

3rd AGATA-GRETINA/GRETA Collaboration meeting, 2-4 October 2019

GRETINA data 🖛 AGATA Processing chain & & Machine Learning

Workshop # 1 :

Following Amel & Torben's work,

Possibilities to process GRETINA data through the AGATA Data Processing chain?

Workshop # 2:

What about using Machine Learning for GRETINA/AGATA?

Machine Learning

Machine Learning, at lot to learn ! Our approach to learn machine learning NEDA **F** AGATA

Pulse Shape Discrimination in NEDA

R&D NEDA, PSD with Neural network

Implementation with ROOT (monothread / CPU) Best discrimination for low energy Ronchi et al., A 610 (2009) 534–539

Signal parametrisation

 $s(t) = \mathbf{A} \left[\exp(-t/td\mathbf{1}) - \exp(-t/tr) + \mathbf{R}^*(\exp(-t/td\mathbf{2}) - \exp(-t/tr)) \right] \text{ si } t > \mathbf{T0}$

A amplitude td1, td2, tr 'identical' γ & n **T0** depend of signals alignments **R** different between *γ* & **n**

Our first work has been to run NN PSD online / offline

We have moved from ROOT to Tensorflow/keras (python / C++) Python interface for training, C++ interface for inference The library deals with hardware, transparent to users (multi-core/CPU, GPU) Facteur 50 gained [on CPU], online inférence !

Tensorflow

PSD

GANPRO

TDC is an input of the network

We have decided to study other NN architectures

Three types of networks has been compared :

Multi Layer Perceptron (MLP), Long Short Term Memory (LSTM), Convolutional Neural Network (CNN)

Network configurations

Network type	Structure	Activation functions	Number of trainable parameters
MLP	3 Dense layers (75 x 10 x 4 x 2)	Relu x ReLu x SoftMax	814
LSTM	75 x 1 LSTM layer (50 hidden units) x 1 Dense layer (50 x 2)	SoftMax	10 502
Convolution	75 x 3 (Conv1D+Max_Pooling) layers x 2 Dense layers (100 x 20 x 2)	ReLu x ReLu x ReLu x ReLu x SoftMax	7 042

Computing time required for inference

Training of the networks using 2 2D cuts on SoF/TDC, A/SoF

Training done using the python of Tensorflow

We have AGATA/NEDA/DIAMANT Data,

 \hookrightarrow AGATA γ spectra to evaluate wrong n discriminations in NEDA

Mislabel probability

Neural Network answer to is γ or **n** ?

How networks extrapolate on data out of the cuts used for training?

 \blacktriangleright We are working on the qualification of those sub-events using γ spectra

We have moved to simulations to check for strengths/weaknesses of the different NN \hookrightarrow labels on γ or **n** are 100 % sure !

Function used to generate signals $s(t) = A [exp(-t/td1) - exp(-t/tr) + R^*(exp(-t/td2) - exp(-t/tr)] si t > T0$

<u>Study 1</u> : sensibility to **T0**

Training done with gaussian distribution for T0, $\sigma = 2$ Test done with gaussian distribution for T0, $\sigma = 20$

<u>Study 2</u> : using NN to tag pileup signals ΔT between two signals, random distribution

Almost same networks, just more categories, more outputs

Network type	Structure	Activation functions	Number of trainable parameters
MLP	3 Dense layers (75 x 10 x 4 x 2)	Relu x ReLu x SoftMax	814
LSTM	75 x 1 LSTM layer (50 hidden units) x 1 Dense layer (50 x 2)	SoftMax	10 502
Convolution	75 x 3 (Conv1D+Max_Pooling) layers x 2 Dense layers (100 x 20 x 2)	ReLu x ReLu x ReLu x ReLu x SoftMax	7 042

* Feature extraction in machine learning language

Study 2: Pileup identification

Error as fonction of the time between signals

Confusion matrix

Study 2: Pileup identification

Error as fonction of the time between signals

Confusion matrix

Conclusions / perspectives

We have studied several Neural Network architectures on Traces (PSD/NEDA)

- feature extraction (calibration) could be a sensible issue
 Dependence on the training data set not fully studied
 LSTM networks robust to T0 misalignment
- Autoencoder (no training) studies for
 denoising ... effects to be quantified
 Data reduction at hand ?

Future directions are :

- denoising ... effects to be quantified
- ► ML to identify 'anomalies' in signals
- ► Other applications, for instance clusters for tracking

On NEDA/AGATA/GRETINA