Segment Efficiencies and Dead Layers

Heather Crawford (LBNL)

Third AGATA-GRETINA/GRETA Collaboration Meeting, Argonne National Laboratory– October 2-4, 2019

Detector Rear Dead Layers

- Efficiency measurements, requiring a signal in the rear layer (rear 1.2cm) of the crystals can be compared to simulation, analyzed in the same way
- Shape of efficiency curve proves sensitive to rear dead-layer thickness

"ENHANCED" SIMULATION

Toward a More Realistic Description

- GEANT4 includes realistic crystal geometries but does not have the correct segmentation
- Introduces challenges in accurately applying concepts such as position resolution etc. realistic description would require us to maintain the definition of net segment correctly

Improving Segment Boundary Descriptions

- GEANT4 includes realistic crystal geometries but does not have correct segmentation
- We use the basis grid points to define the correct segmentation in Z (as a function of X, Y) and phi
- Directly reproduce detector crystal geometry (A and B type) in ROOT, to constantly check that no operation puts interaction points outside the physical crystal volume

Improving Segment Boundary Descriptions

Decomposition Basis and Errors

Similarity in basis point distributions and data (x,y,z) distributions suggests using density of grid points to weight likelihood for altered interaction point positions

Converging Toward Data

- With realistic segments, interaction point distributions naturally move toward reproducing data more readily
- Application of an energy-dependent position resolution smearing to the simulated data, while requiring no change to the segment ID naturally results in "clumping" of lower-energy points near segment boundaries

SEGMENT EFFICIENCIES

Segment Efficiency (% of CC)

Q11 Position 1 (Geometry B)

"Standard" Simulation

- 1.5 mm back dead layer + 3.5 mm coaxial dead layer
- Flat segment slices at 8, 14, 16, 18 and 20

Remapped Simulation

- 1.5 mm back dead layer + 3.5 mm coaxial dead layer
- Mapped to realistic segment boundaries (all changes to layer #)
- Shape of distribution for segment efficiencies correct

Remapped Simulation

- Vary dead layers and optimize χ² of difference in segment-by-segment relative efficiencies
- Best "fit" for lower dead layers (coaxial and back)

Still Under Development...

- There is no consistent description of overall crystal efficiency and segment partial efficiencies for both crystal geometries A and B
 - Suggestive of additional losses outer surface area effective dead layer?

Still Under Development...

- There is no consistent description of overall crystal efficiency and segment partial efficiencies for both crystal geometries A and B
 - Suggestive of additional losses outer surface area effective dead layer?

Still Under Development...

- There is no consistent description of overall crystal efficiency and segment partial efficiencies for both crystal geometries A and B
 - Suggestive of additional losses outer surface area effective dead layer?
 - Exploring addition of outer surface dead layer – combine optimizing segment and total efficiencies to fit crystal-by-crystal for most accurate description

Variation Between Crystals

Variation Between Crystals

- Variation of relative segment efficiencies between crystals is at ~20% level
- Fully realistic simulation requires 120 independent crystal dimensions / dead layers
- Parameters *can be* determined from flood field data – iterative between simulation and field calculations

Segment Efficiencies & Dead Layers

- UCGRETINA GEANT4 simulation package has become an all-inclusive package for both physics analysis and GRETINA performance benchmarking
- Detailed scanning measurements are continuing to refine the subtleties of detector geometry
- More "realistic" simulations are currently being reached by postprocessing of GEANT4 outputs
 - Realistic segments and energy-dependent smearing provide path forward to better agreement with P/T and polarization
 - Method to investigate partial energy loss near boundaries and surfaces etc.
 - Segment efficiencies within specific layers can constrain dead layers (rear, coaxial and outer surface?)

Acknowledgements

Thank you to Lew Riley (Ursinus College) & Richard Chen (UCBerkeley)

THANKYOU!

