

Pulse Shape Analysis

Andy Boston on behalf of AGATA PSA team

AGATA Pulse Shape Analysis

- Key Objectives
- Optimisation of the basis (characterisation JS later)
 - Selection of recent results
- Optimisation of AGS
- Other potential opportunities Machine Learning etc
- Implementation for AGATA phase 2

AGATA Pulse Shape Analysis

2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
1000	GA	NIL		LNL	SPES@LNL		FAIR		Other Facilities*			
*Possibilities: HIE-ISOLDE (CERN), Jyväskylä, FAIR, SPES, GANIL (SPIRAL AGATA Array (no of capsules operational)												RN), . (SPIRAL2)
~1π (35)				→		~ 27	t(90) —		→ gr	owing to	wards 4	π (180)
AGATA International MoU												_
Cu	Current MoU Future Planned MoU (4								U (4π)			

PSA objectives

- The implementation of the existing AGS algorithm will be optimised for performance throughput.
 - Include the addition of the export of PSA position uncertainties from the AGS algorithm to the Gamma-ray tracking algorithm (Marco)
 - This will potentially allow performance improvements in the gamma-ray tracking.
- The PSA algorithm will be upgraded* to include the handling of multiple interactions in a segment. The performance of this algorithm will be evaluated and a decision on implementation during phase 2.
- An exploration into the use of other (non AGS) PSA algorithms for future implementation.
 - The focus is on the possibilities available using machine learning and will build on initial work that has started within the collaboration.

Pulse shape analysis: Basis optimisation

- Investigation of the dominant factors limiting the performance of the calculated basis.
 - An evaluation of the impact of the temperature dependence of the mobility parameters
 - The impact of a realistic charge cloud size
 - Crystal dead layer related effects the dead layer around the core electrode.
 - Neutron damage limitations how the degree of neutron damage influences the efficacy of the signal basis in addition to the energy resolution correction already implemented.
 - The impact of the electronics signal chain (preamplifier, grounding/configuration)

* * * * * * AGATA ADVANCED GAMMA TRACKING ARRAY

Pulse shape analysis: Basis optimisation

- Experimental database approach
 - In situ determination of basis J. Ljungvall Eur. Phys. J. A (2018) 52: 198
 - PSCS method M. Ginsz, PhD thesis 2015 and conference proceeding
- ADL basis and optimisation
 - Data from Liverpool coincidence tables(s) (F. Holloway / A. Kus)
 - Data from PSCS at IPHC following recent U/G (B. De Canditiis)
 - Use scan data and full array data (L. Lewandowski)

* * * * * * AGATA ADVANCED GAMMA TRACKING ARRAY

Pulse shape analysis: Basis optimisation

Experimental database approach

- In situ determination of basis J. Ljungvall Eur. Phys. J. A (2018) 52: 198
- PSCS method M. Ginsz, PhD thesis 2015 and conference proceeding
- ADL basis and optimisation
 - Data from Liverpool coincidence tables(s) (F. Holloway / A. Kus)
 - Data from PSCS at IPHC following recent U/G (B. De Canditiis)
 - Use scan data and full array data (L. Lewandowski)

PSCS validation and experimental basis

* * * * * * AGATA ADVANCED GAMMA TRACKING ARRAY

* * * * * * AGATA ADVANCED GAMMA TRACKING ARRAY

Pulse shape analysis: Basis optimisation

- Experimental database approach
 - In situ determination of basis J. Ljungvall Eur. Phys. J. A (2018) 52: 198
 - PSCS method M. Ginsz, PhD thesis 2015 and conference proceeding

ADL basis and optimisation

- Data from Liverpool coincidence tables(s) (F. Holloway / A. Kus)
- Data from PSCS at IPHC following recent U/G (B. De Canditiis)
- Use scan data and full array data (L. Lewandowski)

AGATA Data Library

Pulse shape analysis and position determination in segmented HPGe detectors: The AGATA detector library. Bruyneel, B.; Birkenbach, B.; Reiter, P. in *The European Physical Journal A* (2016). **52**(3) 70.

Liverpool TSLM SAGe commissioning

https://doi.org/10.1016/j.nima.2019.02.043C. Unsworth, NIMA 927, 21 May 2019, Pages 293-300

TSLM performance tests

AGATA detector PSCS simulations and first 2D scan with 152Eu

20th AGATA week and 4th PSeGe Workshop LNL, Legnaro – 16-20 September 2019

B. De Canditiis, G. Duchêne, F. Didierjean, M. Filliger, M.H. Sigward

Measurements on S001: 2D scans @ 122keV

Full area scan: 152Eu @ 122keV (BR 29%), diam. 1.0mm, pitch 2x2mm²

Measurements on S001: 2D scans @ 1408keV

Full area scan: 152Eu @ 1408keV (BR 21%), diam. 1.0mm, pitch 2x2mm²

Optimisation of the ADL basis @ IKP

Investigation and optimization of PSA performance, including:

- Transfer function
- Hole mobility
- Electron mobility
- Weighting of transient signals
- Split distance metric for transient signals
- Improved PSA results, but still not ideal

Lars/Peter talk tomorrow

Results of the Pulse Shape Analysis

Same expectation value for grid points with same z

Example: crystal A001

Results of the Pulse Shape Analysis

Exemplary hit distributions (crystal A001)

■ *z* = 6-8mm

AGATA Pulse Shape Analysis

- Key Objectives
- Optimisation of the basis (characterisation JS later)
 - Selection of recent results
- Optimisation of AGS
- Other potential opportunities Machine Learning etc
- Implementation for AGATA phase 2

AGATA Week 2019

Machine Learning and Topological Data Analysis for Pulse Shape Analysis

Fraser Holloway

UNIVERSITY OF LIVERPOOL LIV.DAT Science & Technology Facilities Council

Future PSA Implementation

- Data Flow and PSA Infrastructure upgrades
- The computation performance of the algorithm(s) needs to be optimised to run on highly parallel, multi-core nodes.
- The existing algorithm is limiting the rate capability of AGATA phase 1.
- In AGATA phase 2, the algorithm(s) will be optimised to adapt to the new platforms and to allow flexibility in basis format, PSA outputs, and preprocessing options.
- To take advantage of the performance gains provided by computational advances.

PSA tasks going forward

- Pristine basis generation with irregular basis using SIG-GEN
- Optimised basis with experimental corrections (from ⁶⁰Co flood data)
- Development of an integrated data set of two interactions/segment using collimated scanning data
- Development of an integrated data set of two interactions/segment using collimated scanning data from AGATA digitisers
- New PSA algorithm development

PSA tasks going forward

- Implementation of multiple interaction algorithm for testing in beam
- Inclusion of positon uncertainties in PSA output
- Including regular/irregular basis and ADL/SIG-GEN
- Multiple interaction algorithm implementation
- Tracking: use of uncertainties propagated from PSA

Perspectives

• Availability of AGATA capsules for characterisation

Continuity of available personnel to implement PSA algorithms

Pulse Shape Analysis

Andy Boston on behalf of AGATA PSA team