

Decay Spectroscopy at FAIR

α , β -decay experiments

-> AIDA active implanter defines time of decay -> very little chance background - ϵ (DEGAS) $\geq \epsilon$ (RISING) $\approx 15\%$ -P/T(DEGAS) \geq P/T(RISING) $\approx 35\%$

Isomer-decay experiments

-> AIDA defines implantation points -> time of decay unknown -> chance background depends on lifetime - ϵ (DEGAS) $\geq \epsilon$ (RISING) -P/T(DEGAS) $\geq P/T(RISING)$ - τ max(DEGAS) $\geq 100 \text{ ms } !!! \text{ [RISING } \approx 100 \text{ µs]}$

General

-Uses AIDA in 8x8 cm² and 24x8 cm² mode

-quasi-permanent set-up at FAIR

Challenge: Background supression

prompt flash

Imaging to distinguish isomeric from environmental γ rays

Challenge: Background supression Implantation rate 0.1 kHz 50 kHz background from unwanted isotopes 54 52 ¹⁰⁰Sr 10² 50 nuclear charge Z 48 10 42 weak decay channel 2.08 A / Z ratio 1 mHz 1 Hz

Imaging to localize the respective implantation points ⁵

What is needed?

Phase 1

-Use RISING crystals

-Replace preamps and detector pcbs

-Change configuration to adopt to extended AIDA implantation zone and structure

-Go for triple detectors if efficiency is gained compared to 7-fold clusters

-add active/passive shielding to reduce background

Phase 2

-include AGATA type doubles and/or triple detectors (towards beam) -replace digital electronics

Phase 3

-develop imaging array

-develop Ge implanter

DESPEC – DEGAS I Detector

DEGAS test June 2019

DEGAS I Critical Issues

DEGAS Electrical cooling

X-Cooler production stopped! Available X-Coolers are half-broken!!! CT-cooler too noisy for Ge operation!

De-noising unit under development with ORTEC.

Delivery expected now

Remaining thermal losses

Thermal load of 10 W measured, while 7 W were expected from simulations and are needed to assure ≤ 155 °C at the crystals.

Reduced cold finger thickness and improved holding labyrinthin in preparation

Expected by end of October

DEGAS I Time plan

- 2019 Test and improve prototype
- 2020 Assemble up to 5 Triples for runs in March-May (*if e-cooling fails use LN2*) Produce remaining 18 modules

2021 Set up full DEGAS I for runs in Q2

DEGAS III Basic Idea

- Stack of 3 planar 2D stripe Ge detectors
- 68mm² x 68mm² x 20mm² + 2mm guard ring
- 6mm gap between crystals
- 8x8 segmentation
- \bullet 1 3 mm 3D position resolution with PSA
- Energy resolution: 0.2%
 - dead volume destroys performance

USS F.

Semi-planar structure Amorphous Ge (aGe) blocking contact

Negligible dead zone!

Semi-planar prototype

Non-segmented p-type HPGe crystal Volume: 33.2x33.2x15.5 mm³ Carrier concentration 3.3x10⁹ atom/cm³

Crystal processed by SEMIKON FZ-Jülich

Tracking algorithm TANGO*

•Rejection of events from background sources

Construction of a "Figure of Merit"

for each possible order of interactions

for the case of <u>total</u> and <u>partial</u> energy deposition
probing the origin of the γ ray
Selecting the case with the maximum Figure of Merit

*S. Tashenov, J. Gerl, NIM A622 (2010) 592¹³

Tracking performance (@ 1mm res.)

Conclusions

DEGAS I prototype is under testing

Remaining cooling issues need to be solved (urgently)

 γ tracking/imaging is able to reduce the huge background in rare decay experiments

Efficient $\boldsymbol{\gamma}$ detector set-up with minimal dead volume is required

Semi-planar structure is under development for DEGAS III

