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The future of data-driven cosmology

* To me, the future of data-driven cosmology is in our capability of understanding large-

scale structure data.

e In fact, information comes from cosmological modes, and they are there.

* This 1s why I have devoted so much effort in the last few years to the development of
the EFTofSS



A long, long, lonely journey

e Correlations of Galaxy density in Redshfit space

t

 In terms of Correlations of Galaxy density and velocity 1n real space + EFT parameters

t

* In terms of Correlation of dark matter and tidal tensors, etc. + EFT parameters

t

e Dark matter correlations from fluid equations + EFT parameters

e == [R-resummation



IR-resummation and the BAO peak

e It works very well with Zaldarriaga 1404
with Trevisan JCAP1805
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e Similarly well in redshift space i Lewandowski et al 1512

e Subsequent approximation of this formula, such as the wiggle-nowiggle one.



Galaxies 1n the EFTofLLSS

Senatore 1406

* Fist, original, correct parametrization of biases.
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e all terms allowed by symmetries are present

e all physical effects are included

e former ones are not complete

e subsequent ones are a change of basis of this

Taylor Expansion

‘ ‘) ;[ — \
O~ o( g, t')

(1)
00,02, 1) OO (g, 1)

— /
. +Caa L BT f,(f. t) . : —
¢ \ - - " \ - 3 . ( \ ‘) 4 ‘-)
1(1") SCAGERE 11(1)2 [1{1")2
. '-,) ;o — N
OB (Fy, 1)
T H(t)?
_ Galaxy: 4 A
. y,
‘/ Formsation t
Collapsing l,.m'lim;"*»-;_ ,, , ’ ~H~
L/h M ~a i
/I
~— / e - \\
\_’-’-'/
Fluid trajectory: / Long wavelengl hﬂl@v_cl.\ arogud wajectony
<. . / D2i Fy(t), 1) + L‘—:,;.-')? Haglt). ¢) + ...
-ﬂlf/
7
/ \J

e



Analysis of the SDSS/BOSS data

— Preliminary results of the power spectrum analysis of the CMASS NGC sample

| |
2.5 3.0 3.5 0.25 0.30 0.35 0.6 0.7 0.8
In(10'0A,) Qpn h

e We assume flat ACDM and Planck’s N & Qb/Qm
e and measure Ag, ,,,, Hy, b1 < f, 0s, Hy, Dy

* These preliminary results, 1f confirmed, tell us that there is the potentiality of much

improving the whole legacy of SDSS.

* These results are so important that Matias set up an independent group to check them



An EFT for testing extensions of GR
with Gravitational Waves

with Endlich, Huang, Gorbenko
2017



An EFT for probing extensions of GR at LIGO

* The most general such a Lagrangian 1s

c2  C?  CC
X

Qﬁ—ZA I)1/(712\/ — [ G i | AE |

_— -{9’\',_; _— 9 ’ '5
C = RQ’./BA’C‘;R(” T, C= Ropg~s e w R
s ‘V ‘ lI ) l ’

N 0 R3 Camanho, Edelstain, Maldacena, Zhiboeadov 2016
UV po

e Testable at LIGO = A ~ 107! Km™*

* No superluminality ~v=>

e Not ruled out by GR tests
= 0¢"T,, =asin GR & amplitudes saturate when UV enters

* In this way, information from LIGO can be mapped into parameters of a fundamental

physics Lagrangian

—1nstead of into some arbitrary and potentially-unphysical rescaling of the post-

Newtonian parameters of the templates  (r) = Z ¢, "

n



e LIGO members, preliminary
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Introduction

—Massless )\ gb4 is IR-divergent in dS: we do not know how to make predictions
—Why do we care?

—1) This 1s somewhat embarrassing



Introduction

—Massless )\ §b4 is IR-divergent in dS: we do not know how to make predictions
—Why do we care?

—2) It could have phenomenological consequences, for example to Black Holes from

inflation, or to non-Gaussianities




Introduction

—Massless )\ §b4 is IR-divergent in dS: we do not know how to make predictions
—Why do we care?

—3) Since 1nflation i1s most probably the theory of the early universe, we should be able

to understand its radiative corrections

* For single-field inflation, we have a satistfactory and complete understanding

with Zaldarriaga JHEP 2010, JHEP 2012,
JCAP 2012, JHEP 2013
with Pimentel and Zaldarriaga JHEP 2012
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Logarithmic Running
After S. Weinberg 2008 had begun the exploration,

finding log (% /1)

), Ht , log(kL)

* but not for non-derivatively coupled multifield
see KITP video of 2015 String Program
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—Massless )\ §b4 is IR-divergent in dS: we do not know how to make predictions
—Why do we care?

—3) Since 1nflation i1s most probably the theory of the early universe, we should be able

to understand its radiative corrections

* For single-field inflation, we have a satistfactory and complete understanding

with Zaldarriaga JHEP 2010, JHEP 2012,
JCAP 2012, JHEP 2013
with Pimentel and Zaldarriaga JHEP 2012

() D log (5) Ht, log(kL)
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Out-of-Horizon time-dependence:
absent, to all loops

* but not for non-derivatively coupled multifield
see KITP video of 2015 String Program



Introduction

—Massless )\ §b4 is IR-divergent in dS: we do not know how to make predictions
—Why do we care?

—3) Since 1nflation i1s most probably the theory of the early universe, we should be able

to understand its radiative corrections

* For single-field inflation, we have a satistfactory and complete understanding

with Zaldarriaga JHEP 2010, JHEP 2012,
JCAP 2012, JHEP 2013
with Pimentel and Zaldarriaga JHEP 2012

() D log (5) Ht | ng(kL)

.,

Logarithmic dependence on IR-cutoff of the universe:
absent once define observable quantities.

* but not for non-derivatively coupled multifield
see KITP video of 2015 String Program



Introduction

—Massless )\ gb4 is IR-divergent in dS: we do not know how to make predictions
—Why do we care?

—4) Quantum-enhanced expansion and eternal inflation

Expanding Long Wavelengrh Horizon Crossing
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Introduction

—Massless )\ gb4 is IR-divergent in dS: we do not know how to make predictions
—Why do we care?

—4) Quantum-enhanced expansion and eternal inflation

Expanding Long Wavelength Horizon Crossing
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AN Fluctations
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Introduction

—Massless )\ gb4 is IR-divergent in dS: we do not know how to make predictions

—Why do we care?
—4) Slow-Roll Eternal Inflation

* This 1s a different application: let us elaborate
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Slow-Roll Eternal Inflation

* The spacetime becomes stochastic Standard

Eternal
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* Much more radical quantum effect on spacetime than the Black-hole evaporation

* Discovered 1n the 80’s, we provided a first rigorous quantitative understanding
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Slow-Roll Eternal Inflation

e The initial discovery and our quantitative understanding were based on a so-called
Stochastic equation for inflationary fluctuations initially proposed and developed by
Starobinsky in the 80’s.

* According to which the probability distribution of the quantum fluctuations satisfies a

Fokker-Planck equation.

a 82 a Starobinsky, 1980°s

7 PO®) = H 5 PO() + 5o (V/(0() P(6(7)))

ot 96 (7)

¢r o

<

* As we will see, this same equation is supposed to solve non-perturbatively )\¢4 in dS

e Lacking: a satisfactory derivation, an understanding of if this 1s a toy model or the leading

expansion in something’, and, if it 1s the second, 1f it can be made a precise approach.



Introduction

—Massless )\ §b4 is IR-divergent in dS: we do not know how to make predictions
—Why do we care?
—5) Polyakov worries that dS is unstable due to these radiative corrections
* he worries dS 1nvariance 1s spontaneously broken by these IR divergencies.
— apparently, he does not believe Starobinsky equation

—and many prestigious people are uncomfortable with 1t



Introduction

—Massless )\ §b4 is IR-divergent in dS: we do not know how to make predictions
—Why do we care?

—6) In agreement with Polyakov, so far gravity has kept its most stunning surprises in the
IR

e Black Evaporation and information loss

* dS entropy



. Both Summary of Introduction

—Massless A ¢4 in dS
—Slow-Roll eternal inflation
* are non-perturbative phenomena

. . O 02 9,
e The Stochastic equation — P(4(7)) = H? Plo(Z
quation =% P(0()) = H* 57 P(0() +

—might provide a way to solve for them
—but lacks a systematic derivation and proof of accuracy

* Modulo some further checks/subtleties, here we will prove that that equation 1s the
leading-order truncation of a generalized equation, from which we can derive arbitrary

accurate results.
— Proving the existence slow-roll eternal inflation

— Solving )\ ¢4 in de Sitter

e Of course, the value of these results depend on how much you already believed in the
stochastic approach: a toy model? order one correct? parametrically and systematically

correct?



Iet us start



IR-divergencies

—Consider a massive field in dS
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—Look at late times, assuming the mass 1s small:

, H2 2 L
o) 3 (1+ 5108 ()
k _H?2

—This perturbative expansion, obviously, breaks at late times ~ e m?

a(t)H

* Notice that this 1s the answer we would have gotten if we had treated the mass as a

perturbation: at late times:

. R 2
¢+3H¢+?(b:m2gb = ¢(1>~/dt Yk m2©O#) ~ ¢© [ ¢



IR-divergencies

—Consider a massive field in dS
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* Notice that this 1s the answer we would have gotten if we had treated the mass as a

perturbation: at late times:
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IR-divergencies

—Consider a massive field in dS

- 12
2 —3Ht | (1) k Ht
~ H — ~

(p) ~ ¢ e ST (aH)_ an~ e

—Look at late times, assuming the mass 1s small:

o7 - (1 g 10g<a<tk>H>>

—This perturbative expansion, obviously, breaks at late times ~ e m?2

a(t)H

* Notice that this 1s the answer we would have gotten if we had treated the mass as a

perturbation: at late times:
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IR-divergencies

: 4
—Now, consider massless A @

—Solving perturbatively

) 1.2 1
bt 3HO+ o= NPk = o)~ [t A9,

—Surely, at loop level, among the many contributions, there will be this one

(1)
= O N/dt S—H)\@{/ )y oc At

e [t 1s not just some simple mean field term:

—IR divergent

0 > W > [ [0 [ P 00 6 ) (67 o 2



IR-divergencies

: 4
—Now, consider massless A @

—Solving perturbatively

—Surely, at loop level, among the many contributions, there will be this one

(1)
= O N/dt S—H)\@{/ )y oc At

e [t 1s not just some simple mean field term:

—IR divergent

0 > W > [ [0 [ P 00 6 ) (67 o 2



B I
(O(t)) = <in T exp (z / dt’ H(t')
- tl

l'n

IR-divergencies

—This 1s what happens when one does the full calculation (see for example Burgess et al. 0912 )
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Intuition
—What 1s going on?

Expancing Long Wavelengrh Horizon Crossing

: : 1
Flu\(.-.&l‘..\l,mt.u_'-n Short Wavelengih V = )\QS

Fluctnations A

- Rehealing Surlace

/
Time

Quantum jumps 0¢ ~ H

Classica
Drift

<€ >

qbeq ~ %
—there 1s an O(1) change to perturbative evolution: => solution is non perturbative

— We expect a diffusion-upwards, stopped by a drift-downwards, reaching a sort of

equilibrium distribution with

H

EnergyNH — V(¢) :)\¢4 NH4 :>¢N W

—How to obtain a rigorous calculation? with arbitrary precision?



Euclidian Space

—Common lore: upon Euclidean rotation, dS 1s a sphere, so there are no IR-divergencies
—1It 1s true that there are no IR divergencies in Euclidean space

—and that just the zero mode 1s non-perturbative.

—But when the resulting correlation functions are rotated back, they become IR divergent

again.

—See for ex:

Marolf, Morrison 2010, 2011

Rajaraman, 2011

Beneke, Moch 2012

Lopez Nacir, Mazzitelli, Trobetta 2016, 2016, 2018

—No known solution from Euclidean space. In fact, not even a partial improvement. But

maybe improvement can be done also on this side.



A Generalized Stochastic Approach

— We are going to define a rigorous formalism to solve the problem, that, at zeroth order in
all the expansion parameters we will identify and introduce, reduces to the remarkable

Stochastic approach of Starobinsky.

* We will use two crucial simplifications, around which we will expand, that allow us to

solve a non-perturbative quantum problem in curved spacetime.



A Generalized Stochastic Approach

—Two crucial expansion parameters:

—(1): outside of horizon, gradients are negligible. We can expand around an exactly local-in-

space evolution.

—(2): perturbativity of coupling constant: ALl = \/X < 1

Expanding Long Wavelengrh Horizon Crossing
Fluclualion Short Wavelengih

Fluctiations

f - Rehealing Surl:

Time




A Generalized Stochastic Approach

—Main 1dea:
A Energy

—1— H Time

Usual Peturbative Treatment

e H

‘ Simplified non-Peturbative Treatment

—separate long and short modes at an artificial fixed physical scale:
e in terms of wavenumbers it is a time-dependent scale k = A(t) = ea(t)H , <1
* modes move from “short’ to "long’

—for short modes: use usual quantum perturbation theory: A\t ~ \ log e < 1

t 1
[Texp (z/ df’H(z"))] O(t) [Texp (—z’/ df’H(l‘"))] in> ,
tin tin )

—for long modes, use the helps of the two expansion (2,3) above: expansion in
heegl, M2l

©) = (i




A Generalized Stochastic Approach

—Main 1dea:
A Energy

—— Time

Usual Peturbative Treatment

e H

‘ Simplified non-Peturbative Treatment

—Modes, with time, pass from “short’ to "long’ regime.

— Optimal € : equalize two expansion parameters:
1

AMoge~ A2 = c~ne W2 k]

— —>quantum and gradient corrections can be made much smaller than /) corrections



What we wish to compute

— We wish to compute <¢(gjl) C. ¢(xn)>

—This 1s given by:

(& d(zn)) /D¢ U*[oh () /D¢p

ﬁ[¢] ¢]

—Formally, I could do the integral over the intermediate points, and write

(P(z1) ... (1)) = /d¢1---d¢n P(P1s-- s On) O1. .. On

—~where (b, ... /qu 51 (1 — d(x1)) .. (gbn — () plo)]

—the problem is that it is hard to make such a path integral.

—Instead, our strategy is to find an equation that 1s satisfied by 17 (¢1, Ce ey ¢n)

- P(Tn



Solving for the field density

—Let us start with 15 [¢] — P~ [¢] \\ [¢] , which satisfies the following equation:

apgi, - 223 / d%acbif) (qj[¢]*5¢5<f)qj[¢] - \PW%\PW)

—which 1s functional and not even closed.

—But we actually can compute the wavefunction in dS.

—This will allow us to manipulate this equation.



Solving for the wavetunction

—Some relevant literature has already emphasized how to compute the wavefunction in dS.

For example Nimaetal. ...,2017,2018,... For )\¢4 , it has been computed by

Anninos, Anous, Freedman, Kostantinidis, 2015

—The perturbative structure 1s extremely different than for correlation functions, because of

the different boundary conditions the propagators have. Indeed, there are two propagators:

—Bulk-to-Bulk: G(k) T1,T2; ZCC)

—Bulk-to-Boundary (the “transfer function’): [ (k‘) T, T C)

—Both propagators are regular for & —> () , so there are no IR-divergencies (of course,

they come back once one tries to compute correlation functions)

Vo0 NN




Our Strategy

—we separate for long and short modes. In fact short modes are perturbative.

—So0, we split all the modes 1n short and long:

o) = [ s o) R0l + [ S5 (1= oK) FUF) = 6u(a) + 64(0).

¢g, /D¢5 ¢g(£l_3)) —/dgk’ QA(t)GZEf¢(E)




Effective Quasi-Probability for long modes

—Given the effective probability for the long modes

Py, 1] /ng 0

— Let us find the effective time-evolution for the long modes

0P
ot

— Let us start with the Drift:

Drift = / Do b [cbe(f) - / A’k QA(t)eiE%(E)] (%’

——/D¢5[¢e( — [ @k e

= Driftt + Dift .

bo(T) — / Pk Qpe™ o (k)

Pl¢,1]

Quantum jumps 0¢ ~ H

OP[o, 1]




Effective Quasi-Probability for long modes

—Given the effective probability for the long modes

o~ [ QA@)e@’%(E)

Keep ‘ng modes fixed

— Let us find the effective time-evolution for the long modes
— A
aP / ¢£ fum | ~H
9] — Drift + Diff . Y
Ot _
— Let us start with the Drift: S

Drift = /ng ) [@(f) _ /d?’k QA(t)eiE'fgb(lZ)] apgfj t]
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Effective Quasi-Probability for long modes

—Given the effective probability for the long modes

Py, 1] /qu 0

— Let us find the effective time-evolutie \

0P
ot

— Let us start with the Drift:

Drift = / Do b [cbe(f) - / A’k QA(t)eiE%(E)] (%’

_—/D¢5[¢e( — [ @k e

_ Drift + Diff .

Do(T) — / Ak QA(t)e@'k%(E)

for the long modes

Pl¢,1]

Quantum jumps 0¢ ~ H

OP[o, 1]




Effective Quasi-Probability for long modes

—Given the effective probability for the long modes

Py, 1] /qu 0

— Let us find the effective time-evolutios

0P
ot

— Let us start with the Drift:
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Effective Quasi-Probability for long modes

—Given the effective probability for the long modes

Py, 1] /ng 0

— Let us find the effective time-evolution for the long modes

0P
ot

— Let us start with the Drift:

= Driftt + Dift .

bo(T) — / Pk Qpe™ o (k)

Pl¢,1]

Quantum jumps 0¢ ~ H




Effective Probability for long modes

—Upon integration by parts and switching the derivative of the 0—tfunction:

Drit = - [ Do 3 6u@) ~ [ @k o060 oo [z (Wlol w6l - wiel vl )
= oo [ d'ad's [ &k Qi (B ig'@_f/)équ(f)
< [os [@ - [ metob)| (¥lol 0 vlel - Wlol 0 vl ) -
_ / d?)%m - / Dé § [@ 7) — / P QA@)(k)ei’?-%(E)] [m(migf)])h plo]
—where we nwrote )
(6@ ¥1o] =~z V1o

—The last path integral is nothing but the expectation value of the long-component of ]| (¢)
with a fixed long-background.

-ty (e (5] ), e




Effective Probability for long modes

—Upon integration by parts and switching the derivative of the 0—tfunction:

Drift = — /qu 0 [gbg(f) — /dgk QA(t)(/{)ei '
1
T 23

/D<b5 [@ /d EQa (k)™ o ! Ta "

(@)
— / AP % (f) / Do § [@ 7) — / 4’k QA(t)(k)e@"?%(/Z)] [Re <H[i§fﬂ)h plo)

—where we wrote )

H|p(7)|W]¢] =

d3 d3 //dBk QA(t)(k)(k) iE-(f—f’ \,

—The last path integral is nothing but the expectation value of the long-component of ]| (¢)
with a fixed long-background.

-ty (e (5] ), e




Effective Probability for long modes

—Upon integration by parts and switching the derivative of the 0—tfunction:

—where we wrote

H|p(7)|W]¢] =

—The last path integral is nothing but the expectation value of the long-component of ]| (¢)
with a fixed long-background.

-ty (e (5] ), e




Effective Quasi-Probability for long modes

—Therefore:

Dritt = /dgaz 0

—The expectation value over the

(O(t)) = <i11

0

(7)) = 557,

Wi

—Before that, let us do the diffus
0

ot

t 1
[T exp (z / dt’H(z"))] O(t) {T exp (—z’ / dz"H(f’\)>]
tin tin

A
—This 1s all well assuming we know the functional form of \

w L[ (o)

short modes ¢4

S _g

in> ,

A>¢e pel @]

be computed using perturbative methods.

10N

Pl(w) (v;,t) = Diffusion 4 Drift




Effective Quasi-Probability for long modes

~Diffusion term: it arises because our cutoff is time-dependent (modes become long)

. o — a B . i_).f . - T
Dift €] Do 26 |on(@) [ &k Qg™ o(R)| Plo.) D

New mode enter the long theory
Keep long modes fixed



Effective Quasi-Probability for long modes

—Diffusion term: it arises because our cutoff 1s time-dependent (modes become long)

: </ " %f( ><(‘QM( ))>w o
of e [ Samana @ <A¢<f>m<>>m Plor A) < (1+0()

- d°k k@ L7
_where A¢(T) = / Pk Qagy (k) e 79(k) ,: short modes entering the long theory.

A Quantum jumps d¢ ~ H

A ~ O5) \7

¢




Effective Quasi-Probability for long modes

—In summary: to all orders in )\ &7 ¢ and leading in 0 , we have obtained the following

effective equation. It i1s Fokker-Plank-like, but it has differences

0Py ¢/]

A

antum jumps 0¢ ~ H
[ ] [ ]
— Classica
— Drift D)
[ ] [ ]

b~ iy (e (4] ), )
i ([ 52 ((~ote)) i

o[ [ S (g Boone)) Pm,ﬂ)

—there 1s a tadpole-diffusion term, and in principle higher order terms.

Sy

—Strategy: compute these expectation values for the short modes in perturbation theory with
a given background for the long modes in expansion in At ~ A\ log e <K 1, V<1,

and solve this functional Fokker-Planck-like equation containing only long modes.



Effective Quasi-Probability for long modes

—In summary: to all orders in )\ &7 ¢ and leading in 0 , we have obtained the following

effective equation. It i1s Fokker-Plank-like, but it has differences

P
OFi|¢r] _ Drift + Diff. .

Sy

ot s
rift = 3
Drift /dazém(f) (<

. B 3 0
Diffus. = (/d x Dooe(7)

—Strategy: compute these exptatio values for the short modes in perturbation theory with
a given background for the long modes in expansion in At ~ A\ log e <K 1, V<1,

and solve this functional Fokker-Planck-like equation containing only long modes.



The Moment%m

~ 00(d)

—So far, we glossed on how to obtain H[gb( 3—3*)] /] [gb]

—Naively, given that the long theory is strongly coupled, how can we obtain that.

—It turns out that one can reliably compute 1] [(b(f)]

—In fact, it was already computed, almost entirely, by  Anninos, Anous, Freedman, Kostantinidis, 2015

—We focus on the long momentum, as this 1s the one for which perturbation theory is not

obvious. We assume the scaling by ~ i , for the counting.
\1/4
—The wavefunction reads
Wlg) ~ Bxp (—ia(t)? (2=6(@)! — i (@) ) + Ofe, & (\og(kn)")
12H b4 H* ’
11 A \?
= a[f] =37 (7)* 9H3¢(f)5 + O(e) = slow — roll solution + O(¢)

n

—Notice that the correction in €*(\log(kn))" are under control because, as we will see, the

long modes decay at long wavenumber, but in general the large phase makes expansion ok



Effective Quasi-Probability for long modes

—In summary: to all orders in )\ &7 ¢ and leading in 0 , we have obtained the following

effective equation. It i1s Fokker-Plank-like, but it has differences

0Py ¢/]

A

antum jumps 0¢ ~ H
[ ] [ ]
— Classica
— Drift D)
[ ] [ ]

b~ iy (e (4] ), )
i ([ 52 ((~ote)) i

o[ [ S (g Boone)) Pm,ﬂ)

—there 1s a tadpole-diffusion term, and in principle higher order terms.

Sy

—Strategy: compute these expectation values for the short modes in perturbation theory with
a given background for the long modes in expansion in At ~ A\ log e <K 1, V<1,

and solve this functional Fokker-Planck-like equation containing only long modes.



One-location



Effective Quasi-Probability

—For simplicity, we begin to expand in the number of locations, as evolution 1s quasi local,

thanks to dS (this is the opposite of what we do for perturbative theories in Minkowski).

— We define the one-location probability distribution: __ ..

[ Dor 5 61— 0u(3)] Plod

Keep long fields at one point fixed



Effective Quasi-Probability

—For simplicity, we begin to expand in the number of locations, as evolution 1s quasi local,

thanks to dS (this is the opposite of what we do for perturbative theories in Minkowski).

— We define the one-location probability distribution:

Py(6e() = ) = / Dy 60 (61 — 60()] Pl

—The resulting equation can be easily derived:

Pt L2 () punt) (1950 ) )

—We dropped the term < (-% Aqb(f)) > because it will not contribute at the order at

which we will compute (by translation invariance, it requires many long modes for it not

to vanish).

—The expectation value of the short modes on the long depends only on the field at the same

location (this 1s true only for smooth window function)

—The expectation values can be computed using ordinary perturbation theory.



Effective Quasi-Probability

—For simplicity, we begin to expand in the number of locations, as evolution 1s quasi local,

thanks to dS (this is the opposite of what we do for perturbative theories in Minkowski).

— We define the one-location probability distribution:

Py(6e() = ) = / Dy 60 (61 — 60()] Pl

Diffusion Drift
—The resulting equation can be easily derived: £~ M

Y { J 58715% <<EA¢(331) >¢1 P£,1(¢17 t) ‘3 2 ]A>¢1 Pg,1(¢1, t

e ) > - i

—We dropped the term (= o BOTTS | “~because it will not contribute at the order at
. . [ /¢ . . . .
which we will compute (by translation invariance, it requires many long modes for it not

to vanish).

—The expectation value of the short modes on the long depends only on the field at the same

location (this 1s true only for smooth window function)

—The expectation values can be computed using ordinary perturbation theory.



Solving at one-location: leading order

—We compute the various ingredients, assuming counting Py ~ /4

G DAF ) = I (140 (VX))

* We obtain _

() -4
OP;1(¢1)

or L, Pri(é1,t) (1+ O(N26,€%))

0 H3 §?
to = 5‘gb< ¢3> 872 )2




Solving at one-location: leading order

—We obtain:  HP )
Egt(¢1) — F¢1P£71(¢1, t) (1 + (9()\1/2’ 57 62))

o (X .\ H? o
Y= s <3H¢ ) T 37 992

—This 1s the famous Starobinsky equations, but now it 1s rigorously derived with control of

approximation and, as we will see, we can include them.

—There 1s an equilibrium, 1.e. solution:

@%2 [D(¢l)151,eq(¢z)] (’ibl [F(Cbz)ﬁ,eq(qbz)} =0 = Ple(d) = e_%i

H
e This is a static solution, with ¢; ~ \i/a ‘soour ¢ counting 1s correct

e Studying time-dep. solution, we see it 1s an attractor

P(¢)

Pl



Solving at one-location: sub-leading order

— We start again from

e L0 ((gaewr) Puton) - o (M40 ) putonn)

—with counting b1 ~ [_])\—1/47 ds ~ H,

—and compute to next order the various expectation values

_ : <H(¢(f1)) > :_L? A ¢?_%<¢s(f)2>¢l
A

B 3H' ! 9H3
—there 1s a mass on long modes from short modes and there 1s the quintic potential
\ H?
2
(3.0F) =~

— : there 1s a mass induced by the long modes on the shorts:

: : om? = 3\’
- A S / H 20m
(3(F.09(-Fot)), =5 (1+10ge S ) + 00

75




Solving at one-location: sub-leading order

—Summary so far:

e L0 ((gaewr) Puton) - o (M40 ) putonn)

—where

(
{

Effective mass



Solving at one-location: sub-leading order

—Summary so far:

046012 (B o)~ (([22] ) )

—where

0
ot




Subleading order

—Now we can solve the same Fokker-Planck-like equation as before, including subleading
terms. We find:

_ A7 \ 2 )\2 6
Pran(en) =t (14 (1= log(e)) S+ 22 (<14 log(e) )

=  (¢(2)") = /dgbl Py oo(¢7) @7 = depends on log(e) unphysical!
—This is ok, because <¢l(f)n> is UV sensitive
—What is physical is  (p(Z)"™) = ((d4(Z) + d(Z))")

2
—Counting: ¢, ~ H ~ ¢y - A o (b_; ~ \/X
[



Subleading order

—Now we can solve the same Fokker-Planck-like equation as before, including subleading
terms. We find:

B e e — l
Pl,eq(¢l) — € H Jai 6 ( 1 10g(€))>

=  (¢(2)") = /dgbl Py oo(¢7) @7 = depends on log(e) unphysical!

—This is ok, because <§bl ( f)n> is UV sensitive

—What 1s physical is <¢(f)n> — <(¢s(f) + ¢l(f))n>

2
—Counting: ¢, ~ H ~ ¢y - A o gb_; ~ \/X
[



Subleading order

—Now we can solve the same Fokker- Planck hke equatlon as before, including subleading
terms. We find: “ 1

Preq(¢1) = it (1 10g(6))>

=  (¢(2)") = /dgbl Py oo(¢7) @7 = depends on log(e) unphysical!
—This is ok, because <¢l(f)n> is UV sensitive
—What is physical is  (p(Z)"™) = ((d4(Z) + d(Z))")

—Counting: ¢, ~ H ~ ¢y - A o gb_ ~ f
[



Result for 1-location
—Using
>\¢

Pl eq(¢l) = G_F <1 € (1 _ log(e)) )\Qb?

L g (<14 log(e) )

H
— We obtain <¢( ) > <(¢S( ) o) (f))n>
(

o H \?" 28235721
(p(Z,1)*") = (W)

—The log(e) cancelled!

—Strictly speaking, this expression is still Minkowski UV sensitive, but the UV sensitivity 1s
subleading in VA already from 70 = 2



Result for 1-location
—Using

Aqb;l

Praatén) =5t (14 (1 log(0)

—The log(e) cancelled!

—Strictly speaking, this expression is still Minkowski UV sensitive, but the UV sensitivity 1s
subleading in VA already from 70 = 2



Result for 1-location
—Using

Ao 2 6
P1,eq(¢l) = 6_% (1 + (1 — log(€)) )\Z;l | )}jé (—1 + log(e))>

~We obtain (¢h(Z)") = ((¢s (T

—The log(e) cancelled!

—Strictly speaking, this expression is still Minkowski UV sensitive, but the UV sensitivity 1s
subleading in VA already from 70 = 2



Result for 1-location
—Using
>\¢

Pl eq(¢l) = G_F (1 € (1 _ 10g(e)) )\qbl6

L g (<14 log(e) )

H
— We obtain <¢( ) > <(¢S( ) o) (f))n>
(

o H \?" 28235721
(p(Z,1)*") = (W)

_The{ g ( e) cancelle!,/

—Strictly speaking, this expression is still Minkowski UV sensitive, but the UV sensitivity 1s
subleading in VA already from 70 = 2



2-locations



2-locations n-point function

—There 1s an analogous Fokker-Planck-like equation for the distribution at 2-points:

0 , 0?

EP2(¢17 ¢2, AZC,t) m— (F¢1 -+ F¢2) P2 —|—j() (GQ(t)HALC) a¢15’¢2p
% 52 g

where §P1(¢1,t) — F¢1P1 a¢2 P1 | ¢1 (V (¢1)P1>

—The last term strongly depends on distance

Early times j5 ~ 1 Crossing Region ¢ ~ H ! Late times jg ~ 0

- . e < -

1
()AfﬂNe—H




2-locations n-point function

—There 1s an analogous Fokker-Planck-like equation for the distribution at 2-points:

9, 0”
— P Az, t) = (T RN | t)HA P
BP0, 080.) = (P L Lokl 0 ) 520

here D Py(61,4) = T P = 2 P+ -0 (V(4n)P)
where — |

Ot 1\%1, o141 — a¢% 1 a¢1 141
—The last term strongly depends on distance
Early times 7y ~ 1 Crossing Region t ~ H~! Late times jp ~ 0

- . e < -

1
()AfﬂNe—H




2-locations n-point function

—There 1s an analogous Fokker-Planck-like equation for the distribution at 2-points:

0 . .
—P5(¢1, 02, Az, t) = (I'y, +T'g,) Po + jo (ea(t) HAx) P
J9100;

ot
0 - o
where aPl((bl,t) =1y, P = 057 11 - Do (Vi(p1)P1)

—The last term strongly depends on distance

Early times j5 ~ 1 Crossing Region ¢ ~ H ! Late times jg ~ 0
€ € > €
1
t)Ax ~ —
a(t) 77




2-locations n-point function

—There 1s an analogous Fokker-Planck-like equation for the distribution at 2-points:

0 , 0?
_P2(¢17¢27Ax7t) — (F¢1 _|_F</52)P2 + Jo (GGJ(t)HAZE) Py
0p10¢2

ot

—The last term strongly depends on distance

Jo
Early times jp ~ 1 Crossing Region ¢t ~ H~! Late times jg ~ 0

- L - L - L

— At early times, solutions is P2(§b17 sza tearly) ™~ 5(1)(§b1 — §b2) Peq,1(§b1)

— At late times 1S P2(¢17 ¢27 tlate) ™ Pl,a(¢1p tlate) Pl,b(¢2 tlate)
—The time scale of diff equation is H -1 / VA , but crossing time [ -1 < H -1 / \/X

— =—> we can glue using sudden perturbation theory’, which corresponds to expansion

in \/X (by coincidence)



de Sitter invariance

—There 1s an analogous Fokker-Planck-like equation for the distribution at 2-points:

0 -

5 L2(01, 62, A2, 1) = (Do, + L) o+ jo (calt) HAT) 55 P

—The last term strongly depends on distance

Jo
Early times jp ~ 1 Crossing Region ¢ ~ H™! Late times j9 ~ 0

t
—We find that the solution s de Sitter invariant.

{ i (f 1,11)"0(Z2,t2)™) = fum

)

—where—2% = zosh(t1 1) — H?etH) |z 7,



de Sitter Invariant

—Correlation functions at different spacetime-points
—under perturbative control: decay at long distances, signaling stability
—they are de Sitter invariant

<¢(fl7t1)n¢(‘f)27t2)m> — fnm(z) ~~ Z_\/X, Z — OO

2
where 2° = cosh(t; +t3) — HQGH(t1+t2)|£’1 — T



Thermality

—Correlation functions at different spacetime-points

(D(Z1,t1)" 0 (T2, 12)™) = fam(z) ~ Z_\/X, Z — 00

H

—Restricted to static patch, they satisfy thermality with Zds = o

*1.e. the KMS condition - certain periodicity in

siaic

imaginary time parch

(p(z1,t1) (22, ta + T4 ) = (d(xa,t2)P(w1,%1)) S

* This 1s not obviously true, since the leading term by itself does not satisfy it. KMS

condition requires particular coefficient.of.the subheading term:

, which we also computed.



Sharp Window Function

—If we used a sharp window function in Fourier space, the splitting of the modes would be

non-local in Real space.

—This implies that the dependence of the short modes on the long ones 1s non-local.

OF1(¢1,t) 1 07 9, s
By, = 507& <<aﬁ¢($1> >

_ 7 _ \
Pra(¢1, t)) - % <<[H(¢(2 >>] > Pr1(01,t)
"€ " : : AT /

* All points

—But the dependence on the long modes points 1s perturbative, and so one can use the lower

order solutions to compute the next-order diffusion and drift coefficients.

—We do this, and we get the same answer.



Conclusion

—Modulo some further checks/subtleties, we have developed a formalism to compute

correlation functions of \ gb4 in dS

—manifest expansion in
VA & e & 6§

—the solution 1s remarkably non-perturbative, and yet we can solve it
—at zeroth order in everything, we obtain the old Starobinsky result.

* but now we know it is correct, that it is the truncation of “something’, and we know

what “something’ is, and we can systematically compute the corrections (which we
do).

e all radiative corrections in dS and inflation are understood, and well behaved

with Zaldarriaga JHEP 2010, JHEP 2012,
—no instability in the rigid limait JCAP 2012, JHEP 2013
with Pimentel and Zaldarriaga JHEP 2012

& this work



