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Pulse Shape Analysis (PSA)

y-ray tracking requires positions at resolution ~5Smm FWHM at ~5kHz/CPU.
Positions must be inferred from electrical response (PSA).

Complex detector response makes parametric methods insufficient.
Instead we simulate the detector response in ADL.

Interaction locations are then determined by optimisation metrics:
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Other metrics can be used to highlight different sensitivities.
Different exponents, weighting for segments.

Time shifting via Dynamic Time-Warping.

My work is on developing Novel PSA techniques for AGATA.
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Detector Simulation

Simulated data looks reasonable as expected.
Parametric frends are seen in the data, useful for clustering
T,0.90- Charge asymmetry, knee-point, skewness etc.
These parameters are continuous but break down at high fold.
6-fold symmetric, polar and tetrahedral basis sets simulated.
High resolution (0.5mm) basis set generated too.

Option for dynamic resolution basis sets.

N |
2

10 i " l \ '
. | AP 4 . i gba sl td ad e i } .
Al nabal 2" i AL of Lty i MR ALl 8¢ L Anh i BN
o EX l".‘)“‘x’ e A R T e U A T el

Armplece keV)

Segment 1D (Time [100a])

Fraser Holloway - F.Holloway@liverpool.ac.uk

B.Bruyneel — Eur. Phys. J. A (2016)




Simulation Limitations — (Blame SIMION)

Field simulation limited to 1Tmm spacing, ADL is done at 2mm for a reason.
SIMION segmentation is wrong on face of crystals.

Odd effects seen at segment boundaries & high resolution:

Unexplained ‘charge sharing’ between segments.
Charge tracks of unusual signals

Sharp discontinuities at edge changes. '
Overlap of SIMION definitions?
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Novel Algorithm Development

-'(:\‘-Singular Value Decomposition

Use more efficient search methods (TDA). @ Full Grid Search

Several PSA algorithms have been fried for AGATA.
T 8 @padaptive Grid Search
Time limits for online PSA mean only ~5% of the basis £ | ¢pAntificial Neural Networks
can be searched using curent CPU methods. g 6 - @ particle swarm Optimization
There are three different ways to solve this issue: £ @ Genetic algorithm
- .Wawlet method
Hyper-parallelize the search (GPU acceleration). g @ Least square methods
E
2
8
[*%

Don't search at all, instead infer locations (ML). l

1
ms S hr
Computation Time/event/detector

Moving beyond the basis simulation this becomes a
computer science problem, existing techniques can
be applied.

~ Plenty of established fields to learn from.

Fraser Holloway - F.Holloway@liverpool.ac.uk



Novel Algorithm Development

Topological Data Analysis (TDA) techniques try to
organize data and form efficient search spaces.

Search spaces are Non-Euclidean
Generally kd-ball or cover trees used.
Less prone to local minima.

Search algorithms aren't naive.

Each step made moves search closer to
optimum.

Searching n points can be 0 log(n).

Machine Learning (ML) uses the simulated basis to
learn trends via feature extraction.

No searching is performed whatsoever.
Simulated basis only needed for training.

Needs an appropriate model & good data.
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Novel Algorithm Development

Tree-based search approaches: >Singular Value Decomposition

81 dpAadaptive Grid Search

kNN - k-dimensional Nearest Neighbors.
’Anmclal Neural Networks

LSH - Locality-based Sensitivity Hashing. 6 |- @ particte Swarm Optimization

ST/DT MKS - Maximum Kernel Search. @ Genetic algorithm
Machine Learning opfions: @ Wavelet method
.leasl square methods

Signal Classification.

€@ Full Grid Search
Regression (CNN).

Position resolution (mm FWHM)

I 1
ms S hr

Computation Time/event/detector

Autoencoding/Fingerprinting (B-VAE).

Other options:

GPU Acceleration.

All Algorithms have been tested with Gaussian Noise, experimental noise to be determined.

Performance is likely to decrease.

Will know more when scanning table is operational.
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GPU Acceleration

GPUs have advanced significantly (10x) since the last AGATA investigation.
GPU acceleration can be used on embarrassingly parallel problems:
Exhaustive search.
Adaptive Grid search (two step).

Matrix manipulations.
Figure of merit (although matrix sum 0 logz(n) )

Shared memory makes things complicated.

Multiple languages can use GPU accelerated code:
C, C++ (NVCC)- Routine Types Operation
Python (with Numba). GEMM — Multiplication of 2 matrices.

Programs can be compiled to use NVBLAS: SRK - BEES== -
MLPACK (Armadillo).

Nvidia P5000
(277 GFLOPS)

GPUs are very powerful for ML approaches.
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Cluster Optimisation & Tree Building

Initial investigations were made into optimizing the clustering used in AGS.
Instead of using Euclidean splitting the basis was split parametrically:
Segment # - T, - Charge asymmetry - Transient Signal Fingerprint -+ FoM
This allows for hierarchical ordering of basis & bespoke optimizations.
Resolution of metrics inversely related to execution time.
Faster mefrics narow down solution - FoM test applied on final cluster,
Low resolution metrics mitigate overfitting.

Sensitivity of the detector is accounted for.

Ultimately parametric clustering difficult (impossible) at high fold.
Accurate fold-invariant metrics difficult fo make [might be possible with ML). '
Method will likely be revisited in the future.
Framework written in C .. can be compiled into MISORI.

Made somewhat obsolete by LSH.
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Cluster Optimisation & Tree Building

Initial investigations were made into oplimizing the clustering used in AGS.
Instead of using Euclidean splitting the basis was split parametrically:
Segment # = T,,4, = Charge asymmelry - Transient Signal Fingerprint -+ FoM

This allows for hierarchical ordering of basis & bespoke optimizations.

Nosvades] Meve
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Resolution of metrics inversely related to execution time.

Faster metrics narow down solution - FoM test applied on final cluster,

Low resolution metrics mitigate overfitting.

Sensitivity of the detector s accounted for.

Ultimately parametric clustering difficult (impossible) at high fold.
Accurate fold-invariant metrics difficult to make (might be possible with ML).
Method will likely be revisited in the future. 8
Framework written in C .. can be compiled into MISORI. % -
;

Made somewhat obsolete by LSH.
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Automated TDA Searching

Established C++ Library MLPACK used for KNN & MKS operations.
GPU acceleration possible using NVBLAS.

Additional Python API & Command line interfaces available.
Modular design allows for custom Figures of Merit, segment handling.

Prefers smooth & convex search spaces.

Doesn't like searching multiple segments. I I l I p a C k

Metric penalizes segments far from interaction.
Should work for multiple interactions within the same segment.

Combinations need to be precomputed.
Outrageous memory costs if implemented.

Currently 3 techniques look applicable to Fold-1 searches:
kNN
LSH
MKS
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Fast-MKS Searching

Fast Maximum Kernel Search uses two trees to search an ordered data structure.
First tfree is used tfo convert reference set into structured data.

Second tree is then dynamically built using query set.
Efficient comparisons mean that the space can be searched quickly.

Mercer Kernels allow for modifications of phase space, improve separations.

More complex kernels have execution penalty.
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Fast-MKS Preliminary Results

10% Gaussian noise added to simulated database for preliminary validation.

MKS with Gaussian kernel used to return top 5 solutions of kernel search with confidences.
95% of fold-1 events identified at input location.

99% of fold-1 events within 2mm.

Discrete distances due to finite grid size.

Currently clustering of deviations are not well understood, needs further analysis.
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Signal Discrimination with ML

Main motivation of this method was to identify interesting sections of the interaction.
Possible groundwork for software-based trigger.

Because of this these networks need to be fast (and likely simple).
Position gated pulses used to generate database of hit, fransient & noise samples.
Various networks trained to predict category.
Ultimately the cut is arbitrary, open to interpretation.
Doesn’'t offer much above traditional methods.

However if we want to look for something specific it's pretty useful.

Method Agreement with Midas Label . :
Multi-Level Perceptron ~68% 9
Binary Perceptron ~87% 9
Neural Network ~94% 22
Convolution Neural Network ~97.6% 26

Fraser Holloway - F.Holloway@liverpool.ac.uk



Determining Multiplicity with CNNSs

Similar setup as before, input data is either core electrode or superpulse.
Multiplicity to simulate taken from expected distribution.
Two scenarios simulated:
Multiple hits in the same segment.
Multiple hits in the same crystal.
Output of network still freated as categorical

Likelihood of fold reported, pick the most likely
Initial results look promising however simulation was heavily idealized.
Issues with this method:

Interaction locations & energies picked at random, should use GEANT4 instead.
Realistic noise floor needed.
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CNNs for Regression

CNN used to return continuous outputs.

Trained on 6x8x120 tensor (core contact excluded).

§

Column repeats used for CNN windows.

ResNet architecture used for robustness.
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Gaussian noise & Dropouts used for reliability.
Should use experimental noise instead.

Works well on detectors with high connectivity.

Currently only implemented for fold-1 events. T, G

Training on multi-fold requires separate networks. DiscroggriQy
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This isn't difficult, I'm just waiting for an accurate L v\A// e L\v\/" 5 \.

simulation of multfiple fold events. {us f‘ . \\64_,,\/
Reasonable execution time ~300us. E

Variable FWHM, performs worse at boundaries.

Will likely decrease with realistic data. i "
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Autoencoders for Tagging & Compression

Avloencoders combine two separate networks to function:

Encoder: converts input to a leamed latent space via feature
extraction.

Decoder: converts latent space into a reconstructed output. Encoder

Autoencoders are incredibly efficient however can be lossy.
As a whole the network replicates a denoised input.
Signal is intelligently denoised, small transients are unaffected.
Network doesn't see noise as useful information.
Current Execution time ~56us however wil likely change.
Autoencoders become more useful when split into parts:

The Encoder and Decoder compress data far better than
fraditional methods. Decoder

The latent representation can be used to express parametric trends.

This requires disentangiing the Iatent space (difficult)

Can this be used for tagging?

Compression isn't necessarily bad, oddly the reconstructed pulses could
end up being better than the inputs due to denoising.




Example Reconstructions, ~44x Compression
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Disentangled Autoencoders
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Optimum bottleneck size is unknown, how many variables contribute?
DAE attempt to maximize the usefulness of the latent representation.
This is done by making each latent variable strongly independent. Encoder

Each latent variable should represent a different parametric trend.

Latent space should be separable.
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Autoencoders for Basis Correction

PSA and GRT perform differently when given real & simulated data.

Therefore there's likely some form of discrepancy between the two.

How about using ML to tfransform simulated into real data?

Simulation reduced to latent space & then reconstructed to experimental.

This approach requires very good experimental data: Reparameterization

-Bo’r’rleneck

Full x, y, z characterisation of the crystal.

No gucrantee that trained model can be adapted to different crystals.

Validation data for ACOS will be taken anyways.

May as well test the feasibility of this method.
» _ Decoder
Transform of preamplifier response also possible.

Way easier
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AGATA Pipeline

Geometry,
Segmentation

Electromagnetism Gradient

Impurity

Poisson Electrical
Solver Field

Weighting
Potentials

Experimental
Data

Autoencoder

Correction

Position Set

Crystal Axis Neuion

Damage?
Charge Path
Simulation
cC Temperature
Mobilities Dependence?
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Charges

Preamp
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Experimental Validation

Coincidence scanning will be used to validate simulations, ML efforts and

PSCS method (IPHC, Strasbourg).

Will provide a definitive & time aligned basis for Geant4.
Allows for proper simulations of high-fold events,
Currently using Caen 17245, may swilch to AGATA dgitizers.

1GBq '*’Cs source collimated to Immon x, y stage.

Vertical stage added to apparatus for quick z movements.

90° scatter gating using BGO array & energy gating (374 & 288keV).

I'm currently writing the MTSort code for acquisition.

Typical validation measurements will be taken:
24 Am surface scan for alignment.
Gated cross & circle measurements for CAO.
Gated coarse cubic grid using vertical stage.
High-resolution pencil beam of front segmentation.

(ime permitting) Automated High-resolution scan.

Fraser Holloway - F.Holloway@liverpool.ac.uk

Ver

BGO Array —

Lead Collars<Z r

Dewar

tical Stage

4 — Preamplifter

= Detector Capsule

4+ I~ Tungsten Collimators

2 Axis Stage

Cs Source — /

||
Coincidence scanning apparafus found at Liverpool



Conclusion

GPUs have advanced significantly over the last decade, likely to contfinue in the future.
Definitely should be revisited considering future projections.

Tree-based search methods are incredibly efficient but difficult to adapt to high fold.
Use fold-invariant search space instead?
Very applicable for Fold-1 regardless.

ML approaches offer good learned relationships but need adaptions to high fold.
Realistic high fold dataset necessary.

We have a good standing for more ambitious ML techniques.
Discrimination
Regression
Auto-tagging / Fingerprinting
Compression
Basis Correction

Variational Autoencoders may simplify pulse storage whilst helping with PSA.

| can't take all these methods to completion, future work will involve whittling down algorithms.
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Thanks for Listening

Any Questions?

w¥ UNIVERSITY OF Science & Technology

%/ LIVERPOOL %&& Facilties Council
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x X %
* ok

* & X

. *x
* L X

AGATA

ADVANCED GAMMA
TRACKING ARRAY




CNN x Deviations

* «® 5 x »1 . LS x M x nn X n x LS x ny . Mn
- - e - - .. - - .-
0 0 Py 0 0 x0 a0 0 x
' H ’ M N N H N '
2 o = =0 = 0 . W0 5 0 2 0 L s 0 3 e
4 4 4 g g 4 2 4 4
0 Ly o 0 -0 e 0 -0 Ho
ol o il . jl. . ‘L . ol : . ol .
1 2 3 T 2 3 4 1 2 3 1 3 » 1 2 3 4 §:& 8 8 JE & LI I B ) 9 :8::8 4
[eviatam (v [evienim (e ) vt am [ men vistam [ e [evimim () MVt hn e MVastam e v Am ) Vst am [ e
. nn» . zn - "mha . (LS . "u» . "nhn - nwaxs . AR
ax) 0 ol ax) 0 l a0
0 0 0 x0 o
s g 4 s 2 5 3 :
) ) H ) ) - H H
4 '3 [ 4 4 4 ¥ ' 4
£ $ $ $ $ £ - 2
"o o o w0 o
&) o ) —_ © L o -
1 1T 2 3 & @il 1 2 3 & T B I " 2 3 & .
Deviation (me Devistion (mes) hoviaten |me Devistion | mes Nvatha (Do Deviation (mem)
A e * ) x~1n e L) x =AM e L)
-x 0 ~l -x) «0 b al
0 0 x0 0 0 x0
| £ £ % £ £ | '
T oo T oo m T o T oo T e - I
° - ° ° ° ° -
BRI X EE. BN EXE. " 2 3 a "2 8 A "2 3 4
Thviatam (v Tnviation (wes) Matan |- Dewviation () Nviation | Deviation (mes)
AT X« LTS . s - R XeNnmn - R
- - v - - o o
0 x0 x0 0 20 xo xo
b c c c c b . .
| £ £ | £ £ 4 i
3 W0 3 w0 2 0 3 w0 3 0 L e | L e
§ § § 3 § | $ $
"o L] "o "o *o "we w
° ° - ° ° ol ° -
1 2 3 s N OE E K E X N OE E. T2 3 "2 3
e ratmon | - vt (e ) vt |- vt b | Nyt b |-
- nn . nn . a»n
ax) «0 0 a“x) «0
»0 0 *0 »0 *0
s g 4 s
. . . .
i ™0 5 0 s s W0 0
[ 4 4 | 4 L 4 -
' £ 2 '
o- o Y L _.An._.
1 2 9 8 1T 2 9 0 1" 2 3 T 3 9 T2 3
Dwiatan (we Doviation () Nvisthn (e Aviatan | e Dvoviation (mmem )

Fraser Holloway - F.Holloway@liverpool.ac.uk



CNN y Deviations
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CNN z Devia
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Cover Tree Rules

For a collection of points C; on level i of T which represent a
subset of points in § the following rules must be enforced:

C; € C;-4 - Nesting: any point p € § that exists in C; must have an
associated node in all lower levels.

V,€ C;_, - Covering: for every p € C;_, there exists one q € (; such that
d(p,q) < 2" where the node for q is the sole parent of the node for p.

Vp.r € C,d(p,r) > 2' —Separation: Forall p,r € C; thend(p,r) > 2°
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In Summary

Several algorithms have been developed for fold-1
Adaptions for multiplicity are hard
Database needs to be validated experimentally Charge tracks of unusual signals

Odd effects in basis set need to be investigated
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Position Regression with Machine Learning

Training set taken from ADL simulated pulses, Gaussian noise added
CNN attempts to predict interaction location from superpulse

Currently limited to fold-1 events, may be mitigated by using windows

CNN Prediction
Dlscrepancy
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