Neutrino oscillations with

IceCube

State of the art measurements

Andrii TERLIUK DESY, Zeuthen

CPPM seminar, 19.11.2018

DESY. | Neutrino oscillations with IceCube | Andrii Terliuk | CPPM seminar

The Standard Model and neutrinos

A theory of everything?

Standard Model:

- gauge theory
- behavior of elementary particles
- Neutrinos in SM:
 - 3 families
 - Only weak interaction
 - Left-handed
 - Mass-less
- Existence of neutrino oscillations:
 - Weak != propagation states
 - Neutrinos have mass

Ш

top

≃173.1 GeV/c²

2/3

1/2

Source: WikiMedia commons

g

gluon

≈125.09 GeV/c²

н

Higgs

Right handed neutrinos

three generations of matter

(fermions)

Ш

C

charm

≃1.28 GeV/c²

2/3

1/2

≃2.2 MeV/c²

u

up

2/3

mass

charge

spin 1/2

Potential new symmetry or new physical processes

Neutrino oscillations

Solar neutrino problem

Neutrino oscillations

In a nut-shell

> Neutrino propagation and interaction states are different!

> Mass states have slightly different speeds \rightarrow quantum interference

Neutrino oscillations

In a nut-shell

DESY. | Neutrino oscillations with IceCube | Andrii Terliuk | CPPM seminar

 V_3

Three flavour mixing Full (almost) PMNS matrix Flavour (interaction) basis $\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$ Mass

$$\begin{pmatrix} \nu_{\tau} \\ \nu_{\tau} \end{pmatrix} \begin{pmatrix} \nu_{\tau 1} & \nu_{\tau 2} & \nu_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{3} \end{pmatrix} \begin{pmatrix} \text{Mass} \\ \text{(propagation)} \\ \text{basis} \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{array}{c} \text{Atmospheric mixing} \\ \nu_{\mu} \leftrightarrow \nu_{\tau} \end{pmatrix} \begin{array}{c} \text{Reactor mixing} \\ \nu_{e} \leftrightarrow \nu_{\tau} \end{pmatrix} \begin{array}{c} \text{Solar mixing} \\ \nu_{e} \leftrightarrow \nu_{\mu} \end{pmatrix}$$

- Naming by the corresponding source
- Similar to CKM matrix:
 - Mixing angles are way larger in comparison

*(Majorana phases are ignored here)

DESY. | Neutrino oscillations with IceCube | Andrii Terliuk | CPPM seminar

V₃

Three-neutrino mixing

Current knowledge $c_{ij} = \cos \theta_{ij}$ $s_{ij} = \sin \theta_{ij}$ $\begin{pmatrix} 0 & 0 \\ c_{23} & s_{23} \\ -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix}$ $egin{array}{ccccc} c_{12} & s_{12} & 0 \ -s_{12} & c_{12} & 0 \ 0 & 0 & 1 \ \end{array}$ Atmospheric mixing **Reactor mixing** Solar mixing > 2 mass differences > 3 mixing angles $\sin^2 \theta_{12} \approx 0.31 \qquad \sin^2 \theta_{13} \approx 0.022$ $\Delta m_{sol}^2 = \Delta m_{21}^2 \approx 7.5 \cdot 10^{-5} \text{ eV}^2$ $\sin^2\theta_{23}\approx 0.4\dots 0.6$ $|\Delta m^2_{atm}| \approx |\Delta m^2_{32}| \approx 2.5 \cdot 10^{-3} \text{ eV}^2$ Normal ordering (NO) Inverted ordering (IO) Unknown properties: m_3^2 Neutrino mass ordering $(m_2 > m_1 > m_3 \text{ or } m_2 > m_3 > m_1)$ ν_{e} (Non-)Maximal θ₂₂ m^2 ν_{μ} CP-violating phase δ ν_{τ} Precise measurement for possible underlying symmetry identifications are needed! m_2^2 m_1

Three-neutrino mixing

Current knowledge

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Atmospheric mixing

> THIS TALK: measuring atmospheric oscillations with IceCube

Atmospheric neutrinos and oscillations

Atmospheric neutrinos

An organic neutrino beam for free!

Atmospheric neutrino oscillations

Multi-baseline measurement

Main effect: transition between muon and tau neutrinos

$$P(\nu_{\mu} \to \nu_{\tau}) \approx \sin^2(2\theta_{23}) \sin^2\left(\Delta m_{32}^2 \frac{L}{4E}\right)$$

- > Different arrival directions $\cos(\theta_{zen}) \rightarrow \text{different baselines:}$
 - Range between 25 and 12760 km
- Disappearance and appearance channels accessible with neutrino telescopes

Atmospheric neutrino oscillations

Muon neutrino → tau neutrino transition

Atmospheric neutrino oscillations

A unique way to probe oscillations at the highest energies

What is IceCube?

IceCube Neutrino Observatory

A cubic kilometer detector

- 5160 DOMs with 10" PMTs
- Ice as optical medium
- Cherenkov light detection
- > DeepCore sub-detector:
 - The clearest ice
 - Denser instrumentation
 - +35% higher quantum efficiency
 - IceCube as active veto against atmospheric muons

	Hor. [m]	Vert. [m]	Threshold [GeV]
IceCube	125	17	~100 GeV
DeepCore	40-60	7	~5 GeV

IceCube Neutrino Observatory

What events do we measure

IceCube Neutrino Observatory

Events in DeepCore

> Events below 50 GeV:

- Dim and produce little light
- More affected by detector uncertainties
- Challenging to select
- Challenging to reconstruct

Careful treatment of systematic uncertainties is a key

Measurement of the standard neutrino oscillations

Rejecting the background

Rejecting the background

- > Vetoing techniques:
 - Checking signals in outer regions of IceCube
 - Containment in DeepCore

- > Most complicated muon events:
 - corridors formed by detector geometry
 - "dust layer" above DeepCore
- Dedicated time/space algorithms to reject

Reconstruction the events

- > Reconstruction:
 - 8 parameters as for v_{μ} CC interaction
 - Total neutrino energy

 $E_{\nu} \approx E_{had} + \alpha L_{\mu}$

- Neutrino direction = muon direction
- Matching PMT signals in time bins

Caveats:

- Lookup tables for every position/direction in the detector – HUGE and SLOW
- Very bumpy likelihood space

For every DOM:

Time consuming reconstruction
 Complicated minimization algorithms
 Answer can be not deterministic

Identifying muon neutrinos

Particle identification = difference between full and cascade-only fits

What does the signal look like

> No oscillations

With oscillations

> Expected clear disappearance signature!

Down-going neutrinos for normalization and up-going for signal
 Data clearly prefers oscillations

Systematic parameters

Parameters of the bore hole

- > Plenty of systematic uncertainties considered:
 - Flux, cross-section, background, detector...

> Bore hole ice properties

- Impurities/gas are released during melting and deployment
- Pushed towards the centers of the holes along the strings
- "hole ice" has much more scattering than original ice
- > Effect of the bubble column:
 - Modifies angular acceptance of photons by DOMs
 - Modelled by effective angular acceptance curve

Muon neutrino disappearance

The results with 3 years of data

- > Three years of data:
 - 2012-2014 data seasons
- > Performed on 3D histograms
 - E_v: [6, 56] GeV
 - cos θ_z: [-1, +1]
 - PID: track- or cascade-like
- All studies are performed in blind way:
 - Strict internal review process
 - Good data/MC is ensured
 - Minimal bias of physics-related parameters

> Approaching precision of dedicated accelerator experiments!

Neutrino mass ordering

Heavy or light?

- First measurements of ordering by IceCube
- Testing statistical tools and analysis techniques
- Normal ordering is marginally preferred

Looking beyond the three neutrinos

Non expected oscillations

Anomalies in the oscillations data $\begin{array}{c} & & \\$

> Placing detector near neutrino source:

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L) = \sin^2(2\theta) \sin^2\left(\frac{\Delta m^2}{4E}L\right)$$

- Very tiny probability to get electron neutrinos
- Significant excess observed by LSND
- Confirmed by MiniBooNE at higher energies
- > Reason?
 - Systematic uncertainties?
 - New neutrino types?

Sterile neutrinos

Anomalies in the oscillations data

- > Anomalies:
 - Short baseline neutrino experiments
 - Reactor anomaly
 - Gallium anomaly
- LEP results
 - Measuring Z decay width

 $n_v = 2.9840 \pm 0.0082$

- New light neutrinos cannot interact via the weak interaction
- > Sterile neutrinos!

Can be resolved by adding heavier ~eV neutrinos

DESY. | Neutrino oscillations with IceCube | Andrii Terliuk | CPPM seminar

Physics beyond the three-neutrino model

Is three a magic number?

- > Standard PMNS matrix:
 - 3 mass states
 - 3 flavour states
 - Matrix is unitary
- Non-unitarity of three-neutrino PMNS matrix → new physics
- > Ways to probe:
 - Normalization of appeared tau neutrinos
 - Effects induced by sterile neutrino mixing

Tau neutrino normalization

Is the same amount appeared as disappeared?

- First results for tau neutrino appearance with IceCube
- > 3 years of data (2012-2014)
- > Two independent analysis chains:
 - PRL 2018 sample (Analysis 1)
 - Parallel analysis (Analysis 2)
- > Paper in preparation:
 - Details about systematics, statistical approach, event selection, reconstruction etc.
 - Both v_µ disappearance and v_τ appearance

Results in agreement with standard three-neutrino oscillations

Sterile neutrinos

Testing the standard 3 neutrino paradigm

- Simplest extension:
 - "3+1" model (3 standard + 1 sterile)
 - Sterile neutrino is the heaviest

- Effects of sterile neutrinos are small
- But Earth matter can enhance the effect

DESY. | Neutrino oscillations with IceCube | Andrii Terliuk | CPPM seminar

source: symmetry mag

Sterile neutrino effect

Matter effects

Sterile neutrino effect

Effects of matter

> Neutrino oscillation length resonance (NOLR): mantle-core-mantle enhancement

- Resonant transition at few TeV for neutrinos crossing the core
- > Disappearance for muon antineutrinos
- Side note: this is not MSW effect (you can be eaten alive by theorist if you call it so)

Limits on sterile neutrino mixing

Results of the TeV search

- No sterile neutrino signal was found
- > Placing stringent limits for allowed sterile neutrino mixing

Sterile neutrinos with DeepCore

Searching for matter-induced effects

> Effects below 100 GeV:

- Modifications of standard oscillations
 - shifts of oscillations minimum
 - changes of amplitude
- Independent of sterile neutrino mass (for $\Delta m_{41}^2 > 0.3 eV^2$)
- Sensitive to the angles θ_{24} and θ_{34}
- Effect proportional to matter density

Limits on sterile neutrino mixing

Search under 100 GeV

Constraining limits on sterile neutrino mixing in muon and tau sectors

Current studies

On the way to a new measurements

- > Current studies: 1-3 years of data
- For new studies in IceCube:
 - New PMT charge responses
 - Re-calibration of glacial ice using all detector LED flashers
- > We have 7 years of data
 - Currently going through major revision of selection, simulations, reconstruction
 - Main limitation: manpower
 - Main reason: see next slides

Upgrading the IceCube

IceCube Upgrade

New tool for studies of atmospheric neutrinos

DESY. | Neutrino oscillations with IceCube | Andrii Terliuk | CPPM seminar

>

IceCube Upgrade

- Larger photo-cathode area and better angular acceptance
 New calibration devices
- New on-module and stand-alone calibration devices
- > Better calibration of modules and glacial ice properties

Piezo-module

CCD

CMOS

DESY. | Neutrino oscillations with IceCube | Andrii Terliuk | CPPM seminar

IceCube Upgrade

What we can achieve

> Muon neutrino disappearance

Tau neutrino appearance

- > Precision measurement of atmospheric neutrino properties
- > Program similar to DeepCore:
 - Standard oscillations, tau neutrino appearance, sterile neutrinos, non-standard interactions, Dark Matter searches
 - Current sensitivity predictions do not include future calibration improvements

PINGU

The Precision IceCube Next Generation Upgrade

- > Main goals of PINGU:
 - Precision in atmospheric oscillations
 - Neutrino mass ordering
 - Sterile neutrinos
 - tau neutrinos
 - DarkMatter, supernovas...

Flavor physics with astrophysical sources

Flavor physics with astrophysical neutrinos

Probing extremes

Astrophysical sources

Neutrino production

- > Other scenarios are also possible:
 - (0:1:0) or (1:0:0), (1:1:0)
 - And realizations in between

> After production neutrinos propagate through astrophysical distances:

- Neutrinos oscillate
- Distances >> decoherence distance
- Final flavour ratio → averaged mixing

Flavor physics with astrophysical neutrinos

Flavor triangle

- > All realizations are pushed towards the center
 - Bad news: harder to identify real flavour composition at source
 - Good news: We can use this to find new neutrino oscillation/interaction effects

Flavor physics with astrophysical neutrinos

Expanding the limits

Phys. Rev. D 96, 083018 (2017)

- New physics during neutrino creation/propagation/detection can significantly broaden allowed phase space
- Measuring flavor ratio = sensitivity to potentially new physics
- > For full details see: Phys. Rev. D 96, 083018 (2017)

Flavour physics with astrophysical neutrinos

Current measurements and near time sensitivivt

- > Upgrade will provide better calibration \rightarrow better sensitivity to tau neutrinos
- But probably a bit early to draw conclusions

Summary

Highlights from IceCube

- > Neutrino oscillations:
 - echo of physics beyond the Standard Model
 - Precise measurements are needed to identify underlying symmetry
- IceCube tool to study neutrinos:
 - Standard atmospheric oscillations
 - PMNS unitarity
 - Sterile neutrinos
 - More was left out: non-standard interactions, cross-sections, DarkMatter and much more
- > Potential probe of new physics at astrophysical scales
- IceCube Upgrade:
 - Approved and in preparation
 - Deployment in 2022/2023

