The Quark Gluon Plasma at the LHC Current status and future

Cynthia Hadjidakis

Journée Département P2I Saclay, 10 Janvier 2019

Latest LHC results on Quark-Gluon Plasma

- Why heavy-ion collisions at the Large Hadron Collider?
- Characterizing the Quark-Gluon Plasma
- Selected results... strongly ALICE biased!
- What next?

Why heavy-ions at the LHC?

QCD phase diagram

Nuclear matter at high temperature and high density = Quark Gluon Plasma (QGP)

- Partons are deconfined (not bound into composite object)
- Chiral symmetry is restored (partons are massless)
- Behaves as a fluid (well described by hydrodynamics)

At LHC energies: most particles produced during the collisions \rightarrow very low net baryon density

From lattice QCD: phase transition near $T_c = 170 \text{ MeV} (\epsilon_c = 1 \text{ GeV/fm}^3)$

Heavy-ion collision experiments: search for the QGP phase and characterize it

Space-time evolution of the collision

QGP volume (at decoupling) $\approx 300 \text{ fm}^3$

At high energy: large, hot, dense and long life-time plasma

Characterizing the QGP

Various probes:

-soft probes (low momentum particles) \rightarrow medium expansion and hadronization

-electromagnetic radiation (low momentum photons and low mass dileptons) \rightarrow medium temperature

-high momentum particles and jets \rightarrow medium opacity and transport coefficients

 $-quarkonia \rightarrow QCD$ potential in medium

-...

Goal: combination of many measurements to sign and characterize the QGP

Heavy-ion collisions at the LHC

ALICE

Data samples in LHC Run1 and 2

Heavy-ion collision programme:

- -Pb-Pb: hot nuclear matter formed in central collisions
- -pPb: cold nuclear environment (initial/final state)
- -pp: test of production models and reference for Pb-Pb and pPb at same energy

 $-L_{pp} = A^2 \times L_{AA}$ for rare probes

Central Pb-Pb collisions in ALICE

Central collision

~20k charged particles in 5% most central Pb-Pb collisions!

ALICE Coll. Phys.Lett. B772 (2017) 567-577

Selected results on LHC Run 1 and 2 heavy-ion campaigns

Identified/charged « soft » particles

Azimuthal dependence of the particle yield:

$$\frac{dN}{d\varphi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos[n(\varphi - \Psi_n)],$$

 Ψ_n : symmetry planes

Particles at low momenta: probe expansion and hadronization of the QGP

Overlap region in semi-central heavy-ion collisions is asymmetric, in « almond » shape: for interacting matter, spatial asymmetry leads to a momentum anisotropy of final-state particles

Anisotropic flow is sensitive to the initial geometry and energy density fluctuation, and to the properties of the produced medium

Identified particle flow

- -Large flow for soft probes in semi-central Pb-Pb collisions confirmed at LHC: QGP is an almost perfect fluid with low viscosity
- -Mass ordering at low $p_T < 2 \text{ GeV/c} \rightarrow \text{hydrodynamic flow, very small fluid viscosity}$
- -Baryon vs meson flow at higher p_T : flow at quark-level and recombination?

From data to QGP properties

From measured charged particles spectra and flow to the properties of the QGP fluid with a Bayesian procedure *S. Bass et al., arXiv:1808.02106*

Pb-Pb 5.02 TeV

FIG. 7 Simulated observables compared to experimental data for Pb-Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV. Top row: explicit model calculations (no emulator) for each of the d = 500 design points; bottom row: emulator predictions for n = 100 random samples drawn from the posterior. Points with error bars are experimental data from ALICE with statistical and systematic errors added in quadrature [72, 74].

From data to QGP properties

From measured charged particles spectra and flow to the properties of the QGP fluid with a Bayesian procedure *S. Bass et al., arXiv:1808.02106*

Pb-Pb 5.02 TeV

model calculations (no emulator) for each of the d = 500 design points; bottom row: emulator predictions for n = 100 random samples drawn from the posterior. Points with error bars are experimental data from ALICE with statistical and systematic errors added in quadrature [72, 74].

Thermal radiation

- $p_{\rm T}$ -spectrum described at $p_{\rm T}$ < 2.1 GeV/c by an exponential with an inverse slope parameter: $T_{\rm eff} = (304 \pm 11 \pm 40)$ MeV in central collisions (30% higher than at RHIC)

10

 p_{T}^{12} (GeV/c)

10

8

Jet quenching from charged particles

Jets are quenched from gluon radiation of partons crossing the medium: measure jets or high $p_{\rm T}$ particles

Nuclear modification factor

$$R_{AA} = \frac{dN^{AA}/dp_T dy}{\langle N_{coll} \rangle \, dN^{pp}/dp_T dy}$$

- $R_{AA} = 1$: no modification
- $R_{AA} < 1$: suppression
- $R_{AA} > 1$: enhancement

- -At high p_T , R_{PbPb} as low as 0.13 \rightarrow suppression of charged particles from final-state parton energy loss in the hot medium, medium opaque to color probes
- $-R_{pPb}$ consistent with unity \rightarrow effect observed in Pb-Pb is a final-state effect from hot medium

Full jet reconstruction

- -High suppression of jet production over a large p_T range
- $-R_{AA} < 1$ suggests that the radiated energy is not recovered within the jet cone: large angle and/or low p_T

Probing QGP with quarkonia

- Quarkonia: $c\bar{c}/b\bar{b}$ pair produced in the initial hard collisions
- -At T >> 0, high density of colour charge in the medium induces Debye screening
- At $T > T_D$, melting of quarkonium state
- Since quarkonia (J/ ψ , ψ (2S), Y(nS),...) have different binding energy and T_D

 \rightarrow sequential suppression of quarkonium states *Karsch, Satz. Z.Phys.C51 (1991) 209*

prompt J/ ψ in pp ~ 10% ψ (2S) + 30% χ _C + 60% direct J/ ψ

Matsui, Satz PLB178(1986)

Probing QGP with quarkonia

- Quarkonia: $c\bar{c}/b\bar{b}$ pair produced in the initial hard collisions
- -At T >> 0, high density of colour charge in the medium induces Debye screening
- At $T > T_D$, melting of quarkonium state
- Since quarkonia (J/ ψ , ψ (2S), Y(nS),...) have different binding energy and T_D

 \rightarrow sequential suppression of quarkonium states *Karsch, Satz. Z.Phys.C51 (1991) 209*

prompt J/ ψ in pp $\approx 10\% \psi(2S) + 30\% \chi_C + 60\%$ direct J/ ψ

Matsui, Satz PLB178(1986)

Or regeneration?

- Total charm cross-section increases with energy
- c and \bar{c} combination in the QGP or at the phase boundary
 - \rightarrow regeneration of J/ ψ

Braun-Munzinger, Stachel PLB490(2000) Thews et al. PRC62(2000)

- \Rightarrow J/ ψ enhancement (depending on open charm cross-section)
- Small regeneration expected for bottomonia

Quarkonium production

J/ ψ suppression at low p_T : less suppression at LHC wrt RHIC \rightarrow regeneration (low p_T) and color screening (larger p_T) at LHC?

Quarkonium production

J/ ψ suppression at low p_T : less suppression at LHC wrt RHIC \rightarrow regeneration (low p_T) and color screening (larger p_T) at LHC?

-No sign of Y(3S)

- -Results consistent with sequential suppression of Y(nS) states: $T_{\rm D} \approx 3.5T_{\rm c}$, $1.3T_{\rm c}$ and $1T_{\rm c}$ for the Y(1S), Y(2S), and Y(3S) states
- -Suppression by comovers (comoving medium) also possible explanation

Unexpected results in pp and p-Pb

pp and p-Pb collisions not as simple: collective-like effects observed in small systems for high multiplicity events

- -E.g. similar flow effect in pp and p-Pb, comparable to Pb-Pb at similar event multiplicity and similar behavior for identified charged particles in p-Pb wrt Pb-Pb
- -Droplet of QGP in small systems? Or effect from initial-state or hadronisation in high multiplicity environment?

Unexpected results in pp and p-Pb

pp and p-Pb collisions not as simple: collective-like effects observed in small systems for high multiplicity events

- -E.g. similar flow effect in pp and p-Pb, comparable to Pb-Pb at similar event multiplicity and similar behavior for identified charged particles in p-Pb wrt Pb-Pb
- -Droplet of QGP in small systems? Or effect from initial-state or hadronisation in high multiplicity environment?

What next at the LHC?

- LHC Run 3/4 heavy-ion programme
 - -Increase in delivered luminosity in Pb-Pb (L_{PbPb}=13/nb) and p-Pb, and pp with low pile-up conditions
 - -ALICE/ATLAS/CMS/LHCb upgrades
 - -Fixed-target at LHC (LHCb, ALICE?)

CERN Yellow report *arXiv:1812.06772*

- Beyond 2030 (LHC Run 5/6)
 - -Possible new detectors in ALICE
 - -Upgrade of LHCb
 - -Lighter ions in LHC?
 - -HE-LHC (LHC $\sqrt{s_{NN}} \times 2$)
 - -FCC-hh (LHC $\sqrt{s_{NN}} \times 7$)

MFT | Muon Forward Tracker

- Central Barrel ($|\eta| < 0.9$)
- Muon Spectrometer $(2.5 < \eta < 4)$
- Upgrade Run3/4
 - -New Silicon Tracker: charm and beauty with the Central Barrel
 - Muon Forward Tracker: charm and beauty (and quarkonia) with the Muon Spectrometer
 - Continous readout (50-100 kHz in Pb-Pb) to get 10/100x higher statistics: new readout electronics

- Central Barrel ($|\eta| < 0.9$)
- Muon Spectrometer $(2.5 < \eta < 4)$
- Upgrade Run3/4
 - -New Silicon Tracker: charm and beauty with the Central Barrel
 - Muon Forward Tracker: charm and beauty (and quarkonia) with the Muon Spectrometer
 - Continous readout (50-100 kHz in Pb-Pb) to get 10/100x higher statistics: new readout electronics

Fixed-target at LHC: QGP perspective

Study the **quark-gluon plasma** between SPS and RHIC energies:

- –Charm and beauty (including χ_c for charmonium family)
- -Drell-Yan process
- -Access a broad rapidity coverage to scan the phase space diagram

2.76 A TeV Pb beam

7 TeV proton beam

- -Already in LHCb with a low density gas target (SMOG)
- -Investigations/projects ongoing in ALICE and LHCb (already in Run 3) for the implementation of fixed-target setups at high luminosity

Summary

- Ultra-relativistic heavy-ion collisions at LHC aim at studying the quark gluon plasma
- The measurements of various probes, soft or hard, allow to characterize the created medium [many probes/results were not discussed in this talk...]
- From Run 2 data, access to new probes thanks to the high luminosity and increase precision on QGP parameter extraction. 2018 Pb-Pb data analysis ongoing!
- High multiplicity events in pp and pPb collisions show similar behavior as Pb-Pb collisions: studies remain to be done to understand the observed features
- Long Shutdown 2 at LHC has now started and detector upgrades are ongoing: Run 3 will start in 2021!

back-up slides

Collision geometry: few definitions

Centrality of the collisions: overlap of two nuclei

Impact parameter of the collision: b Number of participants nucleons: N_{part} Number of binary collisions: N_{coll}

Collision geometry: few definitions

Centrality of the collisions: overlap of two nuclei

Impact parameter of the collision: b Number of participants nucleons: N_{part} Number of binary collisions: N_{coll}

Event centrality determination

- Cannot measure b, Npart, Ncoll directly
- Multiplicity measurements with forward or central detectors (charged particles multiplicity π, K, p...
 -, spectator neutrons, ...)
- Use Glauber model to map the measured multiplicities in A-A collisions to b, N_{part} and N_{coll}

Collision geometry: few definitions

Centrality of the collisions: overlap of two nuclei

- Multiplicity measurements with forward or central detectors (charged particles multiplicity - π , K, p... -, spectator neutrons, ...)
- Use Glauber model to map the measured multiplicities in A-A collisions to b, N_{part} and N_{coll}

10-7

5000

10000

0-5%

VZERO amplitude (arb. units)

15000

20000