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The future of data-driven cosmology

¥To me, the future of data-driven cosmology is in our capability of understanding I
scale structure data.

¥In fact, information comes from cosmological modes, and they are there.

¥This i1s why | have devoted so much effort in the last few years to the developmer
the EFTOfSS



A long, long, lonely journey

¥Correlations of Galaxy density in Redshpt space

t

¥In terms of Correlations of Galaxy density and velocity in real space + EFT paramn

t

¥In terms of Correlation of dark matter and tidal tensors, etc. + EFT parameters

t

¥Dark matter correlations from (3uid equations + EFT parameters

¥ == |R-resummation



IR-resummation and the BAO peak

¥t works very well with Zaldarriagal 404
with TrevisanJCAP1805
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¥Similarly well in redshift spaceyin Lewandowski et a1512

¥Subsequent approximation of this formula, such as the wiggle-nowiggle one.



Galaxies in the EFTofLSS Senatord 406

¥Fist, original, correct parametrization of biases.
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Analysis of the SDSS/BOSS data

PPreliminaryresults of the power spectrum analysis of the CMASS NGC sample

| |
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In(10%°A4,) Qo h
¥We assume Rat CDM  and Planck®s% " v/" m

¥and measurdds, " m, Ho, by % f, g, Hgo, b

¥Thesepreliminaryresults, If conbPrmed, tell us that there Is the potentiality of much
Improving the wholdegacyof SDSS.

¥These results are so important that Matias set up an independent group to check



An EFT for testing extensions of GR
with Gravitational Waves

with Endlich, Huang, Gorbenko
2017



An EFT for probing extensions of GR at LIGO

¥The most general such a Lagrangian is
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¥No superluminality#!
¥Testable at LIGO! I " 101 Km'?

NO R Camanho, Edelstain, Maldacena, Zhiboea?2@1/6
u!

¥Not ruled out by GR tests
I 1g™ T, =asin GR & amplitudes saturate when UV enter

¥In this way, information from LIGO can be mapped into parameters of a fundarr
physics Lagrangian

Pinstead of into some arbitrary and potentially-unphysical rescaling of the pos
Newtonian parameters of the templatesry= ¢, V"



¥LIGO members, preliminary
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Introduction

PMasslesd " 4 is IR-divergent in dS: we do not know how to make predictions
PWhy do we care?

P1) This iIs somewhat embarrassing



Introduction

PMasslesd " 4 is IR-divergent in dS: we do not know how to make predictions
PWhy do we care?

P2) It could have phenomenological consequences, for example to Black Holes frc
Inf3ation, or to non-Gaussianities




Introduction

PMasslesd " 4 is IR-divergent in dS: we do not know how to make predictions
PWhy do we care?

P3) Since inf3ation is most probably the theory of the early universe, we should be
to understand its radiative corrections

¥For single-Peld inf3ation, we have a satisfactory and complete understanding

with ZaldarriagaJHEP 2010, JHEP 2012,
JCAP 2012, JHEP 2013
with Pimentel and ZaldarriaghkdEP 2012

12" # log % . Ht, log(kL)

Logarithmic Running
After S. Weinber2008had begun the exploration,

pndinglog (k/p)

¥but not for non-derivatively coupled multiPeld
see KITP video of 2015 String Program
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PMasslesd " 4 is IR-divergent in dS: we do not know how to make predictions
PWhy do we care?

P3) Since inf3ation is most probably the theory of the early universe, we should be
to understand its radiative corrections

¥For single-Peld inf3ation, we have a satisfactory and complete understanding

with ZaldarriagaJHEP 2010, JHEP 2012,
JCAP 2012, JHEP 2013
with Pimentel and ZaldarriaghkdEP 2012

12" # log % . Ht, log(kL)

Out-of-Horizon time-dependence:
absent, to all loops

¥but not for non-derivatively coupled multiPeld
see KITP video of 2015 String Program



Introduction

PMasslesd " 4 is IR-divergent in dS: we do not know how to make predictions
PWhy do we care?

P3) Since inf3ation is most probably the theory of the early universe, we should be
to understand its radiative corrections

¥For single-Peld inf3ation, we have a satisfactory and complete understanding

with ZaldarriagaJHEP 2010, JHEP 2012,
JCAP 2012, JHEP 2013
with Pimentel and ZaldarriaghkdEP 2012

12" # log il . Ht, log(kL)

Tl

Logarithmic dependence on IR-cutoff of the universe:
absent once debne observable quantities.

¥but not for non-derivatively coupled multiPeld
see KITP video of 2015 String Program



Introduction

PMasslesd " 4 is IR-divergent in dS: we do not know how to make predictions
PWhy do we care?

P4) Quantum-enhanced expansion and eternal inf3ation

Expanding Long Wavelength Horizon Crossing
Fluctualion Shorl Wavelength
NS Fluctnations

~ Rehealing Surlacee
Tine :

| ' eBNe(k)

Vin(K) ! 1+ " 2%#

H3

Long Modé€ g

Space
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A reheating volume
/ D at classical level
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Introduction

PMasslesd " 4 is IR-divergent in dS: we do not know how to make predictions
PWhy do we care?

P4) Quantum-enhanced expansion and eternal inf3ation

Expanding Long Wavelength Horizin Crossing
Fluctualion Shorl. Wavelenzih
NS Fluctnations

~ Rehealing Surlacee
Tine :

! " @3Ne(k)
Vin(K) ! 1+ "1%#

H3

Long Modé€ g

N\ 10 *° guantum enhancement
S S T due to shorter modes
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Introduction

PMasslesd " 4 is IR-divergent in dS: we do not know how to make predictions
PWhy do we care?
P4) Slow-Roll Eternal Inf3ation

¥This is a different application: let us elaborate
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Slow-Roll Eternal Inf3ation

¥The spacetime becomes stochasggandard
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¥Much more radical quantum effect on spacetime than the Black-hole evaporation

¥Discovered in the 800s, we provided a brst rigorous quantitative understanding
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Slow-Roll Eternal Inf3ation

¥The initial discovery and our quantitative understanding were based on a so-called
Stochastic equation for inf3ationary Buctuations initially proposed and developed by
Starobinsky in the 800s.

¥According to which the probability distribution of the quantum [3uctuations satisbes :
Fokker-Planck equation.

I | 2 Starobinsky,19800s

P (%) = H* 5 '(#)ZP(" () + (#) (V'(" )P (" (%))

t f
=FRW
— . Ly
~dS
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¥As we will see, this same equation is supposed to solve non-perturbdfivély i

<

¥Lacking: a satisfactory derivation, an understanding of if this is a toy model or the le
expansion insomethin®, and, if it is the second, if it can be made a precise approac



Introduction

PMasslesd " 4 is IR-divergent in dS: we do not know how to make predictions
PWhy do we care?
P5) Polyakov worries that dS is unstable dutheseradiative corrections
¥he worries dS invariance is spontaneously broken by these IR divergencies.
Papparently, he does not believe Starobinsky equation

Pand many prestigious people are uncomfortable with it



Introduction

PMasslesd " 4 is IR-divergent in dS: we do not know how to make predictions
PWhy do we care?

P6) In agreement with Polyakov, so far gravity has kept its most stunning surprises
IR

¥Black Evaporation and information loss

¥dS entropy



YBoth Summary of Introduction

PMassless” 4 inds
PSlow-Roll eternal inf3ation

¥are non-perturbative phenomena

! 2
! 1" (%)2
Pmight provide a way to solve for them

P(" (#)) + L (V"GP (" ()

|
¥The Stochastic equation_p (" — H?2
g ItP( (®#)) = H e

Pbut lacks a systematic derivation and proof of accuracy

¥Modulo some further checks/subtleties, here we will prove that that equation is the
leading-order truncation of a generalized equation, from which we can derive arbitra
accurate results.

b Proving the existence slow-roll eternal inf3ation
PSolving 1" 4 inde Sitter

¥Of course, the value of these results depend on how much you already believed in t
stochastic approach: a toy model? order one correct? parametrically and systematic
correct?



et us start



|IR-divergencies

PConsider a massive beld in dS
! ) P

] ﬁu # e! 3Ht H (1)$ L
=  9/4] m2/H 2 aH

Ht

bLook at late times, assuming the mass is small:
t PP
| 2ll H 2 m2 k
% — log
K H a(t)H

K _HZ
DPThis perturbative expansion, obviously, breaks at late tin&&ﬁ # € m?

¥Notice that this is the answer we would have gotten if we had treated the mass as a
perturbation: at late times:
2
k ) 1

P+3HIU+ 1 =m? 1 1@ gt _—m? Oty —Ht
a2’ 3H (t)



|IR-divergencies

PConsider a massive beld in dS
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¥Notice that this is the answer we would have gotten if we had treated the mass as a
perturbation: at late times:
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|IR-divergencies

PConsider a massive beld in dS
! ) P
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=  9/4] m2/H 2 aH

Ht

bLook at late times, assuming the mass is small:
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K _HZ
DPThis perturbative expansion, obviously, breaks at late tingaﬁ # € m?

¥Notice that this is the answer we would have gotten if we had treated the mass as a
perturbation: at late times:
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|IR-divergencies

PNow, consider massle&t 4

PSolving perturbatively

Mo+ 3HIY + k_2| = "3 | (D) | dt! 1. "| 037
. a2’ : 3H k
bSurely, at loop level, among the many contributions, there will be this one

| 1

| 3H V

¥It Is not just some simple mean pbeld term:

PIR divergent

g2 (&P (0 dtt d"%  Phong & D (Gong)?! @ (Gong)? & ) 96t



|IR-divergencies

PNow, consider massle&t 4

PSolving perturbatively

. 1" #
| IS [ 108
. . k 3H . k
bSurely, at loop level, among the many contributions, there will be this one
| 1

| 3H V

¥It Is not just some simple mean pbeld term:

PIR divergent

g2 (&P (0 dtt d"%  Phong & D (Gong)?! @ (Gong)? & ) 96t
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|IR-divergencies

PThis is what happens when one does the full calculation (see for examjpi€et ano12
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Intuition
PWhat is going on?

Expanding Long Wavelength Howizon Crossing

Flu(‘f'ﬁ-‘kldtioll Shorl Wavelengih V — #I 4

Fluctnations A

1 - Rehealing Surlace

Time
Quantum jumps'! I H

Classic
Drift

<€ >
H

: : e #l4 :
Pthere is arD(1) change to perturbative evoluin: solution is non perturbative

PWe expect a diffusion-upwards, stopped by a drift-downwards, reaching a sort of
equilibrium distribution with

H
"1/ 4

Energy! H " v({)="t41 H* " 1|
I

PHow to obtain a rigorous calculation? with arbitrary precision?



Euclidian Space

PCommon lore: upon Euclidean rotation, dS is a sphere, so there are no IR-divergen
Plt is true that there are no IR divergencies in Euclidean spac

Pand that just the zero mode is non-perturbative.

PBut when the resulting correlation functions are rotated back, they become IR diverg
again.

PSee for ex:

Marolf, Morrison2010, 2011

Rajaraman2011

Beneke, Mocl2012

Lopez Nacir, Mazzitelli, Trobetta016, 2016, 2018

BNo known solution from Euclidean space. In fact, not even a partial improvement. B
maybe improvement can be done also on this side.



A Generalized Stochastic Approach

P We are going to debPne a rigorous formalism to solve the problem, that, at zeroth or
all the expansion parameters we will identify and introduce, reduces to the remarkat
Stochastic approach of Starobinsky.

¥We will use two crucial simplibcations, around which we will expand, that allow us tc
solve a non-perturbative quantum problem in curved spacetime.



A Generalized Stochastic Approach

PTwo crucial expansion parameters:

P(1): outside of horizon, gradients are negligible. We can expand around an exactly Ic
space evolution.

e —

B(2): perturbativity of coupling constant:( # 1 ( ( # 1
Expanding Long Wavelength Horizon Crossing
Flll\‘t'}ii.\ld Lo Short \\"}v.fa]engl.‘} 1

Fluctnations

A _—- Rehealing Surfl:

Time




A Generalized Stochastic Approach

PMain idea:
A Energy

—t— H Tim
‘ Usual Peturbative Treatment €

1 IH

‘ Simplibed non-Peturbative Treatmgn

Pseparate long and short modes aadipcial bxed physical scale:
¥in terms of wavenumbers it is a time-dependent s¢ate ! (t) = ta(t)H, !! 1
¥modes move from “shortO to “longO

Bfor short modes: use usual quantum perturbation thebty! ! log" " 1

t 1
[Texp (z/ di’H(z"))] O(t) [Texp (—z’/ df’H(l‘"))] in> ,
tin tin )

bfor long modes, use the helps of the two expansion (2,3) above: expansion in
! ! ! 11 1 , 11 1/2 11 1

©) = (i




A Generalized Stochastic Approach

PMain idea:
A Energy

1 H :

‘ Usual Peturbative Treatment Time
—f— I'H

‘ Simplibed non-Peturbative Treatmgn
PModes, with time, pass from “shortO to “longO regime.
P Optimal! : equalize two expansion parameters:

1
I |Og" I | 1/2 1 ] I el —! 1/ 2 ## 1

pl  guantum and gradient corrections can be made much smallenthan corr



What we wish to compute
b We wish to compute I (Xl) o (X )..

PThis is given by: _
(X)) ...l (x)"= DTN [N (X)) ...t (Xn) = D! 9! (X1)...! (Xn)

U gt = )]

BbFormally, | could do the integral over the intermediate points, and write
(X1) ... 0 (X)) = dlg.d ), )t

Duhere w1 )= DIAD( L #1 (k). HD (1 # 1 (xa)) B

bthe problem is that it is hard to make such a path integral.

bPinstead, our strategy is to Pnd an equation that is satisbe'fdby, N n)



Solving for the Peld density

pletus start With'q! ] = | | [! ]! [! ] , Which satisbes the following equation:
| 'A#, 1] _ | | 3 $ ! % i | H
v o T W g ! Mg

Pwhich iIs functional and not even closed.

PbBut we actually can compute the wavefunction in dS.

PThis will allow us to manipulate this equation.



Solving for the wavefunction

PSome relevant literature has already emphasized how to compute the wavefunction
For example Nima et alE, 2017, 2018, E HYr 4 , it has been computed by

Anninos, Anous, Freedman, Kostantinidi®15

DThe perturbative structure is extremely different than for correlation functions, becat
the different boundary conditions the propagators have. Indeed, there are two propa

PBulk-to-Bulk: G(k X1 X2'Xc)

PBulk-to-Boundary (the “transfer functionO (k, X, Xc)

PBoth propagators are regular fr! QO , S0 there are no IR-divergencies (of cou
they come back once one tries to compute correlation functions)

V26 BRI




Our Strategy

Pwe separate for long and short modes. In fact short modes are perturbative.

bSo, we split all the modes in short and long:

3 | )
(g#l;3 'y o (K) k¥ (k) +

d*k "
(2#)°

i ika A
(%) = 11 k) @91k 10+ 15(%),

- Y1 fork %" (1),

L iy (K) = 0 for k& (1+ %" (1).

Psmooth and wide enough "' (t) = $a(t)H .

1 $_
e VL # % &

#

bEffective long-Density Function

A= D C(®)! k! odS® @y



Effective Quasi-Probability for long modes

PGiven the effective probability for the long modes

Iﬂ_["!,t]:. D"# " (%) K ALES (ﬁ)“ @ 1]

P Let us Pnd the effective time-evolution for the long modes

A" ]

| ¢
P Let us start with the Drift:

= Drift+ D1 |

Drift= D"# ",(%)! k!, ¥ ®)
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I
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Effective Quasi-Probability for long modes

PGiven the effective probability for the long modes

— . t)éké(" (ﬁ)

Keep lbng modes bxed

P Let us Pnd the effective time-evolution for the long modes

A" ]

— an + DI ! . Quantum jumps'! ! H
1 1 t /\?
P Let us start with the Drift; gy/

Dift= D" (@)1 Pk o & il

! ! ! i . " $ 4 %
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Effective Quasi-Probability for long modes

PGiven the effective probability for the long modes

MFMH:.EV#"&@!.(ﬂd!mJﬂ%%”@Fﬂ

b Let us Pnd the effective time-evg afion for the long modes

— Drift+Di |

P Let us start with the Drift:

Drift= D"# ",(%)! k!, ¥ ®)
| ! | #oo1 $ o
I
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Effective Quasi-Probability for long modes

PGiven the effective probability for the long modes

Iﬂ_["!,t]:. D"# " (%) K ALES (ﬁ)“ @ 1]

D Let us bnd the effective time-evglutierTTor the long modes

= =Drnift+Di ! .
1 ¢
D Let us start with the Drift: \
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Effective Quasi-Probability for long modes

PGiven the effective probability for the long modes

MFMH:.EV#"&@!.(ﬂd!mJﬂ%%”@Fﬂ

P Let us Pnd the effective time-evolution for the long modes

A
I A" . .
{?]—mm+D|!.
b Let us start with the Drift: \
Drit=  D"# ",($)! k! €% (R) !@I["’t]
| " | w1 %
=1 DU ) ke ®) g e T e [T L T
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Effective Probabillity for long modes
PUpon integration by parts and SW|tch|ng the derivative of'tr‘]efunCtlon

e " 7
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as ,
Pwhere we wrote H

TP [M]="! i#! %)

]

PThe last path integral is nothing but the expectation value of the Iong—compor#r(t!ob
with a Pxed long-background.

" P Y% &+ ( /
o 5, P A(! (%)) .
Drift = d Xg; 0 Re . . all]




Effective Probabillity for long modes
PUpon integration by parts and SW|tch|ng the derlvatlve of'tr‘]efunCtlon
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PThe last path integral is nothing but the expectation value of the Iong—compor#r(t!ob
with a Pxed long-background.
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Drift = d Xg; 0 Re . . all]




Effective Probabillity for long modes
PUpon integration by parts and SW|tch|ng the derivative of'tr‘]efunCtlon

e " 7
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Pwhere we wrote
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PThe last path integral is nothing but the expectation value of the Iong—compor#r(t!ob
with a Pxed long-background.
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Effective Quasi-Probability for long modes

bTherefore: - y gt )
: Yo
$ A (%)) .
d3x$!!(#) Re 23 | ﬂ[' !]

Drift =
2

PThe expectation value over the short r; can be computed using perturbative m

t 2
[Texp (z/ dt’H(z"))] O(t) {Texp (—z’/ dt’H(z"))] in> :
tin tin .

A
\ : V.
BThis is all well assuming we know the functional form of g

#LOOL= o 1

(O(t)) = <i11

PBefore that, let us do the diffusion

|
1P"("1,1) = Di ! usion + Drift
. I



Effective Quasi-Probability for long modes
PDiffusion term: It arises bc our cutoff Is time-dependent es become long)

pit ¥ DI, # @) ke @) M

New mods enter the long theory
Keep long modes bPxed



Effective Quasi-Probability for long modes

PDiffusion term: it arises because our cutoff is time-dependent (modes become long)
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n I (t) 3 n
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1 = I 3
Di! us. D! d°x T ) 2%
# "
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(2#)3 "1 (k) € (k) : short modes entering the long theor
| | A Quantumjumps! ! H

o 1113 # O(") \7?

Pwhere ! ! (X) =




Effective Quasi-Probability for long modes

bIn summary: tall ordersin 1 & " and leading i , we have obtained the follov
effective equation. It is Fokker-Plank-like, but it has differences

dali) = Drift+ Di ! .. s

I { IR &+ ( ) ]
- $ %! (%)) .
Drift = d°x ST, () Re - . all]
. . l ” l 1 1 UL\ 1
Dil us. = d*x ) $ﬁ (%) ) Mt + |
| | | (
! 1 ! 2 ! 1 11 |1 1 I I

bthere is a tadpole-diffusion term, and in principle higher order terms.

bStrategy compute these expectation values for the short modes in perturbation theo
a given background for the long modes in expansidntil ! log" " 1 W 1
and solve this functional Fokker-Planck-like equation containing only long modes.



Effective Quasi-Probability for long modes

bIn summary: tall ordersin 1 & " and leading i , we have obtained the follov
effective equation. It is Fokker-Plank-like, but it has differences

' IQ;E 1 = Drift+ Di ! .. s

P Y% &+ ( ) ]
s .3 %(! (%)) .
Drift = dx$!!(#) Re —— -, al! ]
: /U
Dil us. = d®x T : () , Mt +
vodPx B i AL Ly g)) Bt

Bthere is a tadpole-diffusion tgp, and.irrprinciple higher order terms.

bStrategy compute these values for the short modes In perturbation theo
a given background for the long modes in expansidntil ! log" " 1 W 1
and solve this functional Fokker-Planck-like equation containing only long modes.



The Momentum

BPSo far, we glossed on how to obtain [l (#)] =

"I (%)

"]

PNaively, given that the long theory is strongly coupled, how can we obtain that.

Pt turns out that one can reliably compuif" (%)

PIn fact, it was already computed, almost entire

Y, b\yninos, Anous, Freedman, Kostantinidi®15

PWe focus on the long momentum, as this is the one for which perturbation theory Is

obvious. We assume the scaling, | i/ , for the counting.
ST
PThe wavefunction reads
#[']# EX N ia(t)3\ % (#)*1 i % . (#)6} + O(& &(Yog (K’ ))”)}
P 12H V7 5ap )
% Ll = | i' (%)3! ¥ — 1 (%)>+ O(%=slow ! roll solution+ O(%
a’ 3H 9H 3’
PNotice that the correction i (" log(k%)" are under control because, as we will

long modes decay at long wavenumber, but In

general the large phase makes expal



Effective Quasi-Probability for long modes

bIn summary: tall ordersin 1 & " and leading i , we have obtained the follov
effective equation. It is Fokker-Plank-like, but it has differences

dali) = Drift+ Di ! .. s

I { IR &+ ( ) ]
- $ %! (%)) .
Drift = d°x ST, () Re - . all]
. . l ” l 1 1 UL\ 1
Dil us. = d*x ) $ﬁ (%) ) Mt + |
| | | (
! 1 ! 2 ! 1 11 |1 1 I I

bthere is a tadpole-diffusion term, and in principle higher order terms.

bStrategy compute these expectation values for the short modes in perturbation theo
a given background for the long modes in expansidntil ! log" " 1 W 1
and solve this functional Fokker-Planck-like equation containing only long modes.



One-location



Effective Quasi-Probability

PFor simplicity, we begin to expand in the number of locations, as evolution is quasi I
thanks to dS (this is the opposite of what we do for perturbative theories in Minkows

PWe debne the one-location probabilitly disti e

B (%) =11) E " D! AD [ (K)] \,

Keep long belds at one point Px



Effective Quasi-Probability

PFor simplicity, we begin to expand in the number of locations, as evolution is quasi I
thanks to dS (this is the opposite of what we do for perturbative theories in Minkows

PWe debne the one-location probability distribution:

(1 (%) ="11)= DAY (k)] B[]

PThe resulting equation can be easily derived:

t) 11!° . | # N | A ("(#))&# ?
l! " EL 2@ ﬁ' " (#1)° " (") ! i 2 - - ("1, 1)
I 1 . 1
\ )t
PWe dropped the term | l!_t! " (#) because it will not contribute at the order

which we will compute (by translation invariance, it requires many long modes for it
to vanish).

PThe expectation value of the short modes on the long depends only on the Peld at t|
location (this is true only for smooth window function)

PThe expectation values can be computed using ordinary perturbation theory.



Effective Quasi-Probability

PFor simplicity, we begin to expand in the number of locations, as evolution is quasi I
thanks to dS (this is the opposite of what we do for perturbative theories in Minkows

PWe debne the one-location probability distribution:

(1 (%) ="11)= DAY (k)] B[]

Diffusion Drift
PThe resulting equation can be easily deriveg:™ M
VM ("t 112 | |

T éﬁ ﬁ! (#1)° | ("1, 1) ‘ 32 | 1", 1) |

)

|1 "1

PWe dropped the term™ because it will not contribute at the order
which we will compute (by translation invariance, it requires many long modes for it

to vanish).

PThe expectation value of the short modes on the long depends only on the Peld at t|
location (this is true only for smooth window function)

PThe expectation values can be computed using ordinary perturbation theory.



Solving at one-location: leading order

PWe compute the various ingredients, assuming countihg! w172

" | . e
#O(fe, 1)'0(9f%, 1)$ = % 1+0 |
OC) N
a2 o 0/. 3H 1

¥We obtain

LR (") = (L) | 14 O(#1/2,$,%)"

e It oA 2.
# . H3 12
3H 821" 2




Solvmg at one- Iocation Ieading order

BWe obtain: | B ,(") _ (" t) 1+ O#Y2,$ %)

He It O/ D, .
U TH L, HE
by =

AR

PThis is the famous Starobinsky equations, but now it is rigorously derived with contr
approximation and, as we will see, we can include them.

PThere is an equilibrium e solution:
! 2 | I 1] ) " |4
2 D(")P, eq("I) # T |:("I)lﬁl,eq(nl) =0 Igl,eq(nl) = € HY
P |

H
¥This is a static solution, with! 1 ! 77 :sobur  counting is correct

I
¥Studying time-dep. solution, we see it is an attractor




Solving at one-location: sub-leading order

PWe start again from

- H P - "% & # P
LM, (",t) 117 Lo . ! " (" (#1)) ’
’1!(,[ vl 21" 2 ﬁ! (#1)° " (", t) ! e 32 . - ("1, 1)
bwith counting |"; o HI" V4 "o % H,
Pand compute to next order the various expectation values
. T+ P
b ; L (1 (Y 2
(T (X1)) _ 31 A ) # ) (%)% 4
az 3H OH 3’ H
0/ 1
Bthere is a mass on long modes from short modes and/there IS éhe guintic potentie
UO 2
H
0y(xH)? = #4$2 log ¥
b 1 there Is a mass induced by the long modes on the shorts:
" &ms = 31" 1
b # $| H 2 2&’“2 S

oM, 0! K1) | = +log $o-> + O(!)

2



Solving at one-location: sub-leading order

PbSummary so far:
- H P - "% & #
'@ ("t 1172 ! ! " (" (%
EiGEIL " (#)? (") ! o (;2 1))

't 21"2 It

1", 1)

ll1

Pwhere

&
—#1(X1)* =
o (X1)
1%

e

&
(1 (X))
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Effective mass



Solving at one-location: sub-leading order

PbSummary so far:

: 2 " i ® g & C
'Fqll(t 1, 1) — %I:'—%I ||_t| " (#1)2 ..1%1("1’0 ! I..I—l (agtl)) ! HlFﬁ{,1("1,t)
Pwhere
&

—#1(%)* =
st ) .
19 '

2!
L (1 (X))

a’ D
10/A ol




Subleading order

PNow we can solve the same Fokker-Planck-like equation as before, including subles:
terms. We Pnd.:

o ! # 2 #2|

@ eq(!1)= € ¥ 1+ (1) |09(")) - 5 (1 1+log(™)

" L()"#= dl B () ' = depends on log) unphysical!

PThis is ok, because | I(S()”# is UV sensitive

PWhat is physical is I'1 (X)"" = I'(! o(%) + | I(S())n"

12 #_
PCounting: 1 ¢! H | !Ié-"1/4 " IS '



Subleading order

PNow we can solve the same Fokker-Planck-like equation as before, including sublesc
terms. We Pnd.

T 1 2 216

7H H 6

(! 1+log("))
" L()"#= dl B () ' = depends on log) unphysical!

PThis is ok, because | I(S()”;t is UV sensitive

PWhat is physical is I'1 (X)"" = I'(! o(%) + | I(S())n"

12 #_
PCounting: | 1 H ! 1, &Y+ I_g ! '
| "



Subleading order

PNow we can solve the same Fokker- Planck Ilke equatlon as before, including suble:
terms. We Pnd: ——— ~ ——

B

s v . #2 X
heglt)= €7 1+ @1 log() 1t ¥

= (! 1+log("))
" L()"#= dl B () ' = depends on log) unphysical!

PThis is ok, because | I(S()”;t is UV sensitive

PWhat is physical is I'1 (X)"" = I'(! o(%) + | I(S())n"

12 #_
PCounting: | 1 H ! 1, &Y+ I_g ! '
| "



Result for 1-location
bUsing |
A #l 2 #6

T oql)= € 7 1411 log(") T+ T (1 1+ log(")

o obain 1 ()" = 1(15(8) + 1 (1)

(%, )" = S H T2es W{! Z% i %1\”
S #01/’4 AN #I " )
b %_  # = .$ # #
0. 16 02$! D+ 2 +3(2n# 3) #§1$2! D+ 3 %_,
$&1# # Yo H S H#H—S +O( #,%

bThe logf) cancelled!

PStrictly speaklng this expression is still Minkowski UV sensitive, but the UV sensitiv
subleadingin !  already frofd ! 2



Result for 1-location
bUsing

- p #12  #6

T oql)= € 7 1411 log(") T+ T (1 1+ log(")

o obain 1 ()" = 1(15(8) + 1 (1)

+ O #2,0/))*

bThe logf) cancelled!

PStrictly speaklng this expression is still Minkowski UV sensitive, but the UV sensitiv
subleadingin !  already frofd ! 2



Result for 1-location
bUsing |
4 #l2  #l0

T oql)= € 7 1411 log(") T+ T (1 1+ log(")

o obain 1 ()" = 1(15(8) + 1 (1)

: 2 | N A0 T W T LV
(%, 1) = A g ot
| # aggn! #1

%_ # $ § %
06316 28! D+ 1 4+3(2n# 3) #32°

| 5+ 3 3

. — - 1

32 68! 2! 2+ 4

bThe logf) cancelled!

PStrictly speaklng this expression is still Minkowski UV sensitive, but the UV sensitiv
subleadingin !  already frofd ! 2



Result for 1-location
bUsing |
4 #l2  #l0

T oql)= € 7 1411 log(") T+ T (1 1+ log(")

o obain 1 ()" = 1(15(8) + 1 (1)

(%, 1) = S H T2 W{! :% i %1\”
S #01/’4 AN #I " )
b %_  # = .$ # #
0. 16 02$! D+ 2 +3(2n# 3) #§1$2! D+ 3 %_,
$&1# # Yo H S H#H—S +O( #,%

othe( log) Cancelled,

PStrictly speaklng this expression is still Minkowski UV sensitive, but the UV sensitiv
subleadingin !  already frofd ! 2



2-locations



2-locations n-point function

PThere Is an analogous Fokker-Planck-like equation for the distribution at 2-points:

I | 2
WPZ("]J"Z!! X,t):("!]_-l_ "!2) P2+JO(#a(t)HI X) ||| ||| P2
. : 1- 2
| | 2 | ,
where ﬁPl(" 1,0 = "1, Pr= S5Put o= (VI("1)Py)
PThe last term strongly depends on distance
Early timesjo! 1 Crossing Region! H' 1 Late timesjo! O

=z e =z o =k e
e
1

'H

a(t)! x!




2-locations n-point function

PThere Is an analogous Fokker-Planck-like equation for the distribution at 2-points:

| | 2
ﬁpz(" L2t X ) =0+ L) Pt Jo(Fa(t)H T X) 5——P>
! Rl |
where —Pi("1,) = "1,P1= moPr+ o (V/("1)PY)
. -1 -1
PThe last term strongly depends on distance
Early timesjo! 1 Crossing Region! H' 1 Late timesjo! O

e

1

a(t)! x! TH




2-locations n-point function

PThere Is an analogous Fokker-Planck-like equation for the distribution at 2-points:

! . | 2
ﬁF)Z(nl’llz,! X,t):("!1+ l|!2) P2+ JO(#a(t)HI X) T n 2P2
| | 2 I
where ﬁpl(" Lt)= "1, P1= o 5P1 + o (V(")P1) =
' 1 -1

PThe last term strongly depends on distance

Early timesjo! 1 Crossing Region! H'*! Late timesjo! O
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2-locations n-point function

PThere Is an analogous Fokker-Planck-like equation for the distribution at 2-points:

I | 2
ﬁpz(" 1,2, X )= (" " y,) Pat Jo(Fa(HH! X) e 2
. - 1 2
PThe last term strongly depends on distance
Jo . Early timesjo! 1 . ‘Crossing Region! H'1! o Late timesjo! O
\//\\)f
: . . n (1l "
PAt early times, solutions |s|32(! 1, z,tearly) | ( )(! 1] 2) Peq,l(! 1)
DAt late times isP2(! 1,! 2, tiate) ! Pra(! 1, tiate) P1o(! 2 tiate)
DThe time scale of diff equation id' ¥/ ! |, butcrossinggihé" H'?1/ I_I
b | we can glue using ‘sudden perturbation theoryO, which corresponds to e»

in ¢ (by coincidence)



de Sitter invariance

PThere Is an analogous Fokker-Planck-like equation for the distribution at 2-points:
| | 2

_tPZ(" 11" 21! X,t) - ("! ) 2) PZ T J (#a(t)Hl X) P2

1-2

PThe last term strongly depends on distance

o Early timesjo! 1 Crossing Region! H" 1! Late timesjo! O

\//\\)f
E)We IDnd that the solufion (& Sitter invariant
” (Xl, t)" (%o, )M = fom (Z)
—where—z2 = cosh(tl + to) # H2eh it 1%, # %,



de Sitter Invariant

PCorrelation functions at different spacetime-points

bunder perturbative contrallecayat long distances, signaling stability

Bthey arede Sitter invariant .

(%, 1) (%o, 1) = fon(2) ) 22 1, zZ"#

v
where 72 = cosh(t; + t,) # H2em ()%, # %



Thermality

PCorrelation functions at different spacetime-points

(X, t)" (%o, )™ = fon(2) ! 20 T, zZ"#

H
PRestricted to static patch, they satisfy thermality withs = o1

¥l.e. the KMS condition eertain periodicity in

siaic

Imaginary time > patch

1 (xe, t)! (X2, T2+ iTgg)" = 1 (X2, t2)! (X1, 1)

¥This Is not obviously true, since the leading term by itself does not satisfy it. K
condition requires particular coefbcient of the subheading term:

, which we also computed.




Sharp Window Function

PIf we used a sharp window function in Fourier space, the splitting of the modes wou
non-local in Real space.

PThis implies that the dependence of the short modes on the long ones is non-local.
# P t " T

2 0, ..
1!t1,t) ;I:l_% ||t| " (#1)2 ml \.’ t) ! I..l—l (a(#l)) ! 1 1,t)

n ¥
s’ .
N

| All points

PbBut the dependence on the long modes points is perturbative, and so one can use t
order solutions to compute the next-order diffusion and drift coefbcients.

PWe do this, and we get the same answer.



Conclusion

PModulo some further checks/subtleties, we have developed a formalism to compute
correlation functionsoff ™ 4 indS

Pmanifest expansion in @ —

&t & #

BPxhe solution is remarkably non-perturbative, and yet we can solve it
Pat zeroth order in everything, we obtain the old Starobinsky result.

¥but now we know it is correct, that it is the truncation of “somethingO, and we
what “somethingO is, and we can systematically compute the corrections (whi
do).

¥all radiative corrections in dS and inf3ation are understood, and well behaved

_ o S with ZaldarriagaJHEP 2010, JHEP 2012,
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