# AGATA Simulation Code (ASC)

Marc Labiche – STFC Daresbury Laboratory On behalf of the A.S.W.G.

Outlines:

- Study of AGATA core efficiencies with sources update
- 2. Status for  $\gamma$ -ray angular distributions in ASC
- Recent ancillary/mechanical structure additions to ASC
- 4. Future work for the AS Working Group.

# Some general information

- AGATA Code (AC) still maintained and available here:
  - <u>http://npg.dl.ac.uk/svn/agata</u>
  - Check it out with command: svn co http://npg.dl.ac.uk/svn/agata
- AC is compatible with Geant4.10.5 and prior versions.
  - To use GDML geometry files, Geant4 must be installed with the GDML option.

(Please, see the INSTALL file in the svn repository)

# **Core efficiency Study**

- Long standing issue: Simulation overestimating core efficiency measurements
- Crystal effective size or passive Ge area are questioned.
- Try to determine this passive Ge area based on measured efficiency at 1.172 MeV with the GSI setup:



## Increasing Ge Passive area

- Thickness of Ge Passive Area around the coaxial contact and at the back of the crystals can be adjusted in file A180Solid.list
- Simulations have been carried out with several sets of passive area parameters and compared with the measured efficiency at 1.172 MeV at GSI



#### Ge dead area from:





#### To:



Coax / Back 2.5 / 3 mm

1 ATC

## Ge passive/dead area determination



Several set of thicknesses can provide a result that agrees with the measured one.

First assumption: 2.5 mm (Coax) & 3 mm (Back) Note: in GRETINA 2.1 mm (Coax) & 3.4 mm (Back)

### **GANIL Source measurements – Simulated Setup**

32 AGATA crystals + VAMOS chamber (Aluminium only)



- 2 of the 32 crystals not operational at the time of the source measurement.
- 1 more was later removed from the analysis (Electronics issue)
- So 32 crystals included in the simulation but 29 kept for the analysis

\*Compact =10cm shift along z

# Capsule relative efficiency at 1.332 MeV

| I NANKS TO E. Clement & R. M. Perez Viaal | Than | ks to | <i>ъ Е</i> . | Clement | t & | <i>R</i> . | М. | Perez | Vidal | ! |
|-------------------------------------------|------|-------|--------------|---------|-----|------------|----|-------|-------|---|
|-------------------------------------------|------|-------|--------------|---------|-----|------------|----|-------|-------|---|

| Ci                | rystal               | Crystal                | Measured Relative                                    | Measured Relative                                       | Geant4 Relative         |
|-------------------|----------------------|------------------------|------------------------------------------------------|---------------------------------------------------------|-------------------------|
| <u>Lc</u>         | ocation              | Name                   | Efficiency (Canberra)                                | Efficiency (R. M. Perez Vidal)                          | Efficiency (E. Clement) |
|                   | 00A                  | a001                   | 0.844                                                | 0.758                                                   | 0.86                    |
|                   | 00B                  | b004                   | 0.782                                                | 0.664                                                   | 0.87                    |
|                   | 00C                  | c010                   | 0.78                                                 | 0.756                                                   | 0.858                   |
|                   | 01A                  | a010                   | 0.76                                                 | 0.772                                                   | 0.86                    |
| <u></u>           | 01D                  | h012                   | 0.916                                                | 0.885                                                   | 0.87                    |
|                   | Efficier             | ncy of indivi          | dual capsule                                         | 0.653                                                   | 0.86                    |
| 100               |                      |                        |                                                      | 0.748                                                   | 0.87                    |
| 90                |                      | <b>A</b> . <b>A</b>    |                                                      | 0.47                                                    | 0.858                   |
| 80                |                      |                        |                                                      | 0.708                                                   | 0.86                    |
| G                 |                      | <b>→</b>               |                                                      | 0.748                                                   | 0.87                    |
| ŏ <sup>70</sup> − |                      | •                      |                                                      | 0.773                                                   | 0.858                   |
| <b>D</b> 60       | \ <i> </i>           |                        | •                                                    | 0.739                                                   | 0.86                    |
| 50 -              | ¥                    |                        |                                                      |                                                         | without additional      |
| <b>4</b> 0        |                      |                        |                                                      |                                                         | passive area !          |
| <b>Relat</b>      |                      |                        | Canberra                                             |                                                         |                         |
| 20                | →R. M. Perez Vidal   |                        | <b>Cuggest a</b>                                     | mallor offective                                        |                         |
| 10 -              |                      |                        | Simulated                                            | Suggest a smaller effectiv<br>crystal size than the one |                         |
| 0                 | 1 2 3 4 5 6 7 8 9 10 | 11 12 13 14 15<br>Caps | 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30<br>Sule | in the simu                                             | llation.                |

#### Simulation vs Source Measurements - NOMINAL



Data: Courtesy of Rosa Maria Vidal-Perez



- Good match when weighting by the measured relative efficiency of each crystal !
  - But correction difficult to apply to the simulated tracked efficiency.
- The increase of Ge passive area from 0.6mm (Coax) / 1mm (Back) to 2.5mm (Coax)/ 3 mm (Back) results in a better agreement except at 121 keV.

#### Simulation vs Source Measurements - COMPACT



Data: Courtesy of Rosa Maria Vidal-Perez

Same conclusions than for the nominal configuration

#### Simulation vs Source Measurements

- Conclusion:
  - Much better agreement between simulation and measurement when Coaxial & Back dead layer thickness are increased to 2.5 & 3mm, respectively
  - But is it the right thicknesses for all crystals ?
    - In reality it will be different for each crystal as suggested by the measured relative efficiency
    - If we assumed all crystal of a given shape are the same:
      - How does that affect the simulated tracked efficiency ?
      - Will we need to adjust the size of each crystals in the simulation ?

#### Reviewed basic performance of a $4\pi$ Array

| Detector properties specified for |                                                                        | Ideal Ge-shell | AGATA   | AGATA & extended<br>passive Ge (OFT |
|-----------------------------------|------------------------------------------------------------------------|----------------|---------|-------------------------------------|
|                                   |                                                                        |                |         | 2010/                               |
| Efficiency (P <sub>fe</sub> )     | $E_{\gamma}$ = 0.1 MeV, M <sub>{\gamma</sub> = 1, 0 < $\beta$ < 0.5    | 99.5%          | 67-70 % | 67-70%                              |
|                                   | $E_{\gamma}$ = 1.0 MeV, M <sub>{\gamma</sub> = 1, 0 < $\beta$ < 0.5    | 65-76%         | 35-40 % | 34-38%                              |
|                                   | $E_{\gamma}$ = 10. MeV, $M_{\gamma}$ = 1, 0 < $\beta$ < 0.5            | 10-14%         | 6-8%    | 3.5- 5 %                            |
|                                   | $E_{\gamma}$ = 1.0 MeV, M <sub>{\gamma</sub> = 30, 0 < $\beta$ < 0.5 * | 36%            | 23-27%  | 21-25%                              |
| Peak-to-total ratio (P/T)         | $E_{\gamma}$ = 1.0 MeV, $M_{\gamma}$ = 1, 0 < $\beta$ < 0.5            | 82%            | 51-57%  | 49-54%                              |
|                                   | E <sub>ν</sub> = 1.0 MeV, M <sub>ν</sub> = 30 , 0 < $\beta$ < 0.5 *    | 55%            | 38-43%  | 37-41%                              |

Note: No material between source and array (no chamber and no ancillary!)

# $\gamma$ -ray angular distribution in ASC

- Inside the Built-in generator (since GSI campaign)
- Only pure E2 :  $2^+ \rightarrow 0^+$  is implemented
  - /Agata/generator/gamma/gunType int
  - int =
    - 0 → Monochromatic gammas (Default)
    - 1 → Equally spaced gammas Eg= Offset+ Delta\*n
    - $2 \rightarrow \text{Discrete energies from file}$
    - $3 \rightarrow$  Flat energy distribution
    - 4 → Energy sampled from Spectrum
    - $5 \rightarrow$  Discrete energies from file (weighted with intensities)
    - $6 \rightarrow E2$  transition (it is currently hard-coded)



In file AgataEmitted.cc: void AgataEmitted::EmitE2DirCM()

- For pure E2:  $2^+ \rightarrow 0^+$  transition
- Based on particle-gamma angular correlation (in <sup>20</sup>Ne): / http://www-linux.gsi.de/~wolle/EB\_at\_GSI/FRS-WORKING/index.html
- Using Inverse Cumulative Probability method
  - Fitted with a polynomial of order 8
    - 9 Parameters (hard-coded)
    - θ= par[0]+ par[1]\*x+ par[2]\*x<sup>2</sup>+ ... + par[8]\*x<sup>8</sup>
    - Where:
      - x=G4UniformRand();







# $\gamma$ -ray angular distribution in ASC

Still to do:

- Make it more generic and user-friendly
  - Interactive commands for the user to input:
    - Particle-gamma angular correlation function
    - or inverse cumulative probablity function
    - or fit function, Nb of parameters, parameter values.
- Extend to other type of transitions: E1, M1.
  - As proposed in the update of the Project Definition Document, for 2020-30.

## **Recent Additions**

#### • <u>New Ancillarys:</u>

- NEDA added to the AC package (courtesy of A. Goasduff)
- NEDA geometry defined with GDML



# Other GDML files

#### • Available here: <a href="https://github.com/malabi/gdml-files">https://github.com/malabi/gdml-files</a>

#### gdml files for GEANT4 simulations of NP detection suystems

| 17 commits                   | ₽ 2 branches                               | 🛇 0 releases                  | <b>2</b> contributors             |
|------------------------------|--------------------------------------------|-------------------------------|-----------------------------------|
| Branch: master   New pull re | quest                                      |                               | Find file Clone or download -     |
| Alain Goasduff Added NED     | A gdml files                               |                               | Latest commit 7fadce8 12 days ago |
| AGATA                        | Added NEDA gdml files                      |                               | 12 days ago                       |
| GALILEO                      | Add gdml files for GALILEO TC / GALILEO Pl | unger device / GALILEO SPIDER | 9 months ago                      |
| MARA                         | Adding MARA folder                         |                               | 9 months ago                      |
| MuGasT                       | adding MuGasT chamber                      |                               | MuGasT                            |
| SToGS/ATC-Demo               | Adding SToGs ATC demo                      |                               | Chamber                           |
| README.md                    | Update README.md                           |                               |                                   |
|                              |                                            |                               |                                   |
|                              |                                            |                               |                                   |

# **Other GDML Files**

#### • GDML files available for AGATA:

| 📮 malabi / <b>gdml-files</b>         |                          | ♥ Watch3★ Star0% Fork            | 2  |
|--------------------------------------|--------------------------|----------------------------------|----|
| ♦ Code ① Issues 0 ۩ Pull request     | ts 0 Insights -          |                                  |    |
| Branch: master                       |                          | Create new file Find file Histo  | ry |
| Alain Goasduff Added NEDA gdml files |                          | Latest commit 7fadce8 12 days ag | jo |
|                                      |                          |                                  |    |
| GDMLSchema                           | add AGATA                | 2 years ag                       | JO |
| 🖬 GanilChamb                         | adding GanilVamosChamb2b | 2 years ag                       | JO |
| HoneyComb                            | rm 1 file                | 2 years ag                       | JO |
| NEDA                                 | Added NEDA gdml files    | 12 days ag                       | ю  |

# Some are STEP files converted to GDML using FastRad application (License valid till march 2020 at Daresbury)

### Future work

- Update of the Project Definition Document (2020-30) is on-going.
- Simulation section includes:
  - Code maintenance and dissemination
  - Update generic performance predictions w/r of the number of detector, at the different facilities, low and high multiplicity
  - Implement new CAD Mec. Struc. as required
  - Use crystal characterisation information (Ge passive area measurement) as input to the simulation geometry.
  - Create a map of the position sensitivity in a crystal and use this as input in the simulation.
  - Develop/complete event generators (ex: γ-ray angular distribution).
  - Simulate array performance as polarimeter.
  - Migrate to a more "user-friendly" framework (STOGS, NPTool, FAIRROOT)

Thank you