Flavor Physics theory - emphasis on LFUV in b-decays

Damir Bečirević

Pôle Théorie, IJCLab CNRS et Université Paris-Saclay

Journée annuelle de P2I 2 décembre 2021

IJClab, Orsay, Bât. 200, Auditorium Pierre Lehmann

In the Standard Model

X Gauge sector entirely fixed by symmetry

$$i\overline{\psi}_{\mu}^{p}\psi$$

$$D_{\mu} = \partial_{\mu} - ig_{s}t_{a}A_{\mu}^{a} - ig\mathbf{T}\cdot\mathbf{W}_{\mu} - ig'\frac{Y}{2}B_{\mu}$$

- X Flavor sector loose (a bunch of parameters)
- 13 of 18 parameters are fermion masses and mixing parameters

$$-\sum_{i=1}^{3}\sum_{j=1}^{3} \left[y_{ij}^{u} \bar{u}_{Ri} \tilde{\Phi}^{\dagger} Q_{Lj} + y_{ij}^{d} \bar{d}_{Ri} \Phi^{\dagger} Q_{Lj} \right] + \text{h.c.}$$

Flavor Physics

- X Why three generations?
- * Why such hierarchy of masses and mixing?
- * Why so small CPV phase?

Quark Mixing

Fix CKM entries through tree level processes & over-constrain by loop-induced ones [progress through precision!]

CKM-ology

cf. http://ckmfitter.in2p3.fr

Still open: inclusive v exclusive Vub and Vcb? Is Vud well controlled? Vus keeps coming back (EM)...

CKM-ology - Small flavor 'anomaly'

Still open: inclusive v exclusive Vub and Vcb?

Belle II (excl + incl), LHCb (excl)

QCD on very fine lattices $B \rightarrow D$ and $B \rightarrow D^*$

cf. updates at http://flag.unibe.ch

Experiment essential...

Phenomenology... bridge b/w theory and experiment

Look for quantities - observables:

- * (Highly) Sensitive to contributions of physics BSM
- * Mildly (or not) sensitive to hadronic uncertainties
- * Accessible in current and/or (near) future experiments

Flavor Anomalies

Lepton Flavor Universality Violation

$$R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)} \tau \bar{\nu})}{\mathcal{B}(B \to D^{(*)} \ell \bar{\nu})} \& R_{D^{(*)}}^{\exp} > R_{D^{(*)}}^{SM}$$

$$\left[R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)} \mu \mu)}{\mathcal{B}(B \to K^{(*)} ee)} \Big|_{q^2 \in [q_{\min}^2, q_{\max}^2]} \& R_{K^{(*)}}^{\exp} < R_{K^{(*)}}^{\text{SM}} \right]$$

2019

Exp: $R_D = 0.340 \pm 0.030$, $R_{D^*} = 0.295 \pm 0.014$

SM: $R_D^{\text{SM}} = 0.293 \pm 0.008$, $R_{D^*}^{\text{SM}} = 0.257 \pm 0.003$

LHCb 2021

 $R_K^{[1.1,6]} = 0.847(42)^{\text{LHCb}}$ vs $R_K^{[1,6]} = 1.00(1)^{\text{SM}}$

LHCb 2017

 $R_{K^*}^{[1.1,6]} = 0.71(10)^{\text{LHCb}}$ vs $R_{K^*}^{[1,6]} = 1.00(1)^{\text{SM}}$

LFUV: Experimentally?

$$R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)} \tau \bar{\nu})}{\mathcal{B}(B \to D^{(*)} \ell \bar{\nu})} \& R_{D^{(*)}}^{\exp} > R_{D^{(*)}}^{SM}$$

$$\left[R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)} \mu \mu)}{\mathcal{B}(B \to K^{(*)} ee)} \middle|_{q^2 \in [q_{\min}^2, q_{\max}^2]} \& R_{K^{(*)}}^{\exp} < R_{K^{(*)}}^{\text{SM}} \right]$$

Exp: $R_D = 0.340 \pm 0.030$, $R_{D^*} = 0.295 \pm 0.014$

SM: $R_D^{\text{SM}} = 0.293 \pm 0.008$, $R_{D^*}^{\text{SM}} = 0.257 \pm 0.003$

$$R_K^{[1.1,6]} = 0.847(42)^{\text{LHCb}}$$
 vs $R_K^{[1,6]} = 1.00(1)^{\text{SM}}$

$$R_{K^*}^{[1.1,6]} = 0.71(10)^{\text{LHCb}} \quad \text{vs} \quad R_{K^*}^{[1,6]} = 1.00(1)^{\text{SM}}$$

Lepton Flavor Universality Violation

$$R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)} \tau \bar{\nu})}{\mathcal{B}(B \to D^{(*)} \ell \bar{\nu})} \& R_{D^{(*)}}^{\exp} > R_{D^{(*)}}^{SM}$$

$$\& R_{D^{(*)}}^{\text{exp}} > R_{D^{(*)}}^{\text{SM}}$$

$$\left| R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)} \mu \mu)}{\mathcal{B}(B \to K^{(*)} ee)} \right|_{q^2 \in [q_{\min}^2, q_{\max}^2]} \& R_{K^{(*)}}^{\exp} < R_{K^{(*)}}^{SM}$$

Exp:
$$R_D = 0.340 \pm 0.030$$
, $R_{D^*} = 0.295 \pm 0.014$

$$R_K^{[1.1,6]} = 0.847(42)^{\text{LHCb}}$$
 vs $R_K^{[1,6]} = 1.00(1)^{\text{SM}}$

vs
$$R_K^{[1,6]} = 1.00(1)^{\text{SN}}$$

SM:
$$R_D = 0.293 \pm 0.008$$
, $R_{D^*} = 0.248 \pm 0.001$

$$R_{K^*}^{[1.1,6]} = 0.71(10)^{\text{LHCb}} \text{ vs } R_{K^*}^{[1,6]} = 1.00(1)^{\text{SM}}$$

vs
$$R_{K^*}^{[1,6]} = 1.00(1)^{\text{SM}}$$

$$R_{D^{(*)}}^{\mathrm{exp}} > R_{D^{(*)}}^{\mathrm{SM}} \quad \Rightarrow \quad \Lambda_{\mathrm{NP}} \lesssim 3 \; \mathrm{TeV}$$
 $R_{K^{(*)}}^{\mathrm{exp}} < R_{K^{(*)}}^{\mathrm{SM}} \quad \Rightarrow \quad \Lambda_{\mathrm{NP}} \lesssim 30 \; \mathrm{TeV}$

naive NP scale

EFT - exclusive $b \to c \ell \nu$

$$\mathcal{L}_{\text{eff}} = -2\sqrt{2}G_F V_{cb} \Big[(1 + g_{V_L})(\bar{c}_L \gamma_\mu b_L)(\bar{\ell}_L \gamma^\mu \nu_L) + g_{V_R} (\bar{c}_R \gamma_\mu b_R)(\bar{\ell}_L \gamma^\mu \nu_L) + g_{S_R} (\bar{c}_L b_R)(\bar{\ell}_R \nu_L) + g_{S_L} (\bar{c}_R b_L)(\bar{\ell}_R \nu_L) + g_T (\bar{c}_R \sigma_{\mu\nu} b_L)(\bar{\ell}_R \sigma^{\mu\nu} \nu_L) \Big] + \text{h.c.}$$

- $SU(3)_c \times SU(2)_L \times U(1)_Y$ gauge invariance:
 - $\Rightarrow g_{V_R}$ is LFU at dimension 6 ($W\bar{c}_R b_R$ vertex).
 - \Rightarrow Four coefficients left: g_{V_L} , g_{S_L} , g_{S_R} and g_T .

EFT - exclusive $b \to c \ell \nu$

$$\mathcal{L}_{\text{eff}} = -2\sqrt{2}G_F V_{cb} \Big[(1 + g_{V_L})(\bar{c}_L \gamma_\mu b_L)(\bar{\ell}_L \gamma^\mu \nu_L) + g_{V_R} (\bar{c}_R \gamma_\mu b_R)(\bar{\ell}_L \gamma^\mu \nu_L) + g_{S_R} (\bar{c}_L b_R)(\bar{\ell}_R \nu_L) + g_{S_L} (\bar{c}_R b_L)(\bar{\ell}_R \nu_L) + g_T (\bar{c}_R \sigma_{\mu\nu} b_L)(\bar{\ell}_R \sigma^{\mu\nu} \nu_L) \Big] + \text{h.c.}$$

$\mathsf{EFT-exclusive}\ b \to s\ell\ell$

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{i=1}^6 C_i(\mu) \mathcal{O}_i(\mu) + \sum_{i=7,8,9,10,P,S,\dots} \left(C_i(\mu) \mathcal{O}_i + C_i'(\mu) \mathcal{O}_i' \right) \right] + \text{h.c.}$$

$$\begin{bmatrix}
\mathcal{O}_{9}^{(\prime)} = (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}\gamma^{\mu}\ell) & \mathcal{O}_{10}^{(\prime)} = (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}\gamma^{\mu}\gamma^{5}\ell) \\
\mathcal{O}_{S}^{(\prime)} = (\bar{s}P_{R(L)}b)(\bar{\ell}\ell) & \mathcal{O}_{P}^{(\prime)} = (\bar{s}P_{R(L)}b)(\bar{\ell}\gamma_{5}\ell) \\
\mathcal{O}_{7}^{(\prime)} = m_{b}(\bar{s}\sigma_{\mu\nu}P_{R(L)}b)F^{\mu\nu}
\end{bmatrix}$$

Exp:
$$\mathcal{B}(B_s \to \mu\mu) = (2.85 \pm 0.33) \times 10^{-9}$$

$$SM : \mathcal{B}(B_s \to \mu\mu) = (3.66 \pm 0.14) \times 10^{-9}$$

Probing BSM...

Strategy:

fix Vij by tree level processes, then look for NP in FCNC

SM:
$$\mathcal{B}(B_s \to \mu\mu) = (3.66 \pm 0.14) \times 10^{-9}$$

$$C_{ij}$$
 1 $V_{ti}V_{tj}^*$ $B_s \to \mu^+\mu^-$ > 10 TeV > 2.5 TeV $K \to \pi\nu\bar{\nu}$ > 100 TeV > 1.8 TeV

$$O = \overline{\Lambda^2} C_{ij} \bar{Q}_i \gamma^\mu Q_j H^\dagger D_\mu H$$

Concrete Scenarios of Physics BSM

1. Vector singlet

3. Vector Leptoquarks U_1 (3, 1, 2/3) U_3 (3, 3, 2/3)

2. Scalar Leptoquarks

 $S_3(\mathbf{3},\mathbf{3},-1/3)$

Beware: essentially <u>ALL</u> models contain additional states when UV-completing!

4. In the Loop

 $Z'({f 1},{f 1},0)$, VL fermions $S_1({f 3},{f 1},-1/3)$, $R_2({f 3},{f 2},7/3)$...

Leptoquarks

Color triplet
Scalar / Vector boson

	Some	good	and	bad	features:
--	------	------	-----	-----	-----------

- Non-resonant Drell-Yan production
- No 4-quark / 4-lepton effective interactions at tree level
- Violate SM accidental symmetries!

(SU(3), SU(2), U(1))	Spin	Symbol
$({f \overline{3}},{f 3},1/3)$	0	S_3
(3, 2, 7/6)	0	R_2
(3, 2, 1/6)	0	$ ilde{R}_2$
$(\overline{f 3},{f 1},4/3)$	0	$ ilde{S}_1$
$(\overline{3},1,1/3)$	0	S_1
$(\overline{3},1,-2/3)$	0	$ar{S}_1$
(3, 3, 2/3)	1	U_3
$(\overline{3},2,5/6)$	1	V_2
$(\overline{3},2,-1/6)$	1	$ ilde{V}_2$
$({f 3},{f 1},5/3)$	1	$ ilde{U}_1$
(3, 1, 2/3)	1	U_1
(3,1,-1/3)	1	$ar{U}_1$

From dilepton spectra at high p_T Atlas and CMS 2018-2020

 $\frac{x^{ij}}{x^{ij}}$ $\sqrt{s} = 13 \text{ TeV}, \ \mathcal{L} = 140 \text{ fb}^{-1}, \text{ ATLAS & CMS}$ 1.5 2.0 3.0 3.5 1.0 2.5 4.0 m_{U_1} [TeV]

Example U1

$$\mathcal{L}_{U_1} = x_L^{ij} \, \overline{Q}_i \gamma_\mu L_j \, U_1^\mu + x_R^{ij} \, \overline{d}_{R_i} \gamma_\mu \ell_{Rj} U_1^\mu + \text{h.c.}$$

What LQ scenario?

Model	$R_{D^{(*)}}$	$R_{K^{(*)}}$	$R_{D^{(*)}} \& R_{K^{(*)}}$
$S_1 = (\bar{3}, 1, 1/3)$	✓	X	X
$R_2 = (3, 2, 7/6)$	✓	✓ *	X
$S_3 = (\bar{3}, 3, 1/3)$	X	✓	X
$U_1 = (3, 1, 2/3)$	√	✓	✓
$U_3 = (3, 3, 2/3)$	X	√	X

N.B. U₁ is the only one to accommodate both!

LFV predictions

BSM from the lepton side...

- ➤ Neutrino masses and mixings → call for New Physics
- Many BSM candidates → motivated by theoretical and observational arguments Simultaneously address: BAU, DM and neutrino mass generation
- Majorana sterile fermions: appealing New Physics candidates Potentially "visible" NP portal: imprints from colliders to flavour LE LE experiments and CPV searches, ...

Interest & phenomenological implications

- eV scale ↔ extra neutrinos suggested by oscillation anomalies;
- keV scale ↔ warm dark matter candidates & astrophysical puzzles;
- MeV-TeV scale ↔ exp. tests, high-intensity expts and colliders (but also BAU, DM, ...);
- Beyond 10¹⁶ GeV ↔ theoretical appeal: standard seesaw, BAU, GUTs

Flavor physics at IN2P3 Laboratories

Thanks for your attention!

Extra Page

$$b \to s \mu \mu$$

sbate over Hadronic Uncer

 $b \to c \tau \bar{\nu}$

Stay tuned (early results from Belle...)