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Pulse Shape Analysis (PSA)
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Detector Simulation 

! Simulated data looks reasonable as expected. 
! Parametric trends are seen in the data, useful for clustering 

! T10-90, charge asymmetry, knee-point, skewness etc. 
! These parameters are continuous but break down at high fold. 

! 6-fold symmetric, polar and tetrahedral basis sets simulated. 

! High resolution (0.5mm) basis set generated too. 

! Option for dynamic resolution basis sets.
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B.Bruyneel – Eur. Phys. J. A (2016)
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Simulation Limitations – (Blame SIMION) 4

! Field simulation limited to 1mm spacing, ADL is done at 2mm for a reason. 
! SIMION segmentation is wrong on face of crystals. 
! Odd effects seen at segment boundaries & high resolution: 

! Unexplained ‘charge sharing’ between segments. 
! Sharp discontinuities at edge changes. 
! Overlap of SIMION definitions?

0.5mm FoM Plot showing odd effects 
Optimum Circled 
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Novel Algorithm Development 5
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Novel Algorithm Development 6
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Novel Algorithm Development 7
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GPU Acceleration

!  
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Routine Types Operation
GEMM Multiplication of 2 matrices.

SYRK

TRSM Triangular solve (right angled)

TRMM Triangular matrix-matrix multiply

SYMM Symmetric matrix-matrix 
multiply

HEMM Hermitian matrix-matrix multiply

Nvidia P5000 
(277 GFLOPS)
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Cluster Optimisation & Tree Building 9
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Cluster Optimisation & Tree Building 10
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Automated TDA Searching
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Fast-MKS Searching

! Fast Maximum Kernel Search uses two trees to search an ordered data structure. 
! First tree is used to convert reference set into structured data. 
! Second tree is then dynamically built using query set. 

! Efficient comparisons mean that the space can be searched quickly. 
! Mercer Kernels allow for modifications of phase space, improve separations. 

! More complex kernels have execution penalty.
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Fast-MKS Preliminary Results

! 10% Gaussian noise added to simulated database for preliminary validation. 
! MKS with Gaussian kernel used to return top 5 solutions of kernel search with confidences. 
! 95% of fold-1 events identified at input location. 
! 99% of fold-1 events within 2mm. 
! Discrete distances due to finite grid size. 
! Currently clustering of deviations are not well understood, needs further analysis.
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Signal Discrimination with ML

! Main motivation of this method was to identify interesting sections of the interaction. 
! Possible groundwork for software-based trigger. 
! Because of this these networks need to be fast (and likely simple). 

! Position gated pulses used to generate database of hit, transient & noise samples. 
! Various networks trained to predict category. 
! Ultimately the cut is arbitrary, open to interpretation. 
! Doesn’t offer much above traditional methods. 

! However if we want to look for something specific it’s pretty useful.
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Method Agreement with Midas Label

Multi-Level Perceptron ~68% 9

Binary Perceptron ~87% 9

Neural Network ~94% 22

Convolution Neural Network ~97.6% 26
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Determining Multiplicity with CNNs

! Similar setup as before, input data is either core electrode or superpulse. 
! Multiplicity to simulate taken from expected distribution. 
! Two scenarios simulated: 

! Multiple hits in the same segment. 

! Multiple hits in the same crystal. 

! Output of network still treated as categorical 
! Likelihood of fold reported, pick the most likely 

Initial results look promising however simulation was heavily idealized. 

Issues with this method: 
! Interaction locations & energies picked at random, should use GEANT4 instead. 
! Realistic noise floor needed.
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CNNs for Regression

! CNN used to return continuous outputs. 
! Trained on 6x8x120 tensor (core contact excluded). 

! Column repeats used for CNN windows. 

! ResNet architecture used for robustness. 
! Gaussian noise & Dropouts used for reliability. 

! Should use experimental noise instead. 
! Works well on detectors with high connectivity. 
! Currently only implemented for fold-1 events. 

! Training on multi-fold requires separate networks. 
! This isn’t difficult, I’m just waiting for an accurate 

simulation of multiple fold events.  

! Reasonable execution time ~300µs. 
! Variable FWHM, performs worse at boundaries. 

! Will likely decrease with realistic data.
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Autoencoders for Tagging & Compression 17
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Example Reconstructions, ~44x Compression 18
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■ True Basis signal 
■ Noise added 
■ Reconstruction

Impressive reconstruction for 2% size of the original, still room for improvement. 
Segment
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Disentangled Autoencoders 19

Encoder

Decoder

Input

Output

Bottleneck 
  

Reparameterization 

! Typical AE bottlenecks are impossible to interpret. 
! Optimum bottleneck size is unknown, how many variables contribute?  
! DAE attempt to maximize the usefulness of the latent representation. 
! This is done by making each latent variable strongly independent. 
! Each latent variable should represent a different parametric trend. 

! Latent space should be separable. 
! Latent representation should be fold-invariant. 
! Perform MKS on latent representation.

MNIST set example:

 

  Scott Freitas (CSE 591, 2018)  
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Autoencoders for Basis Correction 20
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Experimental Validation 22
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Conclusion

! GPUs have advanced significantly over the last decade, likely to continue in the future. 
! Definitely should be revisited considering future projections. 

! Tree-based search methods are incredibly efficient but difficult to adapt to high fold. 
! Use fold-invariant search space instead? 

! Very applicable for Fold-1 regardless. 
! ML approaches offer good learned relationships but need adaptions to high fold. 

! Realistic high fold dataset necessary. 

! We have a good standing for more ambitious ML techniques. 
! Discrimination 

! Regression 

! Auto-tagging / Fingerprinting 

! Compression 

! Basis Correction 

! Variational Autoencoders may simplify pulse storage whilst helping with PSA. 
! I can’t take all these methods to completion, future work will involve whittling down algorithms.
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Thanks for Listening
Any Questions?

Fraser Holloway – F.Holloway@Liverpool.ac.uk

This project has received funding from STFC under grant reference ST/P006752/1
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Cover Tree Rules

!  
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In Summary

! Several algorithms have been developed for fold-1 
! Adaptions for multiplicity are hard 
! Database needs to be validated experimentally 
! Odd effects in basis set need to be investigated
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Position Regression with Machine Learning

! Training set taken from ADL simulated pulses, Gaussian noise added 
! CNN attempts to predict interaction location from superpulse 
! Currently limited to fold-1 events, may be mitigated by using windows 
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CNN Prediction 
Discrepancy


