delta K^{\mu}_{\nu} , \qquad \delta \mathscr{G}_{2} \equiv \delta K^{\nu}_{\mu} R^{\mu}_{\nu} - \delta K R/2 ,$$

$$\delta \mathscr{K}_{3} \equiv \delta K^{3} - 3\delta K \delta K^{\nu}_{\mu} \delta K^{\mu}_{\nu} + 2\delta K^{\nu}_{\mu} \delta K^{\mu}_{\rho} \delta K^{\rho}_{\nu} .$$

 $m_2^4 = \alpha_K H^2 M_*^2$ For LSS we are interested in the regime $\alpha \sim 0.1$



Galileon, Horndeski and Beyond Horndeski

$$\begin{split} S &= \int d^4 x \sqrt{-g} \bigg[\frac{M_*^2}{2} f^{(4)} R - \Lambda - cg^{00} + \frac{m_2^4}{2} (\delta g^{00})^2 \\ &- \frac{m_3^3}{2} \, \delta K \delta g^{00} \left(m_4^2 \delta \mathscr{K}_2 + \frac{\tilde{m}_4^2}{2} \, \delta g^{00} R \right) \frac{m_5^2}{2} \delta g^{00} \delta \mathscr{K}_2 \end{split}$$
Non-linear terms, screening
$$- \frac{m_6}{3} \delta \mathscr{K}_3 - \tilde{m}_6 \delta g^{00} \delta \mathscr{G}_2 - \frac{m_7}{3} \delta g^{00} \delta \mathscr{K}_3 \bigg] .$$

$$\delta \mathscr{K}_2 \equiv \delta K^2 - \delta K_\mu^\nu \delta K_\nu^\mu , \qquad \delta \mathscr{G}_2 \equiv \delta K_\mu^\nu R_\nu^\mu - \delta K R/2 ,$$

 $\delta \mathscr{K}_2 \equiv \delta K^2 - \delta K^{\nu}_{\mu} \delta K^{\mu}_{\nu} , \qquad \delta \mathscr{G}_2 \equiv \delta K^{\nu}_{\mu} R^{\mu}_{\nu} - \delta K R/2$ $\delta \mathscr{K}_3 \equiv \delta K^3 - 3 \delta K \delta K^{\nu}_{\mu} \delta K^{\mu}_{\nu} + 2 \delta K^{\nu}_{\mu} \delta K^{\rho}_{\rho} \delta K^{\rho}_{\nu} .$

Horndeski: most generic theory with 2nd order EOM $\tilde{m}_4^2 = m_4^2$ $\tilde{m}_6 = m_6$

Beyond Horndeski: more than 2 derivatives, but degenerate with no ghost

Some examples

 $-\frac{m_3^3}{2}\delta K\delta g^{00}$

Braiding, the scalar mixes with gravity

Deffayet, Pujolas, Sawicki, Vikman 10

 $\delta g^{00} \rightarrow -2(\dot{\pi} - \Phi)$, $\delta K \rightarrow -(3\dot{\Psi} + a^{-2}\nabla^2 \pi)$

Different from usual Brans-Dicke, e.g. $\Phi = \Psi$

 $+ \frac{\tilde{m}_4^2}{2} \delta g^{00} R$ Modifications inside matter: violation of Vainshtein screening

Kobayashi, Watanabe, Yamauchi 14

$$\frac{\mathrm{d}\Phi}{\mathrm{d}r} = G_{\mathrm{N}} \left(\frac{\mathcal{M}}{r^2} - \epsilon \frac{\mathrm{d}^2 \mathcal{M}}{\mathrm{d}r^2} \right)$$

D'amico, Huang, Mancarella, Vernizzi 14

$$\mathcal{L} = \frac{1}{2} \left\{ \left(1 + \frac{c_s^2}{c_m^2} \lambda^2 \right) \dot{\pi}_c^2 - c_s^2 (\nabla \pi_c)^2 + \dot{v}_c^2 - c_m^2 (\nabla v_c)^2 + 2 \frac{c_s}{c_m} \lambda \ \dot{v}_c \ \dot{\pi}_c \right\} \qquad \begin{array}{c} \text{Kinetic matter} \\ \text{mixing} \end{array}$$

This term changes the speed of GWs

$$\begin{split} S &= \int d^4 x \sqrt{-g} \left[\frac{M_*^2}{2} f^{(4)} R - \Lambda - cg^{00} + \frac{m_2^4}{2} (\delta g^{00})^2 \\ &- \frac{m_3^3}{2} \, \delta K \delta g^{00} - m_4^2 \delta \mathscr{K}_2 + \frac{\tilde{m}_4^2}{2} \, \delta g^{00} R - \frac{m_5^2}{2} \delta g^{00} \delta \mathscr{K}_2 \\ &- \frac{m_6}{3} \, \delta \mathscr{K}_3 - \tilde{m}_6 \delta g^{00} \delta \mathscr{G}_2 - \frac{m_7}{3} \delta g^{00} \delta \mathscr{K}_3 \right]. \end{split}$$

$$\dot{\gamma}_{ij}^2 \subset \delta \mathscr{K}_2 \equiv \delta K^2 - \delta K^{\nu}_{\mu} \delta K^{\mu}_{\nu} , \qquad \delta \mathscr{G}_2 \equiv \delta K^{\nu}_{\mu} R^{\mu}_{\nu} - \delta K R/2 , \\ \delta \mathscr{K}_3 \equiv \delta K^3 - 3 \delta K \delta K^{\nu}_{\mu} \delta K^{\mu}_{\nu} + 2 \delta K^{\nu}_{\mu} \delta K^{\mu}_{\rho} \delta K^{\rho}_{\nu} .$$

One can modify a bit the solution, say changing DM abundance. Background for: $\delta g_{\rm bkgd}^{00} = \delta K_{\rm bkgd} \sim \delta H$

$$\begin{split} S &= \int d^4 x \sqrt{-g} \left[\frac{M_*^2}{2} f^{(4)} R - \Lambda - cg^{00} + \frac{m_2^4}{2} (\delta g^{00})^2 \right] &= 0 \text{ Horndeski} \\ &- \frac{m_3^3}{2} \delta K \delta g^{00} - m_2^2 \delta \mathscr{K}_2 + \frac{\tilde{m}_4^2}{2} \delta g^{00} R - \frac{m_5^2}{2} \delta g^{00} \delta \mathscr{K}_2 \\ &- \frac{m_6}{3} \delta \mathscr{K}_3 - \tilde{m}_6 \delta g^{00} \delta \mathscr{G}_2 - \frac{m_7}{3} \delta g^{00} \delta \mathscr{K}_3 \right] . \end{split}$$
$$\dot{\gamma}_{ij}^2 \subset \delta \mathscr{K}_2 \equiv \delta K^2 - \delta K_{\mu}^{\nu} \delta K_{\nu}^{\mu} , \qquad \delta \mathscr{G}_2 \equiv \delta K_{\mu}^{\nu} R_{\nu}^{\mu} - \delta K R/2 , \\ &\delta \mathscr{K}_3 \equiv \delta K^3 - 3 \delta K \delta K_{\mu}^{\nu} \delta K_{\nu}^{\mu} + 2 \delta K_{\mu}^{\nu} \delta K_{\rho}^{\mu} \delta K_{\nu}^{\rho} . \end{split}$$

see also Sakstein, Jain 17, Ezquiaga, Zumalacarregui 17, Baker etal 17, Copeland etal 18

Caveat

De Rham, Melville 18

We do not really know whether the EFT of cosmological scales applies to LIGO/Virgo

The theory may break down (new states appear) at energy scales parametrically lower than the cut-off (~ 1000 km)

The speed of GWs may go back to I at "short" scale

- Naively requires new physics at scales of order 10⁸ x 1000 km to satisfy constraints
- How to reconcile with local tests of gravity?
- Can we say something general about the UV completion? Analogous to frequency dependent index of refraction: Kramers-Kronig?

Covariant theory

Horndeski 74 Gleyzes, Langlois, Piazza, Vernizzi 14

$$S = \int d^4x \sqrt{-g} \sum_I L_I$$

$$\begin{split} L_{2} &\equiv G_{2}(\phi, X) , \qquad L_{3} \equiv G_{3}(\phi, X) \Box \phi , \\ L_{4} &\equiv G_{4}(\phi, X)^{(4)} R - 2G_{4,X}(\phi, X) (\Box \phi^{2} - \phi^{\mu\nu} \phi_{\mu\nu}) \\ &+ F_{4}(\phi, X) \varepsilon^{\mu\nu\rho} \sigma \varepsilon^{\mu'\nu'\rho'\sigma} \phi_{\mu} \phi_{\mu'} \phi_{\nu\nu'} \phi_{\rho\rho'} , \\ L_{5} &\equiv \overline{G_{5}(\phi, X)}^{(4)} G_{\mu\nu} \phi^{\mu\nu} \\ &+ \frac{1}{3} G_{5,X}(\phi, X) (\Box \phi^{3} - 3 \Box \phi \phi_{\mu\nu} \phi^{\mu\nu} + 2 \phi_{\mu\nu} \phi^{\mu\sigma} \phi^{\nu}_{\sigma}) \\ &+ F_{5}(\phi, X) \varepsilon^{\mu\nu\rho\sigma} \varepsilon^{\mu'\nu'\rho'\sigma'} \phi_{\mu} \phi_{\mu'} \phi_{\nu\nu'} \phi_{\rho\rho'} \phi_{\sigma\sigma'} , \end{split}$$

Horndeski Beyond Horndeski

Degeneracy Constraint:
$$XG_{5,X}F_4 = 3F_5 \left[G_4 - 2XG_{4,X} - (X/2)G_{5,\phi}\right]$$

$$\mathbf{c_{T}} = \mathbf{I} \qquad m_{4}^{2} = X^{2}F_{4} - 3H\dot{\phi}X^{2}F_{5} - [2XG_{4,X} + XG_{5,\phi} + (H\dot{\phi} - \ddot{\phi})XG_{5,X}] = 0$$

$$\implies \qquad \mathbf{G}_{5,X} = 0, \qquad F_{5} = 0, \qquad 2G_{4,X} - XF_{4} + G_{5,\phi} = 0$$

$$L_{c_{T}=1} = G_{2}(\phi, X) + G_{3}(\phi, X)\Box\phi + B_{4}(\phi, X)^{(4)}R$$

$$- \frac{4}{X}B_{4,X}(\phi, X)(\phi^{\mu}\phi^{\nu}\phi_{\mu\nu}\Box\phi - \phi^{\mu}\phi_{\mu\nu}\phi_{\lambda}\phi^{\lambda\nu}),$$

Radiative stability

Some operators must be set to zero: is this choice stable?

• Approximate Galilean invariance $\phi \rightarrow \phi + b_{\mu}x^{\mu}$

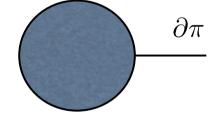
$$\mathcal{L}_3 = (\partial \phi)^2 \ [\Phi] ,$$

$$\mathcal{L}_4 = (\partial \phi)^2 \ ([\Phi]^2 - [\Phi^2]) ,$$

$$\mathcal{L}_5 = (\partial \phi)^2 \ ([\Phi]^3 - 3[\Phi][\Phi^2] + 2[\Phi^3])$$

• Non renormalization of Galileons

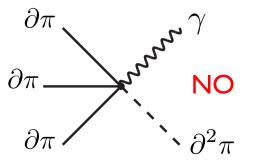
Luty, Porrati, Rattazzi 03



$$\partial^{\mu}\pi_{\rm ext}\partial_{\mu}\pi_{\rm int} \Box_{4}\pi_{\rm int} = \partial^{\mu}\pi_{\rm ext}\partial_{\nu}\left[\partial_{\mu}\pi_{\rm int}\partial_{\nu}\pi_{\rm int} - \frac{1}{2}\eta_{\mu\nu}\partial^{\rho}\pi_{\rm int}\partial_{\rho}\pi_{\rm int}\right]$$

• Broken by gravity

The particular coupling giving 2nd order EOM keeps approximate Galilean invariance



Pirstkhalava, Santoni, Trincherini, Vernizzi 15

Radiative stability

$$\begin{split} \Lambda_{3} &\sim (M_{P}H_{0}^{2})^{1/3} ~\sim \mathsf{I000} \ \mathsf{km} \\ \mathcal{L}_{2}^{\mathrm{WBG}} &= \Lambda_{2}^{4} ~G_{2}(X) ~, & \Lambda_{2} &\sim (M_{P}H_{0})^{1/2} ~\sim \mathsf{0.1} \ \mathsf{mm} \\ \mathcal{L}_{3}^{\mathrm{WBG}} &= \frac{\Lambda_{2}^{4}}{\Lambda_{3}^{3}} ~G_{3}(X)[\Phi] ~, \\ \mathcal{L}_{4}^{\mathrm{WBG}} &= \frac{\Lambda_{2}^{8}}{\Lambda_{3}^{6}} ~G_{4}(X)R + 2\frac{\Lambda_{2}^{4}}{\Lambda_{3}^{6}} ~G_{4X}(X) \left([\Phi]^{2} - [\Phi^{2}]\right) ~, \\ \mathcal{L}_{5}^{\mathrm{WBG}} &= \frac{\Lambda_{2}^{8}}{\Lambda_{3}^{9}} ~G_{5}(X)G_{\mu\nu}\Phi^{\mu\nu} - \frac{\Lambda_{2}^{4}}{3\Lambda_{3}^{9}} ~G_{5X}(X) \left([\Phi]^{3} - 3[\Phi][\Phi^{2}] + 2[\Phi^{3}]\right) \end{split}$$

$$\delta c_n \sim (\Lambda_3 / \Lambda_2)^4 \sim 10^{-40} \ll 10^{-15}$$

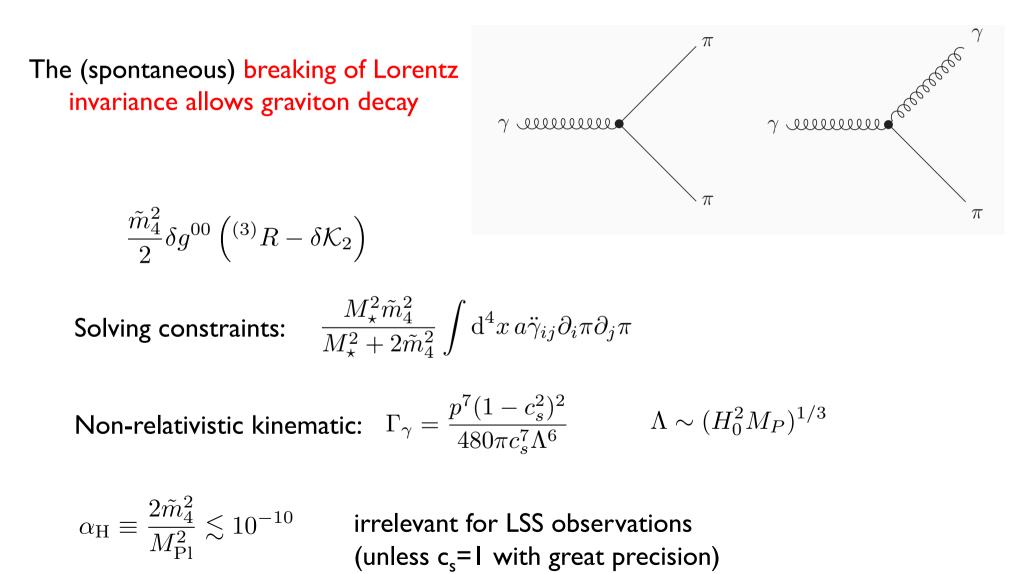
The tuning is stable

Same holds for Beyond Horndeski theories

Santoni, Trincherini, Trombetta 18

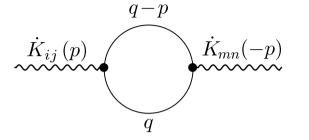
Graviton decay into dark energy

Light is also absorbed as it travels in a material



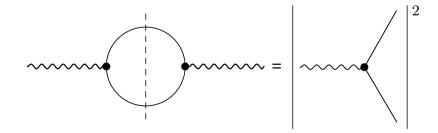
Higher-derivative terms and dispersion

Loops generate higher-derivative corrections



$$S_{\text{eff}} = \frac{M_{\text{Pl}}^2}{480\pi^2 \Lambda_*^6 c_s^7} \int \frac{\mathrm{d}^4 p}{(2\pi)^4} \bar{p}^4 \dot{K}_{ij}(p) \dot{K}_{ij}(-p) \left[\frac{1}{\varepsilon} + \frac{23}{15} - \frac{\gamma_{\text{E}}}{2} - \frac{1}{2} \log\left(\frac{\bar{p}^2}{4\pi c_s^2 \mu^2} - i\epsilon\right)\right]$$

$$\omega^2 = \mathbf{k}^2 - \frac{\mathbf{k}^8 (1 - c_s^2)^2}{480\pi^2 \Lambda_*^6 c_s^7} \log \left(-(1 - c_s^2) \frac{\mathbf{k}^2}{\mu_0^2} - i\epsilon \right) \quad \text{It applies} \underbrace{\text{to } \mathbf{c}_s >}_{\text{still has power divergences}} \text{I as well. For } \mathbf{c}_s = 1 \text{ one}$$



It is inconsistent to look at Horndeski only

Generic loops

External graviton lines

$$\int \Lambda_3^4 F\left(\frac{(\partial\phi)^2}{\Lambda_2^4}, \frac{\partial^2\phi}{\Lambda_3^3}, \frac{\gamma^{(c)}}{\Lambda_3}, \frac{\partial}{\Lambda_3}\right)$$

Quartic/quintic Horndeski give large higher derivative terms: not exp viable

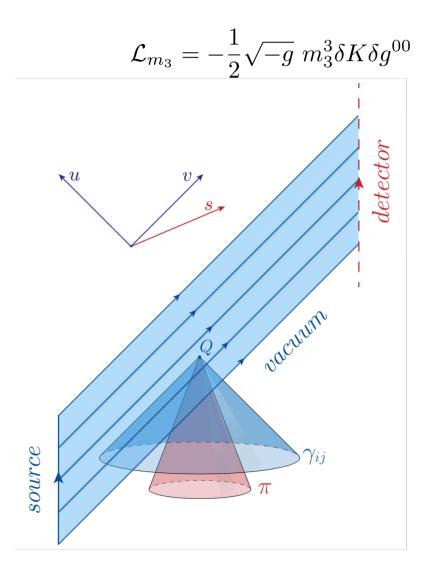
Cubic case scales in a different way

 $HM_{\rm Pl}^2 \delta g^{00} \delta K \sim HM_{\rm Pl}^2 \dot{\pi} \partial_i \partial_j \pi \gamma_{ij} \qquad \Lambda_2 \equiv (H_0 M_{\rm Pl})^{1/2}$

A leg with one derivative must go inside

Coherent decay

The decay of γ enhanced by the large occupation number of GW \sim preheating

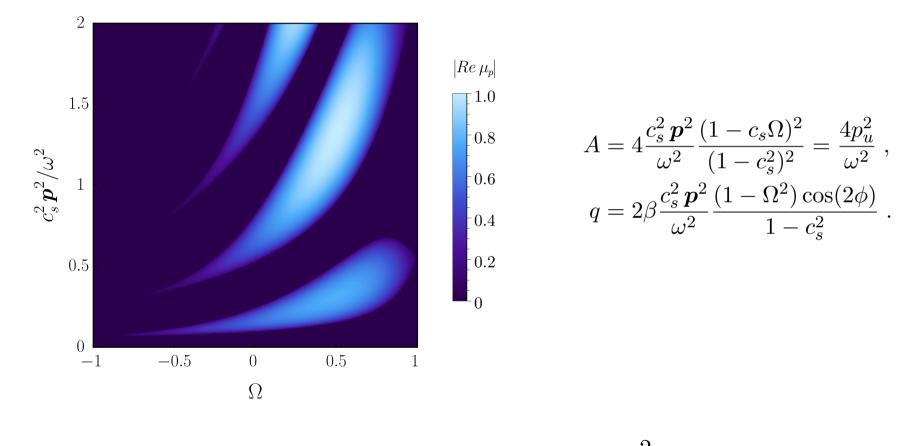


$$\begin{split} \ddot{\pi} - c_s^2 \nabla^2 \pi + \frac{2}{\Lambda^2} \dot{\gamma}^{ij} \partial_i \partial_j \pi &= 0 \\ \ddot{\pi} - c_s^2 \nabla^2 \pi + c_s^2 \beta \cos[\omega(t-z)] (\partial_x^2 - \partial_y^2) \pi &= 0 \\ \beta &\equiv \frac{2\omega M_{\rm Pl} h_0^+}{c_s^2 |\Lambda^2|} \\ u &= t - z \,, \quad s = -t + c_s^{-2} z \,, \quad v = t + z \end{split}$$

Similar to a Mathieu equation: parametric resonance

Narrow resonance ($\beta \ll 1$)

$$\frac{\mathrm{d}^2}{\mathrm{d}\tau^2}\varphi + [A - 2q\cos(2\tau)]\varphi = 0 \qquad \qquad \tau \equiv \frac{\omega u}{2}$$



Backreaction on γ

$$\ddot{\gamma}_{ij} - \nabla^2 \gamma_{ij} + \frac{2}{\Lambda^2} \Lambda_{ij,kl} \partial_t \left(\partial_k \pi \partial_l \pi \right) = 0$$

Saddle point

$$J(\tau) = \int g(X) e^{\tau f(X)} \mathrm{d}^3 X \qquad \qquad J(\tau) \approx \frac{1}{\sqrt{\det(-\partial_i \partial_j f(X_0))}} \left(\frac{2\pi}{\tau}\right)^{3/2} g(X_0) e^{\tau f(X_0)}$$

$$\Delta \gamma_{ij}(u,v) \simeq -\frac{v}{4\Lambda^2} \frac{(1-c_s^2)^2}{c_s^5 \sqrt{\beta}} \frac{\omega^{5/2}}{(8u\pi)^{3/2}} \sin\left(\omega u + \frac{\beta}{2}\right) \exp\left(\frac{\beta}{4}\omega u\right) \epsilon_{ij}^+$$

- Same direction and polarisation
- At higher order in β one gets harmonics. They enter in the obs window before: precursors

π interactions

BUT one expects the exp growth is quenched when π self-interactions are relevant

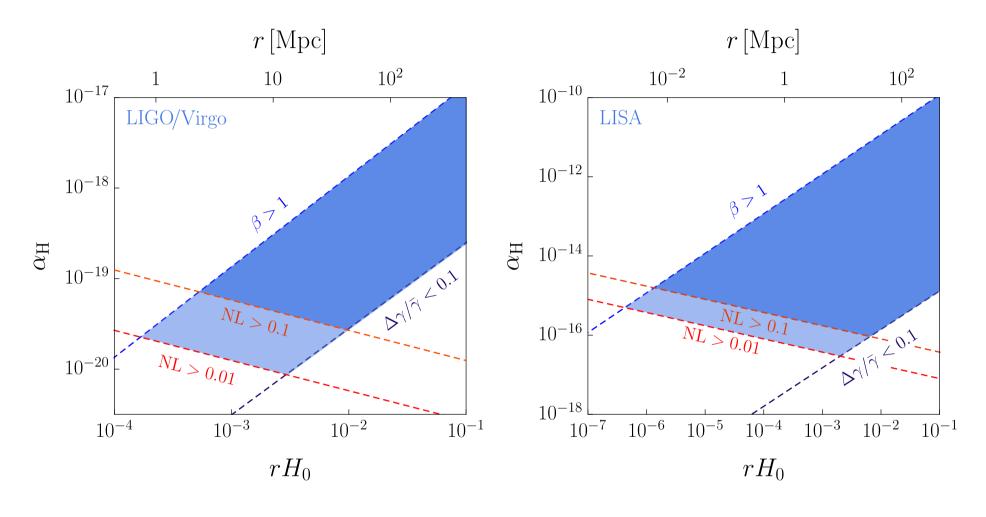
$$\frac{1}{\Lambda_3^3} \nabla^2 \pi (\partial \pi)^2 \qquad \mathbf{VS} \qquad \frac{1}{\Lambda_2^2} \dot{\gamma}_{ij} \partial_i \pi \partial_j \pi$$

- Kills the effect!? Simulations ~ preheating
- For \tilde{m}_4^2 self-interactions are small: same scale $\Lambda_\star \gg \Lambda_3$

On saddle point, accidental cancellation due to Galileon structure

$$\frac{\Delta\gamma}{\bar{\gamma}} \sim \frac{v\,\omega(\partial_i\pi)^2}{\Lambda_*^3 M_{\rm Pl}h_0^+} \lesssim \beta c_s^3 \alpha(vH_0) \frac{H_0}{\omega h_0^+} \sqrt{\beta\tau}$$

GW modification



 $f = 30 Hz, M_c = 1.2 M_{sun}$

 $f = 10^{-2} Hz, M_c = 30 M_{sun}$

Perturbative bound: $\alpha_{\rm H}$ < 10⁻¹⁰

$\beta > 1: \pi$ instability

$$\ddot{\pi} - c_s^2 \nabla^2 \pi + c_s^2 \beta \cos[\omega(t-z)] (\partial_x^2 - \partial_y^2) \pi = 0 \qquad \qquad \text{Gradient instability}$$

- Generically present for m_3
- To be constrasted with non-linear stability of cubic Galileon

Nicolis Rattazzi 04

 $\mathscr{L}_{(2)} = Z^{\mu\nu} \partial_{\mu} \pi \partial_{\nu} \pi$

Eom imply eigenvalues of the matrix $Z^{\mu\nu}$ do not flip sign

• Fate of instability is UV sensitive. Does it affect GWs?

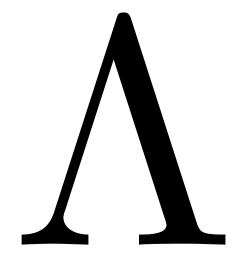
For $\beta > 1$ one has to consider π background generated by $\gamma\gamma\pi$: this modifies π eom.

One gets a system similar to Nicolis-Rattazzi 04, but still unstable since $Z^{\mu\nu}$ is not diagonalizable

Conclusions

GWs probe Dark Energy as light probes a material

- Measurement speed of GWs
- Constraints from perturbative graviton decay and dispersion
- Resonant graviton decay
- Instability due to GW
- Caveats...



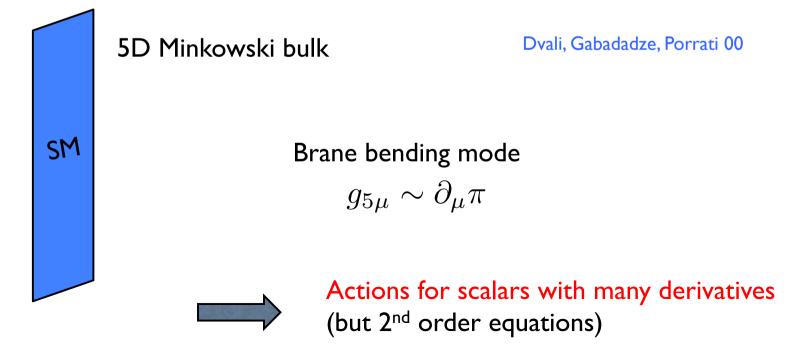
Backup slides

Why consider so complicated theories ??

To modify gravity one has to introduce extra dof

Scalars will play with the graviton through $\partial_{\mu}\partial_{
u}\pi$

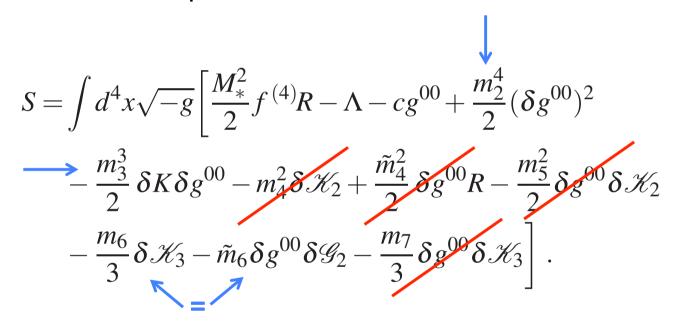
- Massive gravity. Longitudinal mode $g_{\mu\nu} \supset \partial_{\mu}\partial_{\nu}\pi$ E.g. De Rham, Gabadadze, Tolley 10
- DGP model



Another caveat

Copeland, Kopp, Padilla, Saffin, Skordis 18

We imposed that $c_T = I$ is robust to changes of H(t) and $\phi(t)$, but there are possible cancellations that we missed



The cancellation does not work in the presence of curvature and thus in the perturbed universe

Beyond Beyond Horndeski: DHOST

Even more general theories propagating a single dof

A combination of:
$$\int d^4x \sqrt{-g} \frac{M^2}{2} \left(-\frac{2}{3} \alpha_L \delta K^2 + 4\beta_1 \delta K V + \beta_2 V^2 + \beta_3 a_i a^i \right)$$

These do not affect GWs on any background

Can be obtained by: $g_{\mu\nu} \rightarrow C(\phi, X)g_{\mu\nu}$

$$\begin{split} L_{c_T=1} &= \tilde{B}_2 + \tilde{B}_3 \Box \phi + C B_4 \,^{(4)} R - \frac{4 C B_{4,X}}{X} \phi^{\mu} \phi^{\nu} \phi_{\mu\nu} \Box \phi \\ &+ \left(\frac{4 C B_{4,X}}{X} + \frac{6 B_4 C_{,X}^2}{C} + 8 C_{,X} B_{4,X} \right) \phi^{\mu} \phi_{\mu\nu} \phi_{\lambda} \phi^{\lambda\nu} \\ &- \frac{8 C_{,X} B_{4,X}}{X} (\phi_{\mu} \phi^{\mu\nu} \phi_{\nu})^2 \,. \end{split}$$