Super heavy nuclei: open questions (from a structure point of view...)

Region of Interest

Properties of matter in extreme conditions of mass & charge ? Limits of the nuclear chart ?

Special Nuclei

The heaviest nuclei owe their stability against spontaneous fission to quantum shell effects

Magicity of super heavy nuclei

Z = 114 shell closure only appears in models which overestimate the spin-orbit splitting in heavy nuclei by more than ~ 40%

Shell structure of SH nuclei

Yu.Ts. Oganessian, et al., Phys. Rev. C 87 (2013) 054621

Theoretical challenge

- Large density of states
- Strong Coulomb field

 $V_{l.s}(r) =$

V(r)

V_{I.s}(r)

-5

0

5

 $x \,(\mathrm{fm})$

-5

Ó

5

 $1 \partial V(r)$

V(r)

 $V_{I.s}(r)$

 ∂r

Deformed axial shapes

C.F. Tsang and S.G. Nilsson Nucl. Phys. A 140, 289 (1970)

S. Ćwiok, P.-H. Heenen, W. Nazarewicz, Nature 433 (2005) 709

Qualitatively similar results in most models

Experimental shapes & sizes

Coulex with α -particles:

²⁵²Cf: B(E2) \uparrow = 16.7(1.1) e²b² \Rightarrow Q₀ = 12.9(0.4) b J.L.C. Ford et al., Phys. Rev. Lett. 27 (1971) 1232

Laser spectroscopy:

²⁵³No Qs(gs:9/2)= 5.9(1.4)(0.9) b $\Rightarrow Q_0 = 10.8(2.6)(1.6)$ b

S. Raeder et la., Phys. Rev. Lett. 120 (2018) 232503

Atomic beam magnetic resonance:

^{254m}Es: $Q_s(2+) = 3.7(5)$ b $\Rightarrow Q_0 = 12.9(1.6)$ b ²⁵³Es: $Q_s(gs:7/2+) = 6.7(8)$ b $\Rightarrow Q_0 = 14.3(1.7)$ b L.S. Goodman et al., Phys. Rev. A 11 (1975) 499

12% central depression in charge density predicted

Spectroscopic information

Ch. Theisen et al., Nucl. Phys. A 944 (2015) 333

Deformed shell structure from fine structure α -decay spectroscopy

Single particle energies extracted from quasiparticle energies in ^{247,249}Bk, ²⁵¹Es & ²⁴⁷Cm, ²⁵¹Cf

Origin of the deficiencies of DFTs ?

Single-particle nature of observed states ?

Evolution with Z & N?

T.L. Khoo, private comm.

Dynamic properties

P.T. Greenlees, Phys. Rev. Lett. 109 (2012) 012501

Magnitude of \Im sensitive to pairing

Sensitivity to the presence of high j orbitals at the Fermi surface

Predicted backbends just above the current observational limit

Alignment blocking in odd nuclei

Conclusions & perspectives

More & more detailed data is clearly needed to benchmark theories (Z & N evolution is crucial)

What relevant (model independent) observables are there to compare with theory or/and constrain theory with?

Combined prompt & decay spectroscopy can give more information: decay modes and branching ratios, isomers, resonances, fission barriers,...

Impact of correlations (excitation spectra, masses, transition strengths....) needs to be investigated