MATERIEL ADDITIONNEL

Collaborations locales:

- CILEX: LULI, CEA/IRFU, CEA/IRAMIS, LAL, LPGP, LOA (ENSTA), SOLEIL
- DACTOMUS: CEA/IRAMIS, LPGP (Orsay), LAL
- LULI, CEA/IRFU, CEA/IRAMIS, LAL, LOA (ENSTA), LULI

Collaborations européennes:

- EuPRAXIA: WP HEP applications DESY, U OXFORD, CEA/IRFU
- ARIES: WP Very High Gradient Acceleration Techniques

Stratégie internationale:

- Berkeley Plasma collider workshop (2016)
- ANAR2017

(ICFA Adavanced and Novel Accelerator for HEP Roadmap) (2017)

Evolution des énergies obtenues en accélération laser-plasma

gradients en ALP 10 à 100 fois supérieurs aux LINAC RF
évolution des énergies maximales plus rapide

Principe physique d'accélération laser de particules ALP: électrons

• laser de puissance à impulsion courtes: >50TW, 20-100fs, >1 J, focalisé

accélération d'électrons: laser wakefield acceleration (LWFA)

cible gazeuse (plasma sous-dense)

densité électronique: $n_e \sim 10^{16} - 10^{19} \text{ cm}^{-3}$

ionisation par effet de champ

• séparation des charges => onde plasma: $\lambda_{P} \sim 300 \mu m - 10 \mu m$

• v_{PH} (onde) = v_G (laser) => onde relativiste

Accélération laser-plasma d'électrons : limitations

- Diffraction du laser: longueur de Rayleigh
 - remède: (auto-focalisation), guidage par capillaire, décharge
- Déphasage du paquet et de l'onde plasma (γ_{el} > γ_{onde})
 - remède : rampe de densité d'électrons décroissante, multi-étage

 $L_{max} \propto n_0^{-3/2}$

Current Status of LWFA Electron Bunch Properties

Property	State of Art*	Reference	Remarks
Energy	2 GeV (± 5%, 0.1 nC) 3 GeV (±15%, ~0.05 nC) 4 GeV (±5%, 0.006 nC)	Wa KiiICFA Workshop:LeenAdvanced and NovelRech more tAccelerators for HEPGedRoadmapBrunet PlatApril 2017, CERN	
Energy Spread	1% (@ .01 nC, 0.2 GeV) 5-10%		
Normalized Trans- verse emittance	~ 0.1 π mm-mrad		
Bunch Duration	~ few fs	Kaluza (2010) – Jena (Faraday) Lundh (2011) – LOA; Heigoldt (2015) – MPQ/Oxford (OTR) Zhang (2016) – Tsinghua	Measurements at resolution limit
Charge	0.02 nC @ 0.19 GeV ±5% 0.5 nC @ 0.25 GeV ±14%	Rechatin (2009b) – LOA Couperus (2017) - HZDR	Beam-loading achieved. FOM: Q/ΔE ?
Repetition Rate & Repeatability	~ 1 Hz @ > 1 GeV 1 kHz @ ~ 1 MeV	Leemans (2014) - LBNL He – UMIch ('15); Salehi ('17) – UMd; Guénot ('17) LOA	Limited by lasers & gas targets

* No one achieves all of these simultaneously!
 Couperus, submitted (17)
 Geddes, PRL 100, 215004 ('08)
 He, Nat. Comms 6, 7156 (2015)
 Kim, PF
 Summary report available (90 pages)
 Kim, PF
 Summary report available (90 pages)
 http://www.lpgp.u-psud.fr/icfaana/ana-publications-2017

Des expériences d'accélération vers des accélérateurs

roadmap vers un collisionneur [Plasma Collider WS, Berkeley, jan 2016] nécessite d'une étape intermédiaire: accélérateur plasma à qqs GeV

Conseil Scientifique IN2P3 «Accélération Laser Plasma» (A. Specka)

Facilities Counci

Simulation of laser plasma acceleration of electrons: SMILEI

plasma electron density

25/10/2017

CER Ecole polytechnique - 25/10/2017

Production Scientifique - Analyses de Physique -

- P = 350 TW
- $L_{ramp} = 0.1 \text{ mm}$
- $L_{tot} = 1.65 \text{ mm}$

A. Beck (LLR)

3D PIC Simulation (SMILEI code) of unguided, unassisted acceleration in O(1mm) gas jet -> high yield injector w/ F2 (1PW)

Arnd Specka

CILEX TAC 16/11/2017 Long Focal length Area

Physics studies: example

A. Beck (LLR)

 3D PIC Simulation (SMILEI code) of unguided, unassisted acceleration in O(1mm) gas jet -> high yield injector w/ F2 (1PW)

Arnd Specka

CILEX TAC 16/11/2017 Long Focal length Area

CILEX-APOLLON: installation of interaction chambers (Aug. 2017)

interaction vacuum chamber

Interior of interaction vacuum chamber

Long-focal experimental area dedicated to highenergy electron acceleration and X-ray generation

25/10/2017

CER Ecole polytechnique - 25/10/2017

CILEX-APOLLON: compact electron diagnostics

- magnetic zoom objective
- tested on 100TW laserUHI100 (Saclay) (jan 2017)
- > goal: compact electron transport

- construction of 2.1 Tesla permanent dipole magnet
- prototype being characterized
- goal: measure highest energies

25/10/2017

CER Ecole polytechnique - 25/10/2017

3 main tasks identified for Phase 2 and preparation of phase 3

scientific advisory committee 2015, B. Cros

- T1. Exploratory experiments using a single beam
 - Validate scaling laws & commission the facility (laser parameters, experimental area)
 - Explore new regimes to produce high quality electron beams in the few GeV range
- T2. Optimize injector (1PW):
 - >100pC charge electron bunches in the range 50-300MeV, that can be focused at the entrance of the 2nd stage.
- T3. Develop and implement the equipments necessary to
 - Characterize electron bunches (energy and spatial distribution)
 - Synchronize electron bunch and laser beam
 - Transport electron bunches at the entrance of the second stage
 - Guide the laser beam over large distances (0.1-1 m)

- simulation shows stable acceleration even without guiding
- peaked energy spectrum around 3GeV after ~20mm

Reminder: space occupation around each IP

Arnd Specka Apollon FIRE 1st Users Meeting 11-12/02/2016 Long Focal length Area

Campaign model on 4 weeks basis

- Each block corresponds to 1 day
- Experimental assembly without laser (7 days)
- Holidays and contingency 2 days
- Switch of laser configuration (2 days)
- Experiences (6 days : 1 800 shots)
- Laser Maintenance (1 day every 2 weeks)
- Experimental dismantling (2 days)

Cile Pispositif envisagé pour les premières expériences

