Correlations and collectivity witihin the Shell Model

Frédéric Nowacki¹

RESANET GT2 Meeting, October 9th, 2018

Shell Model Problem

- Define a valence space
- Derive an effective interaction

 $\mathcal{H}\Psi = E\Psi \rightarrow \mathcal{H}_{\text{eff}}\Psi_{\text{eff}} = E\Psi_{\text{eff}}$

• Build and diagonalize the Hamiltonian matrix.

In principle, all the spectroscopic properties are described simultaneously (Rotational band AND β decay half-life).

Separation of the effective Hamiltonian Monopole and multipole

From the work of M. Dufour and A. Zuker (PRC 54 1996 1641) Separation theorem:

Any effective interaction can be split in two parts:

 $H = H_{monopole} + H_{multipole}$

Hmonopole: spherical mean-field

responsible for the global saturation properties and for the evolution of the spherical single particle levels.

H_{multipole}: correlator

spairing, quadrupole, octupole...

Important property:

 $\langle CS \pm 1 | H | CS \pm 1 \rangle = \langle CS \pm 1 | H_{monopole} | CS \pm 1 \rangle$

Multipole Hamiltonian

 $H_{multipole}$ can be written in two representations, particle-particle and particle-hole. Both can be brought into a diagonal form. When this is done, it comes out that only a few terms are coherent, and those are the simplest ones:

- L = 0 isovector and isoscalar pairing
- Elliott's quadrupole
- $\bullet \ \vec{\sigma}\vec{\tau}\cdot\vec{\sigma}\vec{\tau}$
- Octupole and hexadecapole terms of the type $r^{\lambda} Y_{\lambda} \cdot r^{\lambda} Y_{\lambda}$

Besides, they are universal (all the realistic interactions give similar values) and scale simply with the mass number

Interaction	particle-particle		particle-hole		
	<i>JT</i> = 01	<i>JT</i> = 10	$\lambda au = 20$	$\lambda \tau = 40$	$\lambda \tau = 11$
KB3 FPD6 GOGNY	-4.75 -5.06 -4.07	-4.46 -5.08 -5.74	-2.79 -3.11 -3.23	-1.39 -1.67 -1.77	+2.46 +3.17 +2.46

Shell structure and correlations

at stability

double magicity + superdeformed states: ¹⁶O, ⁴⁰Ca, ⁵⁶Ni

• far from stability

• Vanishing of shell closure: ¹¹Li, ³²Mg, ⁴²Si, ⁶⁸Ni, ⁸⁰Zr ...

New gaps: ²⁴O, ⁵⁴Ca ...

Interplay between

- Monopole field (spherical mean field)
- Multipole correlations (pairing, Q.Q, ...)

"Pairing plus Quadrupole propose, Monopole disposes"

A. Zuker, Coherent and Random Hamiltonians, CRN Preprint 1994

For the Monopole field itself, interplay between • single particle field • two-body interaction (T=1, T=0)

Spherical Shell Model and Deformation

- nuclear shell model often considered to be applied only when nuclear manifestations are dominated by single particle degrees of freedom
- BUT work of Elliot: deformation in light nuclei explained by algebraic SU3 model
- Limitations of SU3 model:
 - as the spin orbit term becomes rapidly important its applicability stops at the sd shell
 - but can be recovered approximately as in the pseudo-SU3 or quasi-SU3 schemes.

See:

- A. P. Zuker, J. Retamosa, A. Poves, and E. Caurier Phys. Rev. C52 (1995) R1741
- A. P. Zuker, A. Poves, F. Nowacki and S. M. Lenzi Phys. Rev. C92 (2015) 024302

Correlations: ⁴⁸Cr example

Deformed HF versus SM diagonalisation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Extreme Correlations: the case of ⁴⁰Ca

In the valence space of two major shells

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 − のへぐ

Extreme Correlations: the case of ⁴⁰Ca

The relevant configurations are:

- [*sd*]²⁴ 0p-0h in ⁴⁰Ca, SPHERICAL
- $[sd]^{20}[pf]^4$ 4p-4h in 40 Ca, DEFORMED
- [*sd*]¹⁶[*pf*]⁸ 8p-8h in ⁴⁰Ca, SUPERDEFORMED

Extreme Correlations: the case of ⁴⁰Ca

E. Ideguchi et al., Phys. Rev. Lett. **87**, 222501-1 (2001)

- ge ex
- good description in terms of *ph* excitations
- decay of SD and ND bands shows mixing between np - nh configurations
- mixing should not destroy the agreement of 8p8h calculations
- complex mecanism and theoretical challenge in the shell model framework

(日)

900

Huge correlation energies!!!

sd - pf space diagonalisation

- quasi-particule gap \sim 7 MeV
- few mixing between 0p0h and 2p2h, few mixing between 4p4h and 6p6h
- no mixing (through 2p2h states) between GS and SD band
 - energy gain mainly for ground state

Extreme Correlations: the case of 40Ca

E. Caurier, J. Menedez, F. Nowacki, A. Poves Phys. Rev. **C75**, 054317 (2007)

•

description of transition probabilities varying of 3 orders of magnitude !

In the 4p-4h intrinsic state of ⁴⁰Ca, the two neutrons and two protons in the *pf*-shell can be placed in the lowest K=1/2 quasi-SU3 level of the p=3 shell. This gives a contribution $Q_0=25 b^2$. In the pseudo-p shell p=1 we are left with eight particles, that contribute with $Q_0=7 b^2$. For the 8p-8h state the values are $Q_0=35 b^2$ and $Q_0=11 b^2$

Using the proper values of the oscillator length it obtains: ⁴⁰Ca 4p-4h band $Q_0=125 \text{ e fm}^2 (Q_0=148 \text{ e fm}^2)$ ⁴⁰Ca 8p-8h band $Q_0=180 \text{ e fm}^2 (Q_0=226 \text{ e fm}^2)$

In very good accord with the data. The values in blue assume strict SU3 symmetry in both shells. The SM results almost saturate the quasi-SU3 bounds. The SU3 values are a 25% larger.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

What happens for neutron-rich systems ?

Development of deformation at N=8,20,40,70 Harmonic Oscillator Closures

Spin-orbit shell closure far from stability

- H.O. sd-pf: ⁴²Si deformed
 - pf-sdg: ⁷⁸Ni ???
 - sdg-phf: ¹³²Sn doubly magic

- Evolution of Z=14 from N=20 to N=28
- Evolution of Z=28 from N=40 to N=50
- Evolution of N=50 from Z=40 to Z=28

Spin-orbit shell closure far from stability

- ^{O.} sd-pf: ⁴²Si deformed
 - pf-sdg: ⁷⁸Ni ???
 - sdg-phf: ¹³²Sn doubly magic

- Evolution of Z=14 from N=20 to N=28
- Evolution of Z=28 from N=40 to N=50
- Evolution of N=50 from Z=40 to Z=28

Spin-orbit shell closure far from stability

- H.O. sd-pf: ⁴²Si deformed
 - ⁷⁸Ni ???
 - pf-sdg: sdg-phf: ¹³²Sn doubly magic

- Evolution of Z=14 from N=20 to N=28
- Evolution of Z=28 from N=40 to N=50
- Evolution of N=50 from Z=40 to Z=28

Physics around ⁷⁸Ni

PFSDG-U interaction:

- realistic TBME
- pf shell for protons and gds shell for neutrons
- monopole corrections (3N forces)

 proton and neutrons gap ⁷⁸Ni fixed to phenomenological derived values

Calculations:

- excitations across Z=28 and N=50 gaps
- up to 5*10¹⁰ Slater Determinant basis states
- up to 3*10¹³ non-zero terms in the matrix!
- m-scheme code ANTOINE (non public version)
- J-scheme code NATHAN (parallelized version): 0.5*10⁹ J basis states

・ロット 4回ット 4回ット 4回ット

Physics around ⁷⁸Ni

PFSDG-U interaction:

- realistic TBME
- pf shell for protons and gds shell for neutrons
- monopole corrections (3N forces)
- sdg
- proton and neutrons gap ⁷⁸Ni fixed to phenomenological derived values

Calculations:

- excitations across Z=28 and N=50 gaps
- up to 5*10¹⁰ Slater Determinant basis states
- up to 3*10¹³ non-zero terms in the matrix!
- m-scheme code ANTOINE (non public version)
- J-scheme code NATHAN (parallelized version): 0.5*10⁹ J basis states

Schematic SU3 predictions

PHYSICAL REVIEW C 92, 024320 (2015)

Nilsson-SU3 self-consistency in heavy N = Z nuclei

A. P. Zuker,¹ A. Poves,^{2,3} F. Nowacki,¹ and S. M. Lenzi⁴

 At first approximation, ⁷⁸Ni has a double closed shell structure for GS

But very low-lying competing structures

- From the diagonalization, the first excited states in ⁷⁸Ni are :
 0⁺₂-2⁺₁ predicted at 2.6-2.9 MeV and to be deformed intruders of a **rotationnal band** !!!
- "1p1h" 2⁺₂ predicted at ~ 3.1 MeV
- Necessity to go beyond (fpg g d 2 d 2) LNPS space and beyond ab-initio description
 - Portal to a new Island of Inversion

 At first approximation, ⁷⁸Ni has a double closed shell structure for GS

But very low-lying competing structures

- From the diagonalization, the first excited states in ⁷⁸Ni are :
 0⁺₂-2⁺₁ predicted at 2.6-2.9 MeV and to be deformed intruders of a **rotationnal band** !!!
- "1p1h" 2⁺₂ predicted at ~ 3.1 MeV
- Necessity to go beyond (fpg g d 2 / 2) LNPS space and beyond ab-initio description
 - Portal to a new Island of Inversion

 At first approximation, ⁷⁸Ni has a double closed shell structure for GS

But very low-lying competing structures

- From the diagonalization, the first excited states in ⁷⁸Ni are :
 0⁺₂-2⁺₁ predicted at 2.6-2.9 MeV and to be deformed intruders of a **rotationnal band** !!!
- "1p1h" 2⁺₂ predicted at ~ 3.1 MeV
- Necessity to go beyond (fpg g d 2 d 2) LNPS space and beyond ab-initio description

Portal to a new Island of Inversion

 At first approximation, ⁷⁸Ni has a double closed shell structure for GS

But very low-lying competing structures

- From the diagonalization, the first excited states in ⁷⁸Ni are :
 0⁺₂-2⁺₁ predicted at 2.6-2.9 MeV and to be deformed intruders of a **rotationnal band** !!!
- "1p1h" 2⁺₂ predicted at ~ 3.1 MeV
- Necessity to go beyond (*fpg* g d₅/2) LNPS space and beyond ab-initio description
 - Portal to a new Island of Inversion

 At first approximation, ⁷⁸Ni has a double closed shell structure for GS

Island of Deformation below ⁷⁸Ni: PES's

<ロ▶ < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Island of Deformation below ⁷⁸Ni: PES's

Heavier systems

Kuo-Herling interaction:

- realistic TBME and ²⁰⁸Pb core
- 82 \leq *Z* \leq 126 shells for protons
- $126 \le N \le 184$ shells for neutrons
- monopole corrections (3N forces)

Calculations:

- seniority diagonalisations along N=126 and N=184 chains
- Deformed HF for open shell nuclei

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

