The challenges of the direct dark matter search with liquid xenon

> Luca Scotto Lavina CNRS

October 22nd, 2018, HDR defense, LPNHE

My background

Università di Napoli "Federico II"

+ 5 month in Nagoya, Japan

CHORUS experiment (WANF, CERN)

(the neutrino, at that time candidate to explain all the dark matter)

Università di Napoli "Federico II"

+7+7 months at Berne, Switzerland

OPERA experiment (CERN → LNGS)

(validation pf $v_{\mu} \rightarrow v_{\tau}$ oscillation through the direct observation of v_{τ})

Switzerland...

PEANUT (LHEP, Berne) : construction of a v_e detector at Fermilab with the NuMi beam for MINOS

ArDM (UZH/CERN) : Direct dark matter search with 1ton of liquid Argon

Then in France . . .

(arrived in France in 2010)

CNRS researcher, CR2, Laboratoire Subatech, groupe Xénon

Applied

IE PAS OUVRIR LES PORTES

XEMIS project

LXe TPC for 3y imaging

XEMIS 1 : prototype to demonstate the technique XEMIS 2 : 200 kg of LXe → small animal XEMIS 3 : imaging for humans

...and fundamental

XENON project

LXe TPC for the direct dark matter search

Computing and data analysis . . .

... and hardware

XENON @ LPNHE

October 22nd, 2018, HDR defense, LPNHE

Direct dark matter search

WIMP Dark Matter wind

WIMP is required to be:

- Neutral
- Non-baryonic
- Cold (non-relativistic)
- New Particle

 $\rho_{x} = 0.3 \pm 0.1 \text{ GeV/cm}^{3}$ (Ĵ. Bovy and S. Tramaine, Astrophys.J. 756 (2012) 89)

 $V_{sun} \sim 220 \text{ km/s}$

250

October 22nd, 2018, HDR defense, LPNHE

Luca Scotto Lavina, CNRS/IN2P3

halo

20

disk+bulge

The direct detection principle

WIMP elastically scatters off nuclei → nuclear recoils

October 22nd, 2018, HDR defense, LPNHE

Hiding underground

Gran Sasso mountain, Italy

XENON1T experiment

October 22nd, 2018, HDR defense, LPNHE

Advantages of two-phase xenon TPC principle

Scalability: massive target at modest cost
Intrinsically pure: no long-lived radioactive isotopes
3D reconstruction: strong reduction of neutron interactions

Bottom PMT Array

The XENON roadmap

October 22nd, 2018, HDR defense, LPNHE

Background sources

Neutrons :

(Th,U chains assumed in secular equilibrium)

• (α ,n) reactions through Th, U chains

Source \rightarrow site (surrounding rock), detector components

- Estimations \rightarrow More complex: material-dependent cross-section of (α ,n) reactions and branching ratios for transitions to excited states. To be calculated for each relevant material in the detector
- Spontaneous U fission (mostly ²³⁸U)
- Induced by cosmic rays muons

Gamma and beta :

- \bullet 238 U, 235 U, 232 Th chains and 40 K, 60 Co
- "intrinsic bg" (i.e. diluted in the target): ⁸⁵Kr, Rn

Physical backgrounds :

- Solar neutrinos
- ¹³⁶Xe $2\nu\beta\beta$ decay

- Blinded: avoid bias in event selection and S/B modelling
- Salted: protect against post-unblinding tuning of cuts and background models

- Results interpreted with unbinned profile likelihood analysis (all model uncertainties included in the likelihood as nuisance parameters)
- ▶ Piecharts: relative PDF from the best fit of 200 GeV WIMPs with 4.7x10⁻⁴⁷ cm²

Exclusion limit

Minimum at 4.1x10⁻⁴⁷ cm² for a WIMP of 30 GeV/c²

- Most stringent 90% CL upper limit on WIMPnucleon cross section at all masses above 6 GeV
- Factor of 7 more sensitivity compared to previous experiments (LUX, PandaX-II)
- ~ 1sigma upper fluctuation at high WIMP masses, could be due to background or signal

Direct detection versus time

October 22nd, 2018, HDR defense, LPNHE

Scaling the detector target size is technically feasible for liquid xenon But it still requires new solutions and a dedicated R&D

Handling bigger xenon quantities Bigger storages Faster operations Improved redundancies and safety	Hardware: new Storage and Recovery system	
Improving data treatmentSoftware, data monitoring and calibrationMonitoring stability of light yield and gain from ionization signal Correction of ionization signal from the losses due to electronegative impurities Detecting and correcting live time losses due to unexpected issues in the detector		
Improved knowledge about atypical backgrour Bias from previously triggered events Random coincidences Signal from isolated electrons in the TPC	nd sources Data analysis	

Hardware: new Storage and Recovery system

XENON1T with all subsystems

XENON plants

October 22nd, 2018, HDR defense, LPNHE

Phase diagram of xenon

At atmospheric pressure, the liquid phase of xenon extends over a narrow T range:

 $\sim 162 \text{K} - 165 \text{K}$

October 22nd, 2018, HDR defense, LPNHE

Xenon production is linked to the krypton production that is, in turn, linked to the oxygen extraction from air

Worldwide production is 10000 m³ \rightarrow ~60 tons

Separation between krypton and xenon is done via a series of distillation processes

Element	Boling Point [K]
	(at 101.325 kPa)
Nitrogen	77.3
Air	80.9
Argon	87.3
Oxygen	90.2
Krypton	119.8
Xenon	164.9

Liquid xenon storage and recovery : ReStoX

Capacity: 7.6 tons of liquid, solid or gazeous xenon Max pressure : 75 bar Insulation : double sphere with vacuum and 30 layers of mylar Two N_2 cooling systems : inner (heat exchanger) and outer Heater to regulate pressure at high precision

October 22nd, 2018, HDR defense, LPNHE

The sphere...

... before being a sphere

Fins inside the inner sphere

Nitrogen circuit around the inner sphere

Heat exchanger

Condenser

Produced : DATE Exchange surface : copper Max. cooling power > 2 kW Thermal calculations in SolidWorks

	Xe Circuit	N2 Circuit
Mass flow	30 g/s	20 g/s
Inlet Temperature	165 K	77 K
Outlet Temperature	165 K	77 K
Nominal pressure	1 à 3 bars	1 bar
Maximum pressure	65 bars	1 bar

October 22nd, 2018, HDR defense, LPNHE

Slow control

Cryogenic valves

Valves

Company : Thermomess

Different models whether if they are warm/cryogenic, two/three-ways, with manual/pneumatic actuator.

Common properties: Withstand high pressures (75 bar) Metal to metal seal Spheric disc Electro-polished Set to be normally closed Aimed internal tightness : $1 \cdot 10^{-8}$ mbar l/s Aimed external tightness : $1 \cdot 10^{-9}$ mbar l/s

The automatic ones have: Pneumatic actuator 2 inductive switches A solenoid valve

Cryogenic valves

Valve for nitrogen circuit

Valve under the heat exchanger for LXe transfer

August 13th 2014 ReStoX installed in LNGS

Ir al

KENON Enlightening time v

Thermal simulation : from liquid to supercritical fluid

October 22nd, 2018, HDR defense, LPNHE

October 22nd, 2018, HDR defense, LPNHE

Luca Scotto Lavina, CNRS/IN2P3

P[bar]	T[K]	t[s]	$U[\rm kK/kg]$	$\Delta U[{\rm kJ/kg}]$	W[kW]
1.45	171.56	0	6282.6		
1.25	168.8	300	5343.8	938.8	3.13
1.05	165.67	720	4266.3	1077.5	2.56

October 22nd, 2018, HDR defense, LPNHE

Pressure stability

Managed to keep the pressure fluctuations down to 5 mbar

October 22nd, 2018, HDR defense, LPNHE

- Filling and recovery test
- Pressure rise test on cryostat
- Measurement of heat load in ReStoX

Increase of pressure and temperature:

- in absence of cooling system and,
- in addition, with a vacuum insulation loss

October 22nd, 2018, HDR defense, LPNHE

XENONnT is a rapid upgrade of the XENON1T detector:

- New inner cryostat vessel inside the same outer vessel
- Total LXe mass will be ~8t with 6t active (x3 more than XENON1T)
- New TPC structure with increased diameter and height (x1.4), additional PMTs (and electronics): 248 -> 476

All other systems can handle a larger detector with a target mass of up to 10t: Cryogenics, Purification, Recovery, Support structure, DAQ, Slow Control. Their established performance will enable the operation of XENONnT on a fast timescale.

However, **new storage and recovery system** for improved recovery performances

Current schedule: start XENONnT in 2019

XENONnT : new storage and recovery system

ReStoX

Built with financial contribution from:

- Columbia
- Subatech
- Mainz

ReStoX2

Financial contribution exclusively from **XENON-France** consortium:

- Subatech (cryostat)
- LPNHE (heat exchanger and slow control)
- LAL (cryo valves and piping)

Main characteristics :

- Connected to both ReStoX1 and the TPC
- Maximum xenon charge 10 tons
- Cooled by LN2
- High pressure storage vessel
- Fast recovering with xenon crystallization (1 ton/hour expected)

Fabrication:

- Main vessel by Costruzioni Generali
- Heat exchanger by DATE
- Cryo valves by Thermomess

Main specifications:

Built by DATE

Material: stainless steel

11+2 rectangular plates cooled by N2

Dimensions: 0.95m x 0.95m x 4m

Exchange surface: ~100 m^2

Max pressure: 71.5 bar

T of service: from -196° to +50° C

The ReStoX2 cooling system

Completed in April 2018 and sent in Italy to be integrated with the cryostat

October 22nd, 2018, HDR defense, LPNHE

Ecrans passifs

The heat exchanger parallel plates

Software, data monitoring and calibration

Scintillation signal

Secondary scintillation signal

 τ_e = electron lifetime

The xenon purity and the electron lifetime

October 22nd, 2018, HDR defense, LPNHE

The xenon purity evolution in XENON100

- $\tau_p = (2.870 \pm 0.013) \cdot 10^5 s \sim 79.7h \sim 3.32d$
- $\beta = 0.872 \pm 0.031$

$$\frac{\delta N(t)}{\delta t} = -\frac{N(t)}{\tau_p} + \Phi_{\infty} + \frac{A}{(t - t_0^{out} + \sum_i \Delta t_i \cdot \delta(t - t_i))^{\beta}} + \sum_i N_i \cdot \delta(t - t_i)$$

October 22nd, 2018, HDR defense, LPNHE

^{83m}Kr calibration in XENON100

- ⁸³Rb deposited in zeolite spheres
- ⁸³Rb decays (86.2 days) to 41.6keV ^{83m}Kr
- ^{83m}Kr flows into the xenon recirculation system

^{83m}Kr calibration first results in XENON100

Characterization of ^{83m}Kr gamma signals

October 22nd, 2018, HDR defense, LPNHE

¹³⁷Cs

Uniform spatial distribution (hence also whole z range), no compton, high statistics

Electron lifetime measured with:

222Rn and 218Po

- it requires no calibration source
- it allows continuous monitoring
- Monochromatic source (alpha): 5.590 MeV (Rn222) 6.114 MeV (Po218)

²²⁰Rn

- internal calibration: uniform
- Monochromatic source (alpha): 6.404 MeV
- Larger statistic wrt ²²²Rn

^{83m}Kr

- internal calibration: uniform
- 24h calibration twice per month
- more precise due to high stats
- Energies:
 - 9.2, 32.2, 41.6 keV (sum)

AmBe and Neutron gun

- Xe deactivation lines

39.6 keV (¹²⁹Xe), 80.2 keV (¹³¹Xe), 236.1 keV (^{129m}Xe), 163.9 keV (^{131m}Xe)

Single electrons charge signals

Low-energy secondary scintillation signal

October 22nd, 2018, HDR defense, LPNHE

Single electrons responsible of low energy signal

Single electrons responsible of low energy signal

Evidences of single electrons origin

October 22nd, 2018, HDR defense, LPNHE

Luca Scotto Lavina, CNRS/IN2P3

Secondary scintillation gain

$$\mu_i = i \mu_1$$
 μ_1 = secondary scintillation gain $\sigma_i = \sqrt{i} \sigma_1$

$$f(E) = \frac{1}{e^{\frac{a-E}{b}} + 1} \sum_{i=1}^{n} A_i e^{-\frac{1}{2} \left(\frac{E-\mu_i}{\sigma_i}\right)^2}$$

Deep study and cross checks

Parameters cross-correlations

October 22nd, 2018, HDR defense, LPNHE

Luca Scotto Lavina, CNRS/IN2P3

20

21

22

Modeling the electric field and electrons trajectories

October 22nd, 2018, HDR defense, LPNHE

Detector characterization using single electrons

A sort of summary . . .

$$s2_{i}(\vec{r}) \approx n_{e}(E_{u}, \mathcal{E}) e^{-t_{d}/\tau_{e}} \kappa(\mathcal{E}_{gas}) Y\left(\frac{\mathcal{E}_{gas}}{\rho}, h_{g}\right) \beta_{i}(x, y) \eta_{i}$$

Electron lifetime Extraction yield Secondary scintillation gain

October 22nd, 2018, HDR defense, LPNHE

Continuing these analyses for XENON1T

PhD Thesis, Jean-Philippe Zopounidis, LPNHE

χ^2/ndf	1.02
μ	$27.108^{+0.040}_{-0.041} PE/e^-$
σ	$7.366^{+0.016}_{-0.016}$ PE/e^{-}
T	$4.38^{+0.08}_{-0.08}$ PE/e^{-}
S_{tr}	$15.57^{+0.15}_{-0.15}$ PE/e^{-}

October 22nd, 2018, HDR defense, LPNHE

Using single electrons to measure x.y dependency of ionization signal

Using single electrons to monitor the ionization gain stability

Origin of single electrons:

- Photoionization from impurities
- Photoionization from metal surfaces
- Trapped electrons
- Long-lived excited states
- Thin film field emission ("Malter effect" : Phys. Rev., 50:48–58)

...and, why not:

- sub-GeV EL dark matter signal

Dedicated working groups in XENON1T are studying all of this and LPNHE is joining them

$XENON100 \rightarrow XENON1T \rightarrow XENONnT \rightarrow DARWIN$

Xenon-based TPC are excellent to be scaled up to larger sizes and improve the sensitivity to dark matter search

But still it does not come for free. Some studies and R&D are necessary to beat ourselves at each generation

In this context, I focused my work in past 8 years in:

HARDWARE: Liquid xenon handling: storage and recovery systems

CALIBRATION AND ANALYSIS: Improving our knowledge on proportional scintillation signal, that is crucial for most of analysis channels

Thanks !

Luca Scotto Lavina CNRS

October 22nd, 2018, HDR defense, LPNHE

Cryostat

October 22nd, 2018, HDR defense, LPNHE

Cooling system

Goal: liquefy 3300 Kg of Xe and maintain the xenon in the cryostat in liquid form, at a constant temperature and pressure, and so for years without interruption.

Temperature [°C]

Pressure [bar]

-96.5 1.95

1.9

1.93

1.92 Nov 20

Cooling system

- LXe temperature stable at -96.27 °C, RMS 0.04 °C
- Gxe pressure stable at 1.934 bar, RMS 0.001 bar

Dec 10

Xenon purification

Goal: remove electronegative impurities below 1 ppb (O_2 equivalent) in the Xe gas fill and from outgassing of detector's components with continuous circulation of Xe gas at high speed through hot getters

Guillaume Bonnet, Stage M1

October 22nd, 2018, HDR defense, LPNHE

Krypton reduction

October 22nd, 2018, HDR defense, LPNHE

RGA measurements

RGA measurements : zoom

