GeDSSD Neutron Damage Studies at UML

Peter C Bender

Department of Physics and Applied Physics University of Massachusetts Lowell

3rd AGATA-GRETINA Collaboration Meeting

Ge-DSSD: PHDs Co.

- Small Business Innovation Research (SBIR) grant from USDOE (Lister)
- applications in imaging and high count rate capabilities
- test neutron damage and "repairability" for in-beam physics

Typical HPGe Detector Peak Shape

Effect of Neutrons on Peak Shapes

Full-energy deposition of 662kev in a neutron damaged HPGe detector

Effect of Annealing on Peak Shapes

Full-energy deposition of 662kev in an annealed **HPGe detector** 650 655 660 640 645 665 670 Energy (keV)

⁷Li(p,n)⁷Be Reaction at UML

Experimental Plan

- Three irradiation were made, so the accumulation of damage could be followed.
- The detector was Thermally Cycled to room temperature.
- The detector was Annealed to 350K for three days.
- ¹³⁷Cs source was used to determine the peak shapes after each stage.

Stage	No	Neutron (n/cm ²)	Accumulated Neutron (n/cm ²)
Neutron damage	1	$1.08(5) \times 10^9$	$1.08(5) \times 10^9$
	2	$0.40(2) \times 10^9$	$1.48(5) \times 10^9$
	3	$0.45(2) \times 10^9$	$1.93(9) \times 10^9$
Thermal Cycled			
350K Anneal			

⁷Li(p,n)⁷Be Reaction at UML

Interaction Depth

Quantifying Neutron Damage in a Peak

FOM for Stages

FOM per Strip

Strip FOM for Irradiation Stages

Strip FOM for Post Irradiation Stages

Learning with Purpose

UMASS

Pixel FOM for Irradiation Stages

Strip FOM for Post Irradiation Stages

 $\mathbf{FOM} = \mathbf{0.88}$

FOM = 0.67

FOM = 0.89

Charge Collection vs Depth: Revisited

Corrected AC-Coupled Side FOM

AC Pixel FOM for Irradiation Stages: Corrected

Corrected DC-Coupled Side FOM

AC Pixel FOM for Post Irradiation Stages: Corrected

FOM = 0.90

 $\mathbf{FOM} = \mathbf{0.90}$

DC Pixel FOM for Irradiation Stages: Corrected

DC Pixel FOM for Post Irradiation Stages: Corrected

FOM = 0.89

FOM = 0.89

Comparison of Corrected AC/DC Charge Collection

