Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Une approche inverse pour la reconstruction de données multidimensionnelles hétérogènes

Ferréol Soulez

¹Centre de Recherche Astrophysique de Lyon Université Claude Bernard Lyon I Ecole Normale Supérieure de Lyon

> ²Laboratoire Hubert Curien Université Jean Monnet St Etienne

³Laboratoire Contrôle Non Destructif par Rayonnement Ionisant INSA Lyon.

23 avril 2009

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Les problèmes inverses

Déconvolution aveugle

Holographie numérique

Les problèmes inverses

Qu'est ce qu'un problème inverse?

Soit un modèle m reliant, aux erreurs e près, les paramètres x et les données y:

$$y = m(x) + e$$

Problème inverse

Quels sont les meilleurs paramètres *x* compte tenu des données *y* et du modèle *m* ?

Il peut y avoir beaucoup de paramètres (*e.g.* $\geq 10^6$) et même plus de paramètres que de mesures : $N_x \geq N_y$.

Déconvolution aveugle

Holographie numérique

Les problèmes inverses

Qu'est ce qu'un problème inverse?

Soit un modèle m reliant, aux erreurs e près, les paramètres x et les données y:

$$y = m(x) + e$$

Problème inverse

Quels sont les meilleurs paramètres *x* compte tenu des données *y* et du modèle *m* ?

Il peut y avoir beaucoup de paramètres (*e.g.* $\geq 10^6$) et même plus de paramètres que de mesures : $N_x \geq N_y$.

Déconvolution aveugle

Holographie numérique

Les problèmes inverses

Qu'est ce qu'un problème inverse?

Soit un modèle *m* reliant, aux erreurs *e* près, les paramètres x et les données y:

$$y = m(\mathbf{x}) + \mathbf{e}$$

Problème inverse

Quels sont les meilleurs paramètres *x* compte tenu des données *y* et du modèle *m* ?

Il peut y avoir beaucoup de paramètres (*e.g.* $\geq 10^6$) et même plus de paramètres que de mesures : $N_x \geq N_y$.

Déconvolution aveugle

Holographie numérique

Les problèmes inverses

Qu'est ce qu'un problème inverse?

Soit un modèle m reliant, aux erreurs e près, les paramètres x et les données y:

$$\mathbf{y} = \mathbf{m}(\mathbf{x}) + \mathbf{e}$$

Problème inverse

Quels sont les meilleurs paramètres *x* compte tenu des données *y* et du modèle *m* ?

Il peut y avoir beaucoup de paramètres (*e.g.* $\geq 10^6$) et même plus de paramètres que de mesures : $N_x \geq N_y$.

Déconvolution aveugle

Holographie numérique

Les problèmes inverses

Qu'est ce qu'un problème inverse?

Soit un modèle *m* reliant, aux erreurs *e* près, les paramètres x et les données y:

$$y = m(x) + e$$

Problème inverse

Quels sont les meilleurs paramètres *x* compte tenu des données *y* et du modèle *m* ?

Il peut y avoir beaucoup de paramètres (*e.g.* $\geq 10^6$) et même plus de paramètres que de mesures : $N_x \geq N_y$.

Déconvolution aveugle

Holographie numérique

Les problèmes inverses

Qu'est ce qu'un problème inverse?

Soit un modèle m reliant, aux erreurs e près, les paramètres x et les données y:

$$y = m(x) + e$$

Problème inverse

Quels sont les meilleurs paramètres x compte tenu des données y et du modèle m ?

Il peut y avoir beaucoup de paramètres (*e.g.* $\geq 10^6$) et même plus de paramètres que de mesures : $N_x \geq N_y$.

Déconvolution aveugle

Holographie numérique

Les problèmes inverses

Qu'est ce qu'un problème inverse?

Soit un modèle m reliant, aux erreurs e près, les paramètres x et les données y:

$$y = m(x) + e$$

Problème inverse

Quels sont les meilleurs paramètres x compte tenu des données y et du modèle m ?

Il peut y avoir beaucoup de paramètres (*e.g.* $\geq 10^6$) et même plus de paramètres que de mesures : $N_x \gtrsim N_y$.

Déconvolution aveugle

Holographie numérique

Les problèmes inverses

Qu'est ce qu'un problème inverse?

Soit un modèle m reliant, aux erreurs e près, les paramètres x et les données y:

$$y = m(x) + e$$

Problème inverse

Quels sont les meilleurs paramètres x compte tenu des données y et du modèle m ?

Il peut y avoir beaucoup de paramètres (*e.g.* $\geq 10^6$) et même plus de paramètres que de mesures : $N_x \gtrsim N_y$.

Déconvolution Démélang

Déconvolution aveugle

Holographie numérique

La déconvolution

Le problème de la déconvolution

Une déformation linéaire :

 $\mathbf{y} = \mathbf{H} \cdot \mathbf{x} + \mathbf{e} \, .$

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

La déconvolution

Le problème de la déconvolution

Une déformation linéaire :

 $\mathbf{y} = \mathbf{H} \cdot \mathbf{x} + \mathbf{e} \, .$

Objet

Déconvolution Démélang

Déconvolution aveugle

Holographie numérique

La déconvolution

Le problème de la déconvolution

Une déformation linéaire :

$$y = \mathbf{H} \cdot x + e$$
.

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

La déconvolution

Le problème de la déconvolution

Une déformation linéaire :

$$\mathbf{y} = \mathbf{H} \cdot \mathbf{x} + \mathbf{e} \, .$$

Déconvolution Démélang

Déconvolution aveugle

Holographie numérique

La déconvolution

Le problème de la déconvolution

Une déformation linéaire :

$$\mathbf{y} = \mathbf{H} \cdot \mathbf{x} + \mathbf{e} \, .$$

es problèmes inverses	Déconvolution	Démélange	Déconvolution aveugle	Holographie numérique
000000000000000000000000000000000000000	000000000000000000000000000000000000000			
nversion directe				

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Inversion directe

Qu'est-ce qui cloche?

- objet,
- objet flou,
- — bruit,
- objet flou + bruit,
- — inversion directe.

• inversion directe :

$$\widehat{x}_{\mathrm{ML}}(\boldsymbol{\nu}) = \frac{\widehat{y}(\boldsymbol{\nu})}{\widehat{h}(\boldsymbol{\nu})} = \widehat{x}(\boldsymbol{\nu}) + \frac{\widehat{e}(\boldsymbol{\nu})}{\widehat{h}(\boldsymbol{\nu})}$$

amplification du bruit. C'est un problème mal conditionné.

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Inversion directe

Qu'est-ce qui cloche?

- objet,
- objet flou,
- — bruit,
- objet flou + bruit,
- — inversion directe.

• inversion directe :

$$\widehat{x}_{\mathrm{ML}}(\boldsymbol{\nu}) = \frac{\widehat{y}(\boldsymbol{\nu})}{\widehat{h}(\boldsymbol{\nu})} = \widehat{x}(\boldsymbol{\nu}) + \frac{\widehat{e}(\boldsymbol{\nu})}{\widehat{h}(\boldsymbol{\nu})}$$

amplification du bruit. C'est un problème mal conditionné.

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Maximum de vraisemblance

Maximum de vraisemblance : Objectif

- Quel est le meilleur modèle ?
- ⇒ réponse : c'est celui qui maximise la probabilité d'avoir observé les données :

$$x_{\rm ML} = \arg \max_{x} \Pr(y|x)$$

où ML = Maximum Likelihood

C'est la meilleure solution au sens de la statistiques des erreurs...

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Maximum de vraisemblance

Maximum de vraisemblance : Approximation gaussienne, modèle linéaire

• modèle :

$$y = \mathbf{H} \cdot x$$

• fonction de pénalisation :

$$f_{\text{data}}(\boldsymbol{x}) = (\boldsymbol{y} - \boldsymbol{H} \cdot \boldsymbol{x})^{\mathrm{T}} \cdot \boldsymbol{C}_{\boldsymbol{e}}^{-1} \cdot (\boldsymbol{y} - \boldsymbol{H} \cdot \boldsymbol{x})$$

• condition d'optimalité du 1^{er} ordre (équations normales) :

$$\frac{\partial f_{\text{data}}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}_{\text{ML}}} = \mathbf{0}$$

$$\iff \mathbf{H}^{\text{T}} \cdot \mathbf{C}_{e}^{-1} \cdot \mathbf{H} \cdot \mathbf{x}_{\text{ML}} = \mathbf{H}^{\text{T}} \cdot \mathbf{C}_{e}^{-1} \cdot \mathbf{y}$$

$$\iff \mathbf{x}_{\text{ML}} = \left(\mathbf{H}^{\text{T}} \cdot \mathbf{C}_{e}^{-1} \cdot \mathbf{H}\right)^{-1} \cdot \mathbf{H}^{\text{T}} \cdot \mathbf{C}_{e}^{-1} \cdot \mathbf{y}$$

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Maximum de vraisemblance

Maximum de vraisemblance : Approximation gaussienne, modèle linéaire

• modèle :

$$y = \mathbf{H} \cdot x$$

• fonction de pénalisation :

$$f_{\text{data}}(\boldsymbol{x}) = (\boldsymbol{y} - \boldsymbol{H} \cdot \boldsymbol{x})^{\text{T}} \cdot \boldsymbol{C}_{\boldsymbol{e}}^{-1} \cdot (\boldsymbol{y} - \boldsymbol{H} \cdot \boldsymbol{x})$$

• condition d'optimalité du 1^{er} ordre (équations normales) :

$$\frac{\partial f_{\text{data}}(x)}{\partial x}\Big|_{x=x_{\text{ML}}} = \mathbf{0}$$

$$\iff \mathbf{H}^{\text{T}} \cdot \mathbf{C}_{e}^{-1} \cdot \mathbf{H} \cdot x_{\text{ML}} = \mathbf{H}^{\text{T}} \cdot \mathbf{C}_{e}^{-1} \cdot \mathbf{y}$$

$$\iff \mathbf{x}_{\text{ML}} = \left(\mathbf{H}^{\text{T}} \cdot \mathbf{C}_{e}^{-1} \cdot \mathbf{H}\right)^{-1} \cdot \mathbf{H}^{\text{T}} \cdot \mathbf{C}_{e}^{-1} \cdot \mathbf{y}$$

Déconvolution Démélang

Déconvolution aveugle

Holographie numérique

Maximum de vraisemblance

Maximum de vraisemblance : Approximation gaussienne, modèle linéaire

• modèle :

$$y = \mathbf{H} \cdot x$$

• fonction de pénalisation :

$$f_{\text{data}}(\boldsymbol{x}) = (\boldsymbol{y} - \boldsymbol{H} \cdot \boldsymbol{x})^{\text{T}} \cdot \boldsymbol{C}_{\boldsymbol{e}}^{-1} \cdot (\boldsymbol{y} - \boldsymbol{H} \cdot \boldsymbol{x})$$

• condition d'optimalité du 1^{er} ordre (équations normales) :

$$\frac{\partial f_{\text{data}}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}_{\text{ML}}} = \mathbf{0}$$

$$\iff \mathbf{H}^{\text{T}} \cdot \mathbf{C}_{e}^{-1} \cdot \mathbf{H} \cdot \mathbf{x}_{\text{ML}} = \mathbf{H}^{\text{T}} \cdot \mathbf{C}_{e}^{-1} \cdot \mathbf{y}$$

$$\iff \mathbf{x}_{\text{ML}} = \left(\mathbf{H}^{\text{T}} \cdot \mathbf{C}_{e}^{-1} \cdot \mathbf{H}\right)^{-1} \cdot \mathbf{H}^{\text{T}} \cdot \mathbf{C}_{e}^{-1} \cdot \mathbf{y}$$

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Maximum de vraisemblance

Maximum de vraisemblance : Application à la déconvolution

• approximation circulante :

$$\mathbf{F} \cdot \mathbf{H} = \operatorname{diag}(\hat{\boldsymbol{h}})$$

• bruit blanc stationnaire :

$$\mathbf{C}_{\boldsymbol{e}}=\boldsymbol{\sigma}_{\boldsymbol{e}}\mathbf{I}.$$

$$x^{\text{MV}} = \left(\mathbf{H}^{\text{T}} \cdot \mathbf{H}\right)^{-1} \cdot \mathbf{H}^{\text{T}} \cdot \mathbf{y}$$

Dans l'espace de Fourier : $\hat{x}_{u}^{(\text{MV})} = \frac{\hat{h}_{u}^{*} \hat{y}_{u}}{|\hat{h}_{u}|^{2}}$
$$= \hat{y}_{u}$$

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Maximum de vraisemblance

Maximum de vraisemblance : Application à la déconvolution

• approximation circulante :

$$\mathbf{F} \cdot \mathbf{H} = \operatorname{diag}(\hat{\boldsymbol{h}})$$
.

• bruit blanc stationnaire :

$$\mathbf{C}_{e} = \sigma_{e} \mathbf{I}$$
.

$$\begin{aligned} x^{\text{MV}} &= \left(\mathbf{H}^{\text{T}} \cdot \mathbf{H}\right)^{-1} \cdot \mathbf{H}^{\text{T}} \cdot \mathbf{y} ,\\ \text{Dans l'espace de Fourier} : \hat{x}_{u}^{(\text{MV})} &= \frac{\hat{h}_{u}^{*} \hat{y}_{u}}{|\hat{h}_{u}|^{2}} \\ &= \frac{\hat{y}_{u}}{\hat{y}_{u}} , \end{aligned}$$

1

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Maximum de vraisemblance

Maximum de vraisemblance : Application à la déconvolution

• approximation circulante :

$$\mathbf{F} \cdot \mathbf{H} = \operatorname{diag}(\hat{h})$$

• bruit blanc stationnaire :

$$\mathbf{C}_{e} = \sigma_{e} \mathbf{I}$$
.

$$\begin{aligned} x^{MV} &= \left(\mathbf{H}^{T} \cdot \mathbf{H}\right)^{-1} \cdot \mathbf{H}^{T} \cdot \mathbf{y}, \\ \text{Dans l'espace de Fourier} : \hat{x}_{u}^{(MV)} &= \frac{\hat{h}_{u}^{*} \hat{y}_{u}}{|\hat{h}_{u}|^{2}} \\ &= \frac{\hat{y}_{u}}{\hat{h}_{u}}, \end{aligned}$$

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Maximum de vraisemblance

Maximum de vraisemblance : Application à la déconvolution

• approximation circulante :

$$\mathbf{F} \cdot \mathbf{H} = \operatorname{diag}(\hat{h})$$

• bruit blanc stationnaire :

$$\mathbf{C}_{e} = \sigma_{e} \mathbf{I}$$
.

•

$$\begin{aligned} x^{\text{MV}} &= \left(\mathbf{H}^{\text{T}} \cdot \mathbf{H}\right)^{-1} \cdot \mathbf{H}^{\text{T}} \cdot \mathbf{y}, \\ \text{Dans l'espace de Fourier} : \hat{x}_{u}^{(\text{MV})} &= \frac{\hat{h}_{u}^{*} \hat{y}_{u}}{|\hat{h}_{u}|^{2}} \\ &= \frac{\hat{y}_{u}}{\hat{h}_{u}}, \end{aligned}$$

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Maximum de vraisemblance tronqué

Déconvolution : Restriction de l'espace des paramètres

En imposant des contraintes de positivité (ISRA [Daube-Witherspoon86])

En coupant les fréquences trop élevées (ici $u_c = 40$ frequels).

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Maximum de vraisemblance tronqué

Déconvolution : Restriction de l'espace des paramètres

En imposant des contraintes de positivité (ISRA [Daube-Witherspoon86])

En coupant les fréquences trop élevées (ici $u_c = 40$ frequels).

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Maximum de vraisemblance tronqué

Déconvolution : Restriction de l'espace des paramètres

En imposant des contraintes de positivité (ISRA [Daube-Witherspoon86])

En coupant les fréquences trop élevées (ici $u_c = 40$ frequels).

Déconvolution Démélang

Déconvolution aveugle

Holographie numérique

Miminum de variance (MMSE)

Minimum Mean Square Error

- Estimation de la qualité de reconstruction : Mesure de l'erreur quadratique moyenne.
- S^{MMSE} : Opérateur de reconstruction minimisant cette erreur :

$$\mathbf{S}^{\text{MMSE}} = \arg\min_{\mathbf{S}} \mathbb{E}\left\{ \left\| \mathbf{S}^{\text{MMSE}} \cdot \mathbf{y} - \mathbf{x}^{\text{vrai}} \right\|_{2}^{2} \right\} \,.$$

• Sous l'hypothèse d'un bruit décorélé et centré, ce filtre s'écrit, dans l'espace de Fourier :

$$\hat{S}_{u}^{(\text{MMSE})} = \frac{\hat{h}_{u}^{*}}{|\hat{h}_{u}|^{2} + \frac{\mathrm{E}\left\{|\hat{b}_{u}|^{2}\right\}}{\mathrm{E}\left\{|\hat{x}_{u}^{(\text{vrai})}|^{2}\right\}}}.$$

Déconvolution Démélang

Déconvolution aveugle

Holographie numérique

Miminum de variance (MMSE)

Minimum Mean Square Error

- Estimation de la qualité de reconstruction : Mesure de l'erreur quadratique moyenne.
- S^{MMSE} : Opérateur de reconstruction minimisant cette erreur :

$$\mathbf{S}^{\text{MMSE}} = \arg\min_{\mathbf{S}} \mathbb{E}\left\{ \left\| \mathbf{S}^{\text{MMSE}} \cdot \mathbf{y} - \mathbf{x}^{\text{vrai}} \right\|_{2}^{2} \right\}.$$

• Sous l'hypothèse d'un bruit décorélé et centré, ce filtre s'écrit, dans l'espace de Fourier :

$$\hat{S}_{u}^{(\text{MMSE})} = \frac{\hat{h}_{u}^{*}}{|\hat{h}_{u}|^{2} + \frac{\mathrm{E}\left\{|\hat{b}_{u}|^{2}\right\}}{\mathrm{E}\left\{|\hat{x}_{u}^{(\text{vrai})}|^{2}\right\}}}.$$

Déconvolution aveugle

Holographie numérique

Miminum de variance (MMSE)

Minimum Mean Square Error

- Estimation de la qualité de reconstruction : Mesure de l'erreur quadratique moyenne.
- S^{MMSE} : Opérateur de reconstruction minimisant cette erreur :

$$\mathbf{S}^{\text{MMSE}} = \arg\min_{\mathbf{S}} \mathbf{E} \left\{ \left\| \mathbf{S}^{\text{MMSE}} \cdot \mathbf{y} - \mathbf{x}^{\text{vrai}} \right\|_{2}^{2} \right\}.$$

 Sous l'hypothèse d'un bruit décorélé et centré, ce filtre s'écrit, dans l'espace de Fourier :

$$\hat{S}_{u}^{(\text{MMSE})} = \frac{\hat{h}_{u}^{*}}{|\hat{h}_{u}|^{2} + \frac{\mathrm{E}\left\{|\hat{b}_{u}|^{2}\right\}}{\mathrm{E}\left\{|\hat{x}_{u}^{(\text{vrai})}|^{2}\right\}}}.$$

Déconvolution aveugle

Holographie numérique

Miminum de variance (MMSE)

Minimum Mean Square Error

- Estimation de la qualité de reconstruction : Mesure de l'erreur quadratique moyenne.
- S^{MMSE} : Opérateur de reconstruction minimisant cette erreur :

$$\mathbf{S}^{\text{MMSE}} = \arg\min_{\mathbf{S}} \mathbf{E} \left\{ \left\| \mathbf{S}^{\text{MMSE}} \cdot \mathbf{y} - \mathbf{x}^{\text{vrai}} \right\|_{2}^{2} \right\}.$$

 Sous l'hypothèse d'un bruit décorélé et centré, ce filtre s'écrit, dans l'espace de Fourier :

$$\hat{S}_{u}^{(\text{MMSE})} = \frac{\hat{h}_{u}^{*}}{|\hat{h}_{u}|^{2} + \frac{\mathrm{E}\left\{|\hat{b}_{u}|^{2}\right\}}{\mathrm{E}\left\{|\hat{x}_{u}^{(\text{vrai})}|^{2}\right\}}}.$$

Déconvolution Démélang

Déconvolution aveugle

Holographie numérique

Miminum de variance (MMSE)

Filtre de Wiener

résultats du filtre de Wiener.

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Approche Maximum a posteriori

Approche bayesienne : Maximum a posteriori

Solution qui maximise la probabilité du modèle étant données les mesures :

 $x_{\text{MAP}} = \arg \max_{x} \Pr(x | y)$
Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Approche Maximum a posteriori

Approche bayesienne : Maximum a posteriori

$$x_{\text{MAP}} = \arg \max_{x} \Pr(x | y)$$

 $\Pr(x | y) = \frac{\Pr(y | x) \Pr(x)}{\Pr(y)}$ (théorème de Bayes)

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Approche Maximum a posteriori

Approche bayesienne : Maximum a posteriori

$$\begin{aligned} \mathbf{x}_{\text{MAP}} &= \arg \max_{\mathbf{x}} \Pr(\mathbf{x} \mid \mathbf{y}) \\ \Pr(\mathbf{x} \mid \mathbf{y}) &= \frac{\Pr(\mathbf{y} \mid \mathbf{x}) \Pr(\mathbf{x})}{\Pr(\mathbf{y})} & (\text{théorème de Bayes}) \\ -\log \Pr(\mathbf{x} \mid \mathbf{y}) &= -\log \Pr(\mathbf{y} \mid \mathbf{x}) - \log \Pr(\mathbf{x}) + \log \Pr(\mathbf{y}) \end{aligned}$$

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Approche Maximum a posteriori

Approche bayesienne : Maximum a posteriori

$$x_{\text{MAP}} = \arg \max_{x} \Pr(x | y)$$

$$\Pr(x | y) = \frac{\Pr(y | x) \Pr(x)}{\Pr(y)} \quad (\text{théorème de Bayes})$$

$$-\log \Pr(x | y) = -\log \Pr(y | x) - \log \Pr(x) + \log \Pr(y)$$

$$x_{\text{MAP}} = \arg \min_{x} \left\{ -\log \Pr(y | x) - \log \Pr(x) \right\}$$

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Approche Maximum a posteriori

Approche bayesienne : Maximum a posteriori

$$x_{\text{MAP}} = \arg \max_{x} \Pr(x \mid y)$$

$$\Pr(x \mid y) = \frac{\Pr(y \mid x) \Pr(x)}{\Pr(y)} \quad (\text{théorème de Bayes})$$

$$-\log \Pr(x \mid y) = -\log \Pr(y \mid x) - \log \Pr(x) + \log \Pr(y)$$

$$x_{\text{MAP}} = \arg \min_{x} \left\{ \underbrace{-\log \Pr(y \mid x)}_{f_{\text{data}}(x)} \underbrace{-\log \Pr(x)}_{f_{\text{data}}(x)} \right\}$$

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Approche Maximum a posteriori

Approche bayesienne : Maximum a posteriori

$$\mathbf{x}_{\text{MAP}} = \arg \max_{\mathbf{x}} \Pr(\mathbf{x} | \mathbf{y})$$

$$\Pr(\mathbf{x} | \mathbf{y}) = \frac{\Pr(\mathbf{y} | \mathbf{x}) \Pr(\mathbf{x})}{\Pr(\mathbf{y})} \quad (\text{théorème de Bayes})$$

$$-\log \Pr(\mathbf{x} | \mathbf{y}) = -\log \Pr(\mathbf{y} | \mathbf{x}) - \log \Pr(\mathbf{x}) + \log \Pr(\mathbf{y})$$

$$\mathbf{x}_{\text{MAP}} = \arg \min_{\mathbf{x}} \left\{ \underbrace{-\log \Pr(\mathbf{y} | \mathbf{x})}_{f_{\text{data}}(\mathbf{x})} \underbrace{-\log \Pr(\mathbf{x})}_{f_{\text{prior}}(\mathbf{x})} \right\}$$

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Approche Maximum a posteriori

Approche bayesienne : Maximum a posteriori

$$\begin{aligned} \mathbf{x}_{\text{MAP}} &= \arg \max_{\mathbf{x}} \Pr(\mathbf{x} \mid \mathbf{y}) \\ \Pr(\mathbf{x} \mid \mathbf{y}) &= \frac{\Pr(\mathbf{y} \mid \mathbf{x}) \Pr(\mathbf{x})}{\Pr(\mathbf{y})} & (\text{théorème de Bayes}) \\ -\log \Pr(\mathbf{x} \mid \mathbf{y}) &= -\log \Pr(\mathbf{y} \mid \mathbf{x}) - \log \Pr(\mathbf{x}) + \log \Pr(\mathbf{y}) \\ \mathbf{x}_{\text{MAP}} &= \arg \min_{\mathbf{x}} \left\{ \underbrace{-\log \Pr(\mathbf{y} \mid \mathbf{x})}_{f_{\text{data}}(\mathbf{x})} \underbrace{-\log \Pr(\mathbf{x})}_{f_{\text{prior}}(\mathbf{x})} \right\} \\ &= \arg \min_{\mathbf{x}} f_{\text{post}}(\mathbf{x}) \end{aligned}$$

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Approche Maximum a posteriori

Maximum a posteriori

 $f_{\text{post}}(x)$ = fonction pénalisante **a posteriori** :

$$f_{\text{post}}(\boldsymbol{x}) = f_{\text{data}}(\boldsymbol{x}) + f_{\text{prior}}(\boldsymbol{x})$$

 $f_{\text{data}}(x)$ = terme de **vraisemblance** (attache aux données) :

modèle linéaire :

$$f_{\text{data}}(\boldsymbol{x}) = \frac{1}{2} (\boldsymbol{y} - \boldsymbol{m}(\boldsymbol{x}))^{\mathrm{T}} \cdot \mathbf{C}_{\mathrm{e}}^{-1} \cdot (\boldsymbol{y} - \mathbf{m}(\boldsymbol{x})),$$
$$= \frac{1}{2} \sum_{k=Pixels} w_k (y_k - \boldsymbol{m}(\boldsymbol{x})_k)^2.$$

 $f_{\text{prior}}(\boldsymbol{x})$ = terme de **régularisation** (a priori) :

 $f_{\text{prior}}(\boldsymbol{x}) = \boldsymbol{\mu} \times \boldsymbol{\Omega}(\boldsymbol{x})$

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Approche Maximum a posteriori

Maximum a posteriori

 $f_{\text{post}}(x)$ = fonction pénalisante **a posteriori** :

$$f_{\text{post}}(\boldsymbol{x}) = f_{\text{data}}(\boldsymbol{x}) + f_{\text{prior}}(\boldsymbol{x})$$

 $f_{\text{data}}(x)$ = terme de *vraisemblance* (attache aux données) :

modèle linéaire :

$$f_{\text{data}}(\boldsymbol{x}) = \frac{1}{2} (\boldsymbol{y} - \boldsymbol{m}(\boldsymbol{x}))^{\mathrm{T}} \cdot \mathbf{C}_{\mathrm{e}}^{-1} \cdot (\boldsymbol{y} - \mathbf{m}(\boldsymbol{x})),$$
$$= \frac{1}{2} \sum_{k=Pixels} w_k (y_k - \boldsymbol{m}(\boldsymbol{x})_k)^2.$$

 $f_{\text{prior}}(\boldsymbol{x})$ = terme de **régularisation** (a priori) :

 $f_{\text{prior}}(\boldsymbol{x}) = \boldsymbol{\mu} \times \boldsymbol{\Omega}(\boldsymbol{x})$

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Approche Maximum a posteriori

Maximum a posteriori

 $f_{\text{post}}(x)$ = fonction pénalisante **a posteriori** :

$$f_{\text{post}}(\boldsymbol{x}) = f_{\text{data}}(\boldsymbol{x}) + f_{\text{prior}}(\boldsymbol{x})$$

 $f_{\text{data}}(x)$ = terme de *vraisemblance* (attache aux données) :

modèle linéaire :

$$f_{\text{data}}(\boldsymbol{x}) = \frac{1}{2} (\boldsymbol{y} - \boldsymbol{m}(\boldsymbol{x}))^{\mathrm{T}} \cdot \mathbf{C}_{\mathrm{e}}^{-1} \cdot (\boldsymbol{y} - \mathbf{m}(\boldsymbol{x})),$$
$$= \frac{1}{2} \sum_{k=Pixels} w_k (y_k - \boldsymbol{m}(\boldsymbol{x})_k)^2.$$

 $f_{\text{prior}}(x)$ = terme de **régularisation** (a priori) :

 $f_{\text{prior}}(\boldsymbol{x}) = \boldsymbol{\mu} \times \boldsymbol{\Omega}(\boldsymbol{x})$.

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Approche Maximum a posteriori

Régularisation spatiale

A priori de lissage, contraintes sur les gradients spatiaux :

$$\Omega_{\text{spatial}}(\boldsymbol{x}) = \sum_{r} \sum_{k' \in V_k} \varphi\left(\frac{x_k - x_{k'}}{d(k,k')}\right),$$

- V_k : voisinage spatial du pixel k,
- d(k, k'): distance entre les pixels k.

φ est une norme :

norme quadratique,

 Préservation des contours : norme l₂ - l₁ (voir Charbonnier97) :

$$\varphi(t\,;\,\eta) = 2\,\eta^2 \left(\frac{|t|}{\eta} - \log\left(1 + \frac{|t|}{\eta}\right)\right)$$

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Approche Maximum a posteriori

Régularisation spatiale

A priori de lissage, contraintes sur les gradients spatiaux :

$$\Omega_{\text{spatial}}(\boldsymbol{x}) = \sum_{r} \sum_{k' \in V_k} \varphi\left(\frac{x_k - x_{k'}}{d(k,k')}\right),$$

- V_k : voisinage spatial du pixel k,
- d(k, k'): distance entre les pixels k.

φ est une norme :

norme quadratique,

 Préservation des contours : norme l₂ - l₁ (voir Charbonnier97) :

$$\varphi(t;\eta) = 2\eta^2 \left(\frac{|t|}{\eta} - \log\left(1 + \frac{|t|}{\eta}\right)\right),$$

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Approche Maximum a posteriori

Régularisation spatiale

A priori de lissage, contraintes sur les gradients spatiaux :

$$\Omega_{\text{spatial}}(\boldsymbol{x}) = \sum_{r} \sum_{k' \in V_k} \varphi\left(\frac{x_k - x_{k'}}{d(k,k')}\right),$$

- V_k : voisinage spatial du pixel k,
- d(k, k'): distance entre les pixels k.

φ est une norme :

- norme quadratique,
- Préservation des contours : norme l₂ l₁ (voir Charbonnier97) :

$$\varphi(t;\eta) = 2\eta^2 \left(\frac{|t|}{\eta} - \log\left(1 + \frac{|t|}{\eta}\right)\right),$$

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Approche Maximum a posteriori

Régularisation spatiale

A priori de lissage, contraintes sur les gradients spatiaux :

$$\Omega_{\text{spatial}}(\boldsymbol{x}) = \sum_{r} \sum_{k' \in V_k} \varphi\left(\frac{x_k - x_{k'}}{d(k,k')}\right),$$

- V_k : voisinage spatial du pixel k,
- d(k, k'): distance entre les pixels k.

φ est une norme :

- norme quadratique,
- Préservation des contours : norme l₂ l₁ (voir Charbonnier97) :

$$\varphi(t\,;\,\eta)=2\,\eta^2\left(\frac{|t|}{\eta}-\log\left(1+\frac{|t|}{\eta}\right)\right)\,,$$

Déconvolution Démélang

Déconvolution aveugle

Holographie numérique

Approche Maximum a posteriori

Résultats simulations

Données simulées.

Vérité.

Déconvolution Démélang

Déconvolution aveugle

Holographie numérique

Approche Maximum a posteriori

Résultats simulations

Régularisation quadratique.

Régularisation avec norme $\ell_2 - \ell_1$.

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Approche Maximum a posteriori

Régularisations quadratiques

• régularisation de Tikhonov :

$$f_{\text{prior}}(\boldsymbol{x}) = \|\boldsymbol{x}\|^2 = \boldsymbol{x}^{\mathrm{T}} \cdot \boldsymbol{x}$$

• contrainte de lissage :

$$f_{\text{prior}}(\boldsymbol{x}) = \sum_{i,j} [x(i+1,j) - x(i,j)]^2 + \sum_{i,j} [x(i,j+1) - x(i,j)]^2$$

• corrélation \sim a priori Gaussien [Tarantola-Valette1984] :

$$f_{\text{prior}}(\boldsymbol{x}) = (\boldsymbol{x} - \boldsymbol{p})^{\mathrm{T}} \cdot \operatorname{Cov}(\boldsymbol{x})^{-1} \cdot (\boldsymbol{x} - \boldsymbol{p})$$

• régularisation de Tikhonov généralisé :

$$f_{\text{prior}}(\boldsymbol{x}) = \|\mathbf{D}\cdot\boldsymbol{x} - \boldsymbol{p}\|_{\mathbf{Q}}^2 = (\mathbf{D}\cdot\boldsymbol{x} - \boldsymbol{p})^{\mathrm{T}}\cdot\mathbf{Q}\cdot(\mathbf{D}\cdot\boldsymbol{x} - \boldsymbol{p})$$

 \implies solution analytique si linéaire ;

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Approche Maximum a posteriori

Régularisations non-quadratiques

• maximum d'entropie (avec a priori p) :

$$f_{\text{prior}}(\boldsymbol{x}|\boldsymbol{p}) = \sum_{i} \left[p_i - x_i + x_i \log(x_i/p_i) \right]$$

Contrainte de support + positivité [Kundur1996]

$$f_{\text{prior}}(\boldsymbol{x}) = \sum_{\boldsymbol{x} \in \mathcal{S}} \left[\min(\boldsymbol{x} - \mathsf{Bg}, 0) \right]^2 + \gamma \sum_{\boldsymbol{x} \notin \mathcal{S}} \left[\boldsymbol{x} - \mathsf{Bg} \right]^2$$

lissage avec norme non quadratique

$$f_{\text{prior}}(\boldsymbol{x}) = \sum_{i} \mathcal{N}_{1-2}(x_{i+1} - x_i)$$

⇒ pas de solution analytique (en général)

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Déconvolution multidimensionnelle

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Formation des données

Formation de données multidimensionnelles

Exemple, séquence video (x,z,t) :

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Régularisation séparable

Régularisation séparable

Idée :

Régularisation séparable suivant les dimensions de l'objet :

$$f_{\text{prior}}(\boldsymbol{x}) = f_{\text{spatial}}(\boldsymbol{x}) + f_{\text{spectral}}(\boldsymbol{x}) + f_{\text{temporel}}(\boldsymbol{x})$$

Une régularisation spatiale

$$f_{\text{spatial}}(\boldsymbol{x}) = \sum_{\lambda,t} \alpha_{\lambda,t} \Omega_{\text{spatial}}(\boldsymbol{x}_{\lambda,t})$$

Une régularisation spectrale

$$f_{\text{spectral}}(\boldsymbol{x}) = \sum_{k,t} \beta_{k,t} \, \Omega_{\text{spectral}}(\boldsymbol{x}_{k,t})$$

Une régularisation temporelle

$$f_{\text{temporel}}(\mathbf{x}) = \sum_{\lambda,k} \mu_{\lambda,k} \,\Omega_{\text{temporel}}(\mathbf{x}_{\lambda,k})$$
21/7

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Régularisation séparable

Régularisation séparable

Idée :

Régularisation séparable suivant les dimensions de l'objet :

$$f_{\text{prior}}(\mathbf{x}) = f_{\text{spatial}}(\mathbf{x}) + f_{\text{spectral}}(\mathbf{x}) + f_{\text{temporel}}(\mathbf{x})$$

Une régularisation spatiale

$$f_{\text{spatial}}(\boldsymbol{x}) = \sum_{\lambda,t} \alpha_{\lambda,t} \Omega_{\text{spatial}}(\boldsymbol{x}_{\lambda,t})$$

Une régularisation spectrale

$$f_{\text{spectral}}(\boldsymbol{x}) = \sum_{k,t} \beta_{k,t} \, \Omega_{\text{spectral}}(\boldsymbol{x}_{k,t})$$

Une régularisation temporelle

$$f_{\text{temporel}}(\mathbf{x}) = \sum_{\lambda,k} \mu_{\lambda,k} \,\Omega_{\text{temporel}}(\mathbf{x}_{\lambda,k})$$
21/7

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Régularisation séparable

Régularisation séparable

Idée :

Régularisation séparable suivant les dimensions de l'objet :

$$f_{\text{prior}}(\boldsymbol{x}) = f_{\text{spatial}}(\boldsymbol{x}) + f_{\text{spectral}}(\boldsymbol{x}) + f_{\text{temporel}}(\boldsymbol{x})$$

Une régularisation spatiale

$$f_{\text{spatial}}(\boldsymbol{x}) = \sum_{\lambda,t} \alpha_{\lambda,t} \, \Omega_{\text{spatial}}(\boldsymbol{x}_{\lambda,t})$$

Une régularisation spectrale

$$f_{\text{spectral}}(\boldsymbol{x}) = \sum_{k,t} \beta_{k,t} \, \Omega_{\text{spectral}}(\boldsymbol{x}_{k,t})$$

Une régularisation temporelle

$$f_{\text{temporel}}(\boldsymbol{x}) = \sum_{\lambda,k} \mu_{\lambda,k} \,\Omega_{\text{temporel}}(\boldsymbol{x}_{\lambda,k})$$
21/7

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Régularisation séparable

Régularisation séparable

Idée :

Régularisation séparable suivant les dimensions de l'objet :

$$f_{\text{prior}}(\mathbf{x}) = f_{\text{spatial}}(\mathbf{x}) + f_{\text{spectral}}(\mathbf{x}) + \frac{f_{\text{temporel}}(\mathbf{x})}{f_{\text{temporel}}(\mathbf{x})}$$

Une régularisation spatiale

$$f_{\text{spatial}}(\boldsymbol{x}) = \sum_{\lambda,t} \alpha_{\lambda,t} \,\Omega_{\text{spatial}}(\boldsymbol{x}_{\lambda,t})$$

Une régularisation spectrale

$$f_{\text{spectral}}(\boldsymbol{x}) = \sum_{k,t} \beta_{k,t} \, \Omega_{\text{spectral}}(\boldsymbol{x}_{k,t})$$

Une régularisation temporelle

$$f_{\text{temporel}}(\mathbf{x}) = \sum_{\lambda,k} \mu_{\lambda,k} \, \Omega_{\text{temporel}}(\mathbf{x}_{\lambda,k})$$

21/70

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Démosaïçage

Déconvolution et démosaïçage

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Démosaïçage

Mosaïçage

Pour la plupart de capteurs couleurs : Capteurs monochromes où chaque pixel code une des trois couleurs RVB disposées généralement selon le motif de Bayer.

 $y = \mathbf{B} \cdot x.$

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Démosaïçage

Mosaïçage

Pour la plupart de capteurs couleurs : Capteurs monochromes où chaque pixel code une des trois couleurs RVB disposées généralement selon le motif de Bayer.

	в	G	В	
R	G	R	G	R
G		G		G
R	G	R	G	R
	В	G	В	

$$\mathbf{y} = \mathbf{B} \cdot \mathbf{x}$$
.

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Démosaïçage

Mosaïçage

Pour la plupart de capteurs couleurs : Capteurs monochromes où chaque pixel code une des trois couleurs RVB disposées généralement selon le motif de Bayer.

	в	G	В	
R	G	R	G	R
G		G		G
R	G	R	G	R
	В	G	В	

$$\mathbf{y} = \mathbf{B} \cdot \mathbf{x}$$
.

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Démosaïçage

Modèle de formation de l'image

hage û origine

 $y = \mathbf{B} \cdot \mathbf{H} \cdot \mathbf{x} + \mathbf{e} \, .$

• Objet : x

- Convolution par la PSF : H
- Projection d'après la matrice de Bayer : B
- Bruit additif : e
- Image observée : y

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Démosaïçage

Modèle de formation de l'image

 $y = \mathbf{B} \cdot \mathbf{H} \cdot x + e \, .$

• Objet : x

• Convolution par la PSF : H

- Projection d'après la matrice de Bayer : B
- Bruit additif : e
- Image observée : y

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Démosaïçage

Modèle de formation de l'image

 $y = \mathbf{B} \cdot \mathbf{H} \cdot \mathbf{x} + \mathbf{e} \, .$

• Objet : x

• Convolution par la PSF : H

- Projection d'après la matrice de Bayer : B
- Bruit additif : e
- Image observée : y

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Démosaïçage

Modèle de formation de l'image

 $y = \mathbf{B} \cdot \mathbf{H} \cdot x + e \, .$

- Objet : x
- Convolution par la PSF : H
- Projection d'après la matrice de Bayer : B
- Bruit additif : e
- Image observée : y

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Démosaïçage

Modèle de formation de l'image

 $y = \mathbf{B} \cdot \mathbf{H} \cdot x + \boldsymbol{e} \,.$

- Objet : x
- Convolution par la PSF : H
- Projection d'après la matrice de Bayer : B
- Bruit additif : e
- Image observée : y

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Démosaïçage

Modèle de formation de l'image

 $\mathbf{y} = \mathbf{B} \cdot \mathbf{H} \cdot \mathbf{x} + \mathbf{e} \, .$

- Objet : x
- Convolution par la PSF : H
- Projection d'après la matrice de Bayer : B
- Bruit additif : e
- Image observée : y

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Démosaïçage

Bayer : régularisation spectrale

D'après Gunturk (2002), les hautes fréquences de chaque canal spectral sont très corrélées.

Fonction de régularisation :

$$\Omega_{\text{spectral}}(\boldsymbol{x}) = \|\mathbf{P} \cdot (\boldsymbol{x}^{R} - \boldsymbol{x}^{V})\|_{2}^{2} + \|\mathbf{P} \cdot (\boldsymbol{x}^{R} - \boldsymbol{x}^{B})\|_{2}^{2} + \|\mathbf{P} \cdot (\boldsymbol{x}^{B} - \boldsymbol{x}^{V})\|_{2}^{2},$$

avec **P** : un filtre passe-haut.

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Démosaïçage

Bayer : régularisation spectrale

D'après Gunturk (2002), les hautes fréquences de chaque canal spectral sont très corrélées.

Fonction de régularisation :

$$\Omega_{\text{spectral}}(\boldsymbol{x}) = \|\mathbf{P} \cdot (\boldsymbol{x}^{R} - \boldsymbol{x}^{V})\|_{2}^{2} + \|\mathbf{P} \cdot (\boldsymbol{x}^{R} - \boldsymbol{x}^{B})\|_{2}^{2} + \|\mathbf{P} \cdot (\boldsymbol{x}^{B} - \boldsymbol{x}^{V})\|_{2}^{2},$$

avec P : un filtre passe-haut.

Simulations (flou vertical de 5 pixels sans bruit)

Originale

Originale

Floue (PSNR = 29.8dB)

Originale

Floue (PSNR = 29.8dB)

Observations

Originale

Interpolation (-0.5dB)

Floue (PSNR = 29.8dB)

Observations

Originale

Interpolation (-0.5dB)

Floue (PSNR = 29.8dB)

Interpolation + Déconvolution (+2.9dB)

Observations

Originale

Interpolation (-0.5dB)

Floue (PSNR = 29.8dB)

Interpolation + Déconvolution (+2.9dB)

Observations

Déconvolution Jointe (+5.6dB)

Résultats expérimentaux

Interpolation de l'image défocalisée

Photo manuellement défocalisée

Déconvolution aveugle, psf reconstruite de 8 pixels de diamètre

Résultats expérimentaux

Interpolation de l'image défocalisée

Déconvolution Jointe

Photo manuellement défocalisée

Déconvolution aveugle, psf reconstruite de 8 pixels de diamètre

Résultats expérimentaux

Mise au point et réglages automatiques

Déconvolution Jointe

Photo manuellement défocalisée

Déconvolution aveugle, psf reconstruite de 8 pixels de diamètre

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Données multi-spectrales

Déconvolution multispectrale

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Données multi-spectrales

Projet Supernovæ factory

But de la collaboration SNfactory :

- Utilisation des Supernovæ de type la comme sondes cosmologiques,
- construire précisément le diagramme de Hubble pour des décalages vers le rouge compris dans la plage 0.03 < z < 0.08.

Contraintes :

- Suivi temporel sur quelques semaines,
- mesure précise du spectre,
- mesure précise de la photométrie ($\leq 1\%$).

Déconvolution aveugle

Holographie numérique

Données multi-spectrales

Supernovæ Factory

Étude des Supernovæ de type la pour la cosmologie utilisant SNIFS, un spectrographe intégral de champ.

- PSF (32 × 32) estimées d'après les poses photométriques,
- Données (15 × 15),
- 798 *\lambda* de 3200Å à 5096Å,
- Bas flux : bruit de Poisson.

 \implies Reconstruction d'un objet au minimum de taille ($32 \times 32 \times 798$) (3 inconnues pour 1 donnée).

Déconvolution aveugle

Holographie numérique

Données multi-spectrales

Supernovæ Factory

Étude des Supernovæ de type la pour la cosmologie utilisant SNIFS, un spectrographe intégral de champ.

- PSF (32 × 32) estimées d'après les poses photométriques,
- Données (15 × 15),
- 798 λ de 3200Å à 5096Å,
- Bas flux : bruit de Poisson.

 \implies Reconstruction d'un objet au minimum de taille ($32 \times 32 \times 798$) (3 inconnues pour 1 donnée).

Déconvolution aveugle

Holographie numérique

Données multi-spectrales

Supernovæ Factory

Étude des Supernovæ de type la pour la cosmologie utilisant SNIFS, un spectrographe intégral de champ.

- PSF (32 × 32) estimées d'après les poses photométriques,
- Données (15 × 15),
- 798 *\lambda* de 3200Å à 5096Å,
- Bas flux : bruit de Poisson.

 \implies Reconstruction d'un objet au minimum de taille ($32 \times 32 \times 798$) (3 inconnues pour 1 donnée).

Déconvolution aveugle

Holographie numérique

Données multi-spectrales

Supernovæ Factory

Étude des Supernovæ de type la pour la cosmologie utilisant SNIFS, un spectrographe intégral de champ.

- PSF (32 × 32) estimées d'après les poses photométriques,
- Données (15 × 15),
- 798 *λ* de 3200Å à 5096Å,
- Bas flux : bruit de Poisson.

 \implies Reconstruction d'un objet au minimum de taille ($32 \times 32 \times 798$) (3 inconnues pour 1 donnée).

Déconvolution aveugle

Holographie numérique

Données multi-spectrales

Supernovæ Factory

Étude des Supernovæ de type la pour la cosmologie utilisant SNIFS, un spectrographe intégral de champ.

- PSF (32 × 32) estimées d'après les poses photométriques,
- Données (15 × 15),
- 798 λ de 3200Å à 5096Å,
- Bas flux : bruit de Poisson.

 \implies Reconstruction d'un objet au minimum de taille ($32 \times 32 \times 798$) (3 inconnues pour 1 donnée).

Déconvolution aveugle

Holographie numérique

Données multi-spectrales

Supernovæ Factory

Étude des Supernovæ de type la pour la cosmologie utilisant SNIFS, un spectrographe intégral de champ.

- PSF (32 × 32) estimées d'après les poses photométriques,
- Données (15 × 15),
- 798 λ de 3200Å à 5096Å,
- Bas flux : bruit de Poisson.

 \implies Reconstruction d'un objet au minimum de taille ($32 \times 32 \times 798$) (3 inconnues pour 1 donnée).

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Données multi-spectrales

Supernovæ Factory : terme de vraisemblance

Dépend de la nature du bruit,

Bruit de Poisson ~ Bruit gaussien non-stationnaire

$$\sigma_{k,\lambda}^2 = \gamma(\mathbf{H} \cdot \boldsymbol{x})_{k,\lambda} + \sigma_{\text{CCD}}^2 \approx \gamma \max(y_{k,\lambda}, 0) + \sigma_{\text{CCD}}^2$$

 γ : facteur de quantification

 $\sigma_{\rm CCD}^2$: variance de bruits additifs gaussiens (*e.g.* bruit de lecture).

$$f_{\text{data}}(\boldsymbol{x}) = \sum_{k}^{Pixels} \sum_{\lambda} \underbrace{w_{k,\lambda}}_{\text{poids}} \left[\underbrace{(\mathbf{H} \cdot \boldsymbol{x})_{k,\lambda}}_{\text{modèle}} - \underbrace{y_{k,\lambda}}_{\text{donnée}} \right]^2$$

$$w_{k,\lambda} = \operatorname{diag} \mathbb{C}_{\mathrm{e}}^{-1} = \begin{cases} \frac{1}{\sigma_{k,\lambda}^2} & \text{si le pixel } \{k,\lambda\} \text{ est mesuré,} \\ 0 & \text{sinon.} \end{cases}$$

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Données multi-spectrales

Supernovæ Factory : terme de vraisemblance

Dépend de la nature du bruit,

Bruit de Poisson ~ Bruit gaussien non-stationnaire

$$\sigma_{k,\lambda}^2 = \gamma (\mathbf{H} \cdot \boldsymbol{x})_{k,\lambda} + \sigma_{\text{CCD}}^2 \approx \gamma \max(y_{k,\lambda}, 0) + \sigma_{\text{CCD}}^2$$

$$f_{\text{data}}(\boldsymbol{x}) = \sum_{k}^{Pixels} \sum_{\lambda} \underbrace{w_{k,\lambda}}_{\text{poids}} \left[\underbrace{(\mathbf{H} \cdot \boldsymbol{x})_{k,\lambda}}_{\text{modèle}} - \underbrace{y_{k,\lambda}}_{\text{donnée}} \right]^2$$
$$w_{k,\lambda} = \text{diag} \, \mathbb{C}_{\text{e}}^{-1} = \begin{cases} \frac{1}{\sigma_{k,\lambda}^2} & \text{si le pixel } \{k,\lambda\} \text{ est mesuré,} \\ 0 & \text{sinon.} \end{cases}$$

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Données multi-spectrales

Supernovæ Factory : terme de vraisemblance

Dépend de la nature du bruit,

Bruit de Poisson \approx Bruit gaussien non-stationnaire

$$\sigma_{k,\lambda}^2 = \gamma(\mathbf{H} \cdot \boldsymbol{x})_{k,\lambda} + \sigma_{\text{CCD}}^2 \approx \gamma \max(y_{k,\lambda}, 0) + \sigma_{\text{CCD}}^2$$

$$f_{\text{data}}(\boldsymbol{x}) = \sum_{k}^{Pixels} \sum_{\lambda} \underbrace{w_{k,\lambda}}_{\text{poids}} \left[\underbrace{(\mathbf{H} \cdot \boldsymbol{x})_{k,\lambda}}_{\text{modèle}} - \underbrace{y_{k,\lambda}}_{\text{donnée}} \right]^2$$
$$w_{k,\lambda} = \text{diag } \mathbf{C}_{e}^{-1} = \begin{cases} \frac{1}{\sigma_{k,\lambda}^2} & \text{si le pixel } \{k,\lambda\} \text{ est mesuré,} \\ 0 & \text{sinon.} \end{cases}$$

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Données multi-spectrales

Supernovæ Factory : terme de vraisemblance

Dépend de la nature du bruit,

Bruit de Poisson \approx Bruit gaussien non-stationnaire

$$\sigma_{k,\lambda}^2 = \gamma(\mathbf{H}\cdot \boldsymbol{x})_{k,\lambda} + \sigma_{\mathrm{CCD}}^2 \approx \gamma \max(y_{k,\lambda}, 0) + \sigma_{\mathrm{CCD}}^2$$

$$f_{\text{data}}(\boldsymbol{x}) = \sum_{k}^{Pixels} \sum_{\lambda} \underbrace{w_{k,\lambda}}_{\text{poids}} \left[\underbrace{(\mathbf{H} \cdot \boldsymbol{x})_{k,\lambda}}_{\text{modèle}} - \underbrace{y_{k,\lambda}}_{\text{donnée}} \right]^2$$
$$w_{k,\lambda} = \text{diag} \, \mathbf{C}_{e}^{-1} = \begin{cases} \frac{1}{\sigma_{k,\lambda}^2} & \text{si le pixel } \{k,\lambda\} \text{ est mesuré,} \\ 0 & \text{sinon.} \end{cases}$$

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Données multi-spectrales

Supernovæ Factory : terme de vraisemblance

Dépend de la nature du bruit,

Bruit de Poisson \approx Bruit gaussien non-stationnaire

$$\sigma_{k,\lambda}^2 = \gamma(\mathbf{H}\cdot \boldsymbol{x})_{k,\lambda} + \sigma_{\mathrm{CCD}}^2 \approx \gamma \max(y_{k,\lambda}, 0) + \sigma_{\mathrm{CCD}}^2$$

$$f_{\text{data}}(\boldsymbol{x}) = \sum_{k}^{Pixels} \sum_{\lambda} \underbrace{w_{k,\lambda}}_{\text{poids}} \left[\underbrace{(\mathbf{H} \cdot \boldsymbol{x})_{k,\lambda}}_{\text{modèle}} - \underbrace{y_{k,\lambda}}_{\text{donnée}} \right]^2$$
$$w_{k,\lambda} = \text{diag} \, \mathbf{C}_{\text{e}}^{-1} = \begin{cases} \frac{1}{\sigma_{k,\lambda}^2} & \text{si le pixel } \{k,\lambda\} \text{ est mesuré,} \\ 0 & \text{sinon.} \end{cases}$$

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Données multi-spectrales

Supernovæ Factory : terme de vraisemblance

Dépend de la nature du bruit,

Bruit de Poisson \approx Bruit gaussien non-stationnaire

$$\sigma_{k,\lambda}^2 = \gamma(\mathbf{H}\cdot \boldsymbol{x})_{k,\lambda} + \sigma_{\mathrm{CCD}}^2 \approx \gamma \max(y_{k,\lambda}, 0) + \sigma_{\mathrm{CCD}}^2$$

$$f_{\text{data}}(\boldsymbol{x}) = \sum_{k}^{Pixels} \sum_{\lambda} \underbrace{w_{k,\lambda}}_{\text{poids}} \left[\underbrace{(\mathbf{H} \cdot \boldsymbol{x})_{k,\lambda}}_{\text{modèle}} - \underbrace{y_{k,\lambda}}_{\text{donnée}} \right]^2$$
$$w_{k,\lambda} = \text{diag} \, \mathbf{C}_{\text{e}}^{-1} = \begin{cases} \frac{1}{\sigma_{k,\lambda}^2} & \text{si le pixel } \{k,\lambda\} \text{ est mesuré,} \\ 0 & \text{sinon.} \end{cases}$$

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Données multi-spectrales

Supernovæ Factory : terme de vraisemblance

Dépend de la nature du bruit,

Bruit de Poisson \approx Bruit gaussien non-stationnaire

$$\sigma_{k,\lambda}^2 = \gamma(\mathbf{H}\cdot \boldsymbol{x})_{k,\lambda} + \sigma_{\mathrm{CCD}}^2 \approx \gamma \max(y_{k,\lambda}, 0) + \sigma_{\mathrm{CCD}}^2$$

$$f_{\text{data}}(\boldsymbol{x}) = \sum_{k}^{Pixels} \sum_{\lambda} \underbrace{w_{k,\lambda}}_{\text{poids}} \left[\underbrace{(\mathbf{H} \cdot \boldsymbol{x})_{k,\lambda}}_{\text{modèle}} - \underbrace{y_{k,\lambda}}_{\text{donnée}} \right]^2$$
$$w_{k,\lambda} = \text{diag } \mathbf{C}_{e}^{-1} = \begin{cases} \frac{1}{\sigma_{k,\lambda}^2} & \text{si le pixel } \{k,\lambda\} \text{ est mesuré,} \\ 0 & \text{sinon.} \end{cases}$$

Déconvolution aveugle

Holographie numérique

Données multi-spectrales

Supernovæ Factory : régularisation spectrale

Dynamique très différente d'une longueur d'onde à l'autre :

Deux difficultés :

- Etablir une régularisation efficace,
- Régler les hyper-paramètres.

Constat

Les structures spatiales de chaque image x_{λ} sont proches, \approx les spectres de chaque pixel x_{k} sont proches à une constante multiplicative près.

Régularisation spectrale

$$\Omega_{\text{spectral}}(\boldsymbol{x}_k) = \left(\frac{x_{r,\lambda+\Delta\lambda}}{\mathsf{SED}_{\lambda+\Delta\lambda}} - \frac{x_{r,\lambda}}{\mathsf{SED}_{\lambda}}\right)^2 ,$$

Déconvolution aveugle

Holographie numérique

Données multi-spectrales

Supernovæ Factory : régularisation spectrale

Dynamique très différente d'une longueur d'onde à l'autre :

Deux difficultés :

- Etablir une régularisation efficace,
- Régler les hyper-paramètres.

Constat

Les structures spatiales de chaque image x_{λ} sont proches, \approx les spectres de chaque pixel x_k sont proches à une constante multiplicative près.

Régularisation spectrale

$$\Omega_{\text{spectral}}(\boldsymbol{x}_k) = \left(\frac{x_{r,\lambda+\Delta\lambda}}{\mathsf{SED}_{\lambda+\Delta\lambda}} - \frac{x_{r,\lambda}}{\mathsf{SED}_{\lambda}}\right)^2 ,$$

Déconvolution aveugle

Holographie numérique

Données multi-spectrales

Supernovæ Factory : régularisation spectrale

Dynamique très différente d'une longueur d'onde à l'autre :

Deux difficultés :

- Etablir une régularisation efficace,
- Régler les hyper-paramètres.

Constat

Les structures spatiales de chaque image x_{λ} sont proches, \approx les spectres de chaque pixel x_{k} sont proches à une constante multiplicative près.

Régularisation spectrale

$$\Omega_{\text{spectral}}(\boldsymbol{x}_k) = \left(\frac{x_{r,\lambda+\Delta\lambda}}{\mathsf{SED}_{\lambda+\Delta\lambda}} - \frac{x_{r,\lambda}}{\mathsf{SED}_{\lambda}}\right)^2 ,$$

Déconvolution aveugle

Holographie numérique

Données multi-spectrales

Supernovæ Factory : régularisation spectrale

Dynamique très différente d'une longueur d'onde à l'autre :

Deux difficultés :

- Etablir une régularisation efficace,
- Régler les hyper-paramètres.

Constat

Les structures spatiales de chaque image x_{λ} sont proches, \approx les spectres de chaque pixel x_k sont proches à une constante multiplicative près.

Régularisation spectrale

$$\Omega_{\text{spectral}}(\boldsymbol{x}_k) = \left(\frac{x_{r,\lambda+\Delta\lambda}}{\mathsf{SED}_{\lambda+\Delta\lambda}} - \frac{x_{r,\lambda}}{\mathsf{SED}_{\lambda}}\right)^2,$$

Déconvolution aveugle

Holographie numérique

Données multi-spectrales

Supernovæ Factory : régularisation spectrale

Dynamique très différente d'une longueur d'onde à l'autre :

Deux difficultés :

- Etablir une régularisation efficace,
- Régler les hyper-paramètres.

Constat

Les structures spatiales de chaque image x_{λ} sont proches, \approx les spectres de chaque pixel x_k sont proches à une constante multiplicative près.

Régularisation spectrale

$$\Omega_{\text{spectral}}(\boldsymbol{x}_k) = \left(\frac{x_{r,\lambda+\Delta\lambda}}{\mathsf{SED}_{\lambda+\Delta\lambda}} - \frac{x_{r,\lambda}}{\mathsf{SED}_{\lambda}}\right)^2 ,$$

Déconvolution aveugle

Holographie numérique

Données multi-spectrales

Supernovæ Factory : régularisation spectrale

Dynamique très différente d'une longueur d'onde à l'autre :

Deux difficultés :

- Etablir une régularisation efficace,
- Régler les hyper-paramètres.

Constat

Les structures spatiales de chaque image x_{λ} sont proches, \approx les spectres de chaque pixel x_k sont proches à une constante multiplicative près.

Réglage des hyper-paramètres

- Hyper-paramètres spatiaux α_λ normalisés par le flux moyen dans l'image x_λ.
- Tous les spectres x_k suivent le même a priori : hyper-paramètres sur les spectres β_k constant.

Résultats déconvolution : Simulations

Données (3975Å)

Résultats déconvolution : Simulations

Données (3975Å)

Richardson-Lucy

vérité

Résultats déconvolution : Simulations

Reconstruction

vérité

Les	problèmes in	verses
	00000000	

Déconvolution aveugle

Holographie numérique

Données multi-spectrales

Extrapolation du champ.

Reconstruction (3975Å)

Vérité

Les	problèmes in	verses
	00000000	

Déconvolution aveugle

Holographie numérique

Données multi-spectrales

Extrapolation du champ.

Reconstruction (3975Å)

Vérité

Les	problè	mes	inverses	
	00000			

Déconvolution aveugle

Holographie numérique

Données multi-spectrales

Extrapolation du champ.

Reconstruction (3975Å)

Les	problèmes inverses	

Déconvolution aveugle

Holographie numérique

Données multi-spectrales

Extrapolation du champ.

Reconstruction (3975Å)
Les problèmes inverses	Déconvolution	Démélange ●∞000000	Déconvolution aveugle	Holographie numérique
Données multi-spectrales				
Extrapolation du champ.				

Reconstruction (3975Å)

Vérité

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Données multi-spectrales

Résultats : Spectre du pixel central

- bleu : Données
- rouge : Reconstruction
- noir : Vérité

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Démélange et déconvolution

Cas idéal

$$I(\boldsymbol{a},\boldsymbol{\lambda},t) = I_{ciel}(\boldsymbol{\lambda},t) + I_{gal}(\boldsymbol{a},\boldsymbol{\lambda}) + F_{SN}(\boldsymbol{\lambda},t) * \delta(\boldsymbol{a_c}),$$

avec : $a = \{a_1, a_2\}$ coordonnées spatiales.

Fond de ciel $I_{ciel}(\lambda, t)$

- Constant spatialement.
- inconnu et variable suivant $\{\lambda, t\}$.

Galaxie hôte $I_{gal}(a, \lambda)$

- Constant temporellement,
- spatialement et spectralement structurée.

- Ponctuelle et centrée en a',
- Variant spectralement et temporellement.

Cas idéal

$$I(\boldsymbol{a},\boldsymbol{\lambda},t) = I_{ciel}(\boldsymbol{\lambda},t) + I_{gal}(\boldsymbol{a},\boldsymbol{\lambda}) + F_{SN}(\boldsymbol{\lambda},t) * \delta(\boldsymbol{a}_{\boldsymbol{c}}),$$

avec : $a = \{a_1, a_2\}$ coordonnées spatiales.

Fond de ciel $I_{ciel}(\lambda, t)$

- Constant spatialement,
- inconnu et variable suivant $\{\lambda, t\}$.

Galaxie hôte $I_{gal}(\boldsymbol{a}, \lambda)$

- Constant temporellement,
- spatialement et spectralement structurée.

- Ponctuelle et centrée en a',
- Variant spectralement et temporellement.

Cas idéal

$$I(\boldsymbol{a}, \lambda, t) = I_{ciel}(\lambda, t) + I_{gal}(\boldsymbol{a}, \lambda) + F_{SN}(\lambda, t) * \delta(\boldsymbol{a}_{\boldsymbol{c}}),$$

avec : $a = \{a_1, a_2\}$ coordonnées spatiales.

Fond de ciel $I_{ciel}(\lambda, t)$

- Constant spatialement,
- inconnu et variable suivant $\{\lambda, t\}$.

Galaxie hôte $I_{gal}(\boldsymbol{a}, \lambda)$

- Constant temporellement,
- spatialement et spectralement structurée.

- Ponctuelle et centrée en a',
- Variant spectralement et temporellement.

Cas idéal

$$I(\boldsymbol{a}, \lambda, t) = I_{ciel}(\lambda, t) + I_{gal}(\boldsymbol{a}, \lambda) + F_{SN}(\lambda, t) * \delta(\boldsymbol{a_c}),$$

avec : $a = \{a_1, a_2\}$ coordonnées spatiales.

Fond de ciel $I_{ciel}(\lambda, t)$

- Constant spatialement,
- inconnu et variable suivant $\{\lambda, t\}$.

Galaxie hôte $I_{gal}(\boldsymbol{a}, \lambda)$

- Constant temporellement,
- spatialement et spectralement structurée.

- Ponctuelle et centrée en a',
- Variant spectralement et temporellement.

En réalité :

$$I(\boldsymbol{a}, \lambda, t) = I_{ciel}(\lambda, t) + I_{gal}(\boldsymbol{a}, \lambda) + F_{SN}(\lambda, t) * \delta(\boldsymbol{a}_{c}),$$

$$data = I * h * \delta_{ADR} * \delta_{pointage} + b_{ph} + b_{CCD},$$

PSF lié à la turbulence h

Mesurée par la voie photométrique.

Réfraction atmosphérique différentielle δ_{ADR} et erreur de pointage $\delta_{pointage}$

Décalage du champ

Troncature

Champ réduit $(6'' \times 6'')$.

Bruits de mesure

En réalité :

$$I(\boldsymbol{a},\lambda,t) = I_{ciel}(\lambda,t) + I_{gal}(\boldsymbol{a},\lambda) + F_{SN}(\lambda,t) * \delta(\boldsymbol{a}_{c}),$$

$$data = \mathbf{I} * \mathbf{h} * \delta_{ADR} * \delta_{pointage} + \mathbf{b}_{ph} + \mathbf{b}_{CCD},$$

PSF lié à la turbulence h

Mesurée par la voie photométrique.

Réfraction atmosphérique différentielle δ_{ADR} et erreur de pointage $\delta_{pointage}$

Décalage du champ

Troncature

Champ réduit $(6'' \times 6'')$.

Bruits de mesure

En réalité :

$$I(\boldsymbol{a},\lambda,t) = I_{ciel}(\lambda,t) + I_{gal}(\boldsymbol{a},\lambda) + F_{SN}(\lambda,t) * \delta(\boldsymbol{a}_{\boldsymbol{c}}),$$

 $data = I * h * \delta_{ADR} * \delta_{pointage} + b_{ph} + b_{CCD},$

PSF lié à la turbulence h

Mesurée par la voie photométrique.

Réfraction atmosphérique différentielle δ_{ADR} et erreur de pointage $\delta_{pointage}$

Décalage du champ.

Troncature

Champ réduit $(6'' \times 6'')$.

Bruits de mesure

En réalité :

$$I(\boldsymbol{a},\lambda,t) = I_{ciel}(\lambda,t) + I_{gal}(\boldsymbol{a},\lambda) + F_{SN}(\lambda,t) * \delta(\boldsymbol{a}_{c}),$$

$$data = \mathbf{I} * \mathbf{h} * \delta_{ADR} * \delta_{pointage} + \mathbf{b}_{ph} + \mathbf{b}_{CCD},$$

PSF lié à la turbulence h

Mesurée par la voie photométrique.

Réfraction atmosphérique différentielle δ_{ADR} et erreur de pointage $\delta_{pointage}$

Décalage du champ.

Troncature

Champ réduit $(6'' \times 6'')$.

Bruits de mesure

En réalité :

$$I(\boldsymbol{a},\lambda,t) = I_{ciel}(\lambda,t) + I_{gal}(\boldsymbol{a},\lambda) + F_{SN}(\lambda,t) * \delta(\boldsymbol{a}_{c}),$$

$$data = I * h * \delta_{ADR} * \delta_{pointage} + b_{ph} + b_{CCD},$$

PSF lié à la turbulence h

Mesurée par la voie photométrique.

Réfraction atmosphérique différentielle δ_{ADR} et erreur de pointage $\delta_{pointage}$

Décalage du champ.

Troncature

Champ réduit $(6'' \times 6'')$.

Bruits de mesure

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Formation des données

Démélange : Approche problèmes inverses

Modèle :

$$I(\boldsymbol{a}, \lambda, t) = I_{ciel}(\lambda, t) + I_{gal}(\boldsymbol{a}, \lambda) + F_{SN}(\lambda, t) * \delta(\boldsymbol{a}_{c}),$$

$$\boldsymbol{model} = \boldsymbol{I} * \boldsymbol{h} * \delta_{ADR} * \delta_{pointage},$$

Résolution approche inverse

• Solution $\{F_{SN}, I_{gal}\}^+$ qui minimise

$$f = ||model - data||^2 + f_{\text{prior}}(I_{gal}),$$

- $f_{\text{prior}}(I_{gal})$: terme d'a priori sur la galaxie,
- *a priori* stricts sur le ciel (spatialement plat) et la supernova (ponctuelle),
- minimisation à grand nombre de paramètres (≥ 10⁵) par méthode d'optimisation continue.

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Résultats

Résultats : spectres de la supernova

Spectres de la supernova (vérité en rouge, reconstruction en noir).

Erreur de reconstruction.

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Résultats

Données réelles : sn2004gc

Données (moyenne).

sn2004gc vue par le SDSS.

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Résultats

Données réelles : sn2004gc

Reconstruction (moyenne).

sn2004gc vue par le SDSS.

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Résultats

Données réelles : Courbe de lumière de sn2006?

Déconvolution Démélang

Déconvolution aveugle

Holographie numérique

Déconvolution aveugle

Déconvolution Démélang

Déconvolution aveugle

Holographie numérique

Principe

Déconvolution Aveugle

PSF h et objet x inconnus

Estimer *h* et *x* d'après les données *y* : **Déconvolution aveugle**.

Critère à minimiser

$$f_{\text{post}}(\boldsymbol{x}, \boldsymbol{h}) = f_{\text{data}}(\boldsymbol{x}, \boldsymbol{h}; \boldsymbol{y}) + f_{\text{prior}}(\boldsymbol{x}) + f_{\text{prior}}(\boldsymbol{h}).$$

Régularisation sur la PSF

Régularisation séparable :

 $f_{\text{prior}}(\boldsymbol{h}) = f_{\text{spatial}}(\boldsymbol{h}) + f_{\text{spectral}}(\boldsymbol{h}) + f_{\text{temporel}}(\boldsymbol{h})$

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Principe

Déconvolution Aveugle

PSF h et objet x inconnus

Estimer *h* et *x* d'après les données *y* : **Déconvolution aveugle**.

Critère à minimiser

$$f_{\text{post}}(\boldsymbol{x}, \boldsymbol{h}) = f_{\text{data}}(\boldsymbol{x}, \boldsymbol{h}; \boldsymbol{y}) + f_{\text{prior}}(\boldsymbol{x}) + f_{\text{prior}}(\boldsymbol{h}).$$

Régularisation sur la PSF

Régularisation séparable :

 $f_{\text{prior}}(\boldsymbol{h}) = f_{\text{spatial}}(\boldsymbol{h}) + f_{\text{spectral}}(\boldsymbol{h}) + f_{\text{temporel}}(\boldsymbol{h})$

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Principe

Déconvolution Aveugle

PSF h et objet x inconnus

Estimer *h* et *x* d'après les données *y* : **Déconvolution aveugle**.

Critère à minimiser

$$f_{\text{post}}(\boldsymbol{x}, \boldsymbol{h}) = f_{\text{data}}(\boldsymbol{x}, \boldsymbol{h}; \boldsymbol{y}) + f_{\text{prior}}(\boldsymbol{x}) + f_{\text{prior}}(\boldsymbol{h}).$$

Régularisation sur la PSF

Régularisation séparable :

$$f_{\text{prior}}(\boldsymbol{h}) = f_{\text{spatial}}(\boldsymbol{h}) + f_{\text{spectral}}(\boldsymbol{h}) + f_{\text{temporel}}(\boldsymbol{h})$$

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Principe

Déconvolution Aveugle

PSF h et objet x inconnus

Estimer *h* et *x* d'après les données *y* : **Déconvolution aveugle**.

Critère à minimiser

$$f_{\text{post}}(\boldsymbol{x}, \boldsymbol{h}) = f_{\text{data}}(\boldsymbol{x}, \boldsymbol{h}; \boldsymbol{y}) + f_{\text{prior}}(\boldsymbol{x}) + f_{\text{prior}}(\boldsymbol{h}).$$

Régularisation sur la PSF

Régularisation séparable :

 $f_{\text{prior}}(\boldsymbol{h}) = f_{\text{spatial}}(\boldsymbol{h}) + f_{\text{spectral}}(\boldsymbol{h}) + f_{\text{temporel}}(\boldsymbol{h})$

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Principe

Déconvolution Aveugle

PSF h et objet x inconnus

Estimer *h* et *x* d'après les données *y* : **Déconvolution aveugle**.

Critère à minimiser

$$f_{\text{post}}(\boldsymbol{x}, \boldsymbol{h}) = f_{\text{data}}(\boldsymbol{x}, \boldsymbol{h}; \boldsymbol{y}) + f_{\text{prior}}(\boldsymbol{x}) + f_{\text{prior}}(\boldsymbol{h}).$$

Régularisation sur la PSF

Régularisation séparable :

$$f_{\text{prior}}(\boldsymbol{h}) = f_{\text{spatial}}(\boldsymbol{h}) + f_{\text{spectral}}(\boldsymbol{h}) + f_{\text{temporel}}(\boldsymbol{h})$$

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Principe

Déconvolution Aveugle

PSF h et objet x inconnus

Estimer *h* et *x* d'après les données *y* : Déconvolution aveugle.

Critère à minimiser

$$f_{\text{post}}(\boldsymbol{x}, \boldsymbol{h}) = f_{\text{data}}(\boldsymbol{x}, \boldsymbol{h}; \boldsymbol{y}) + f_{\text{prior}}(\boldsymbol{x}) + f_{\text{prior}}(\boldsymbol{h}).$$

Régularisation sur la PSF

Régularisation séparable :

$$f_{\text{prior}}(\boldsymbol{h}) = f_{\text{spatial}}(\boldsymbol{h}) + f_{\text{spectral}}(\boldsymbol{h}) + f_{\text{temporel}}(\boldsymbol{h})$$

Déconvolution aveugle

Holographie numérique

Principe

Régularisation de la PSF

Régularisation spatiale

- Identique à la régularisation spatiale,
- ② Si l'on dispose d'une forme *a priori* $p(\theta)$:

$$\Omega_{\text{spatial}}(\boldsymbol{h}_{\lambda,t}) = (\boldsymbol{h}_{\lambda,t} - \boldsymbol{p}(\theta))^{\mathrm{T}} \cdot \mathbf{W} \cdot (\boldsymbol{h}_{\lambda,t} - \boldsymbol{p}(\theta)),$$

où W est une matrice de poids.

Régularisation temporelle et spectrale

PSF variant continuement (temporellement ou spectralement) :

e.g.
$$\Omega_{\text{temporel}}(h) = ||2h_t - h_{t-1} - h_{t+1}||_2^2$$

- Contrainte de normalisation,
- Contraintes de positivité.

Déconvolution aveugle

Holographie numérique

Principe

Régularisation de la PSF

Régularisation spatiale

- Identique à la régularisation spatiale,
- 2 Si l'on dispose d'une forme a priori $p(\theta)$:

$$\Omega_{\text{spatial}}(\boldsymbol{h}_{\lambda,t}) = (\boldsymbol{h}_{\lambda,t} - \boldsymbol{p}(\theta))^{\mathrm{T}} \cdot \mathbf{W} \cdot (\boldsymbol{h}_{\lambda,t} - \boldsymbol{p}(\theta)),$$

où W est une matrice de poids.

Régularisation temporelle et spectrale

PSF variant continuement (temporellement ou spectralement) :

e.g.
$$\Omega_{\text{temporel}}(h) = ||2h_t - h_{t-1} - h_{t+1}||_2^2$$
.

- Contrainte de normalisation,
- Contraintes de positivité.

Déconvolution aveugle

Holographie numérique

Principe

Régularisation de la PSF

Régularisation spatiale

- Identique à la régularisation spatiale,
- 2 Si l'on dispose d'une forme *a priori* $p(\theta)$:

$$\Omega_{\text{spatial}}(\boldsymbol{h}_{\lambda,t}) = (\boldsymbol{h}_{\lambda,t} - \boldsymbol{p}(\theta))^{\mathrm{T}} \cdot \mathbf{W} \cdot (\boldsymbol{h}_{\lambda,t} - \boldsymbol{p}(\theta)),$$

où W est une matrice de poids.

Régularisation temporelle et spectrale

PSF variant continuement (temporellement ou spectralement) :

e.g.
$$\Omega_{\text{temporel}}(h) = ||2h_t - h_{t-1} - h_{t+1}||_2^2$$
.

- Contrainte de normalisation,
- Contraintes de positivité.

Déconvolution aveugle

Holographie numérique

Principe

Régularisation de la PSF

Régularisation spatiale

- Identique à la régularisation spatiale,
- 2 Si l'on dispose d'une forme *a priori* $p(\theta)$:

$$\Omega_{\text{spatial}}(\boldsymbol{h}_{\lambda,t}) = (\boldsymbol{h}_{\lambda,t} - \boldsymbol{p}(\theta))^{\mathrm{T}} \cdot \mathbf{W} \cdot (\boldsymbol{h}_{\lambda,t} - \boldsymbol{p}(\theta)),$$

où W est une matrice de poids.

Régularisation temporelle et spectrale

PSF variant continuement (temporellement ou spectralement) :

e.g.
$$\Omega_{\text{temporel}}(h) = ||2h_t - h_{t-1} - h_{t+1}||_2^2$$
.

- Contrainte de normalisation,
- Contraintes de positivité.

Déconvolution aveugle

Holographie numérique

Principe

Régularisation de la PSF

Régularisation spatiale

- Identique à la régularisation spatiale,
- 2 Si l'on dispose d'une forme *a priori* $p(\theta)$:

$$\Omega_{\text{spatial}}(\boldsymbol{h}_{\lambda,t}) = (\boldsymbol{h}_{\lambda,t} - \boldsymbol{p}(\theta))^{\mathrm{T}} \cdot \mathbf{W} \cdot (\boldsymbol{h}_{\lambda,t} - \boldsymbol{p}(\theta)),$$

où W est une matrice de poids.

Régularisation temporelle et spectrale

PSF variant continuement (temporellement ou spectralement) :

e.g.
$$\Omega_{\text{temporel}}(h) = ||2h_t - h_{t-1} - h_{t+1}||_2^2$$
.

- Contrainte de normalisation,
- Contraintes de positivité.

Déconvolution Démélang

Déconvolution aveugle

Holographie numérique

Principe

Minimisation alternée [Chan1998]

Minimisation alternée du critère $f_{\text{post}}(x, h)$:

- Initialisation de la PSF avec son a priori $h^{(0)} = p$,
- 2) estimation de l'objet optimal $x^{(k+1)}$ étant donné la PSF $h^{(k)}$,
- 3 estimation de la PSF optimale $h^{(k+1)}$ étant donné $x^{(k+1)}$
- répéter les étapes 2 et 3 jusqu'à convergence.

- **PSF** Si I'on dispose d'une PSF a priori : $h^{(0)} = p$,
- Objet x⁽⁰⁾ doit permettre un bonne estimation de la PSF h⁽¹⁾.

Déconvolution Démélang

Déconvolution aveugle

Holographie numérique

Principe

Minimisation alternée [Chan1998]

Minimisation alternée du critère $f_{\text{post}}(x, h)$:

- Initialisation de la PSF avec son *a priori* $h^{(0)} = p$,
- 2) estimation de l'objet optimal $x^{(k+1)}$ étant donné la PSF $h^{(k)}$,
- 3 estimation de la PSF optimale $h^{(k+1)}$ étant donné $x^{(k+1)}$
- répéter les étapes 2 et 3 jusqu'à convergence.

- **PSF** Si I'on dispose d'une PSF a priori : $h^{(0)} = p$,
- Objet x⁽⁰⁾ doit permettre un bonne estimation de la PSF h⁽¹⁾.

Déconvolution Démélang

Déconvolution aveugle

Holographie numérique

Principe

Minimisation alternée [Chan1998]

Minimisation alternée du critère $f_{\text{post}}(\boldsymbol{x}, \boldsymbol{h})$:

- Initialisation de la PSF avec son *a priori* $h^{(0)} = p$,
- 2 estimation de l'objet optimal $x^{(k+1)}$ étant donné la PSF $h^{(k)}$,
- I estimation de la PSF optimale $h^{(k+1)}$ étant donné $x^{(k+1)}$
- répéter les étapes 2 et 3 jusqu'à convergence.

- **PSF** Si l'on dispose d'une PSF a priori : $h^{(0)} = p$,
- Objet x⁽⁰⁾ doit permettre un bonne estimation de la PSF h⁽¹⁾.

Déconvolution Démélang

Déconvolution aveugle

Holographie numérique

Principe

Minimisation alternée [Chan1998]

Minimisation alternée du critère $f_{\text{post}}(\boldsymbol{x}, \boldsymbol{h})$:

- Initialisation de la PSF avec son *a priori* $h^{(0)} = p$,
- 2 estimation de l'objet optimal $x^{(k+1)}$ étant donné la PSF $h^{(k)}$,
- Sestimation de la PSF optimale $h^{(k+1)}$ étant donné $x^{(k+1)}$,

répéter les étapes 2 et 3 jusqu'à convergence.

- **PSF** Si l'on dispose d'une PSF a priori : $h^{(0)} = p$,
- Objet x⁽⁰⁾ doit permettre un bonne estimation de la PSF h⁽¹⁾.

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Principe

Minimisation alternée [Chan1998]

Minimisation alternée du critère $f_{\text{post}}(\boldsymbol{x}, \boldsymbol{h})$:

- Initialisation de la PSF avec son *a priori* $h^{(0)} = p$,
- 2 estimation de l'objet optimal $x^{(k+1)}$ étant donné la PSF $h^{(k)}$,
- Sestimation de la PSF optimale $h^{(k+1)}$ étant donné $x^{(k+1)}$,
- répéter les étapes 2 et 3 jusqu'à convergence.

- **PSF** Si I'on dispose d'une PSF a priori : $h^{(0)} = p$,
- Objet x⁽⁰⁾ doit permettre un bonne estimation de la PSF h⁽¹⁾.

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Principe

Minimisation alternée [Chan1998]

Minimisation alternée du critère $f_{\text{post}}(\boldsymbol{x}, \boldsymbol{h})$:

- Initialisation de la PSF avec son *a priori* $h^{(0)} = p$,
- 2 estimation de l'objet optimal $x^{(k+1)}$ étant donné la PSF $h^{(k)}$,
- Sestimation de la PSF optimale $h^{(k+1)}$ étant donné $x^{(k+1)}$,
- répéter les étapes 2 et 3 jusqu'à convergence.

- **PSF** Si l'on dispose d'une PSF *a priori* : $h^{(0)} = p$,
- Objet $x^{(0)}$ doit permettre un bonne estimation de la PSF $h^{(1)}$.

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Principe

Minimisation alternée [Chan1998]

Minimisation alternée du critère $f_{\text{post}}(x, h)$:

- Initialisation de la PSF avec son *a priori* $h^{(0)} = p$,
- 2 estimation de l'objet optimal $x^{(k+1)}$ étant donné la PSF $h^{(k)}$,
- Sestimation de la PSF optimale $h^{(k+1)}$ étant donné $x^{(k+1)}$,
- répéter les étapes 2 et 3 jusqu'à convergence.

Le solution dépend du point de départ :

• **PSF** Si l'on dispose d'une PSF *a priori* : $h^{(0)} = p$,

• **Objet** $x^{(0)}$ doit permettre un bonne estimation de la PSF $h^{(1)}$.
Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Principe

Minimisation alternée [Chan1998]

Minimisation alternée du critère $f_{\text{post}}(x, h)$:

- Initialisation de la PSF avec son *a priori* $h^{(0)} = p$,
- 2 estimation de l'objet optimal $x^{(k+1)}$ étant donné la PSF $h^{(k)}$,
- Sestimation de la PSF optimale $h^{(k+1)}$ étant donné $x^{(k+1)}$,
- répéter les étapes 2 et 3 jusqu'à convergence.

Le solution dépend du point de départ :

- **PSF** Si l'on dispose d'une PSF *a priori* : $h^{(0)} = p$,
- **Objet** $x^{(0)}$ doit permettre un bonne estimation de la PSF $h^{(1)}$.

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Objet initial

Estimation d'un objet initial

Exemple sur deux types de flou.

Flou disque.

Flou gaussien.

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Objet initial

Estimation d'un objet initial

Idée : "Calibrer" la PSF sur les bords francs.

Segmenter les données pour mettre en évidence les bords francs.

Objet initial proposé ($x^{(0)}$).

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Objet initial

Estimation d'un objet initial

Résultats sur deux types de flou.

-- Première itération ($h^{(1)}$), -- Convergence ($h^{(fin)}$), -- Verité. 47/70

Déconvolution Démélang

Déconvolution aveugle

Holographie numérique

Coronarographie

Séquence vidéo coronarographique

Examen radiologique des artère coronaires :

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Coronarographie

Réglage des hyper-paramètres

Quelques constats à propos des données présentées :

La statistique du bruit et la dynamique sont constants :

→ Les hyper-paramètres spatiaux sur la PSF et l'objet sont constants.

La statistique du bruit et la dynamique sont invariants spatialement :

→ Les hyper-paramètres temporels sur la PSF et l'objet sont spatialement invariant.

Le mouvement de l'objet est très rapide :

Pas de contrainte temporelle sur l'objet.

Seul trois hyper-paramètres doivent être estimés :

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Coronarographie

Réglage des hyper-paramètres

Quelques constats à propos des données présentées : La statistique du bruit et la dynamique sont constants :

Les hyper-paramètres spatiaux sur la PSF et l'objet sont constants.

La statistique du bruit et la dynamique sont invariants spatialement :

→ Les hyper-paramètres temporels sur la PSF et l'objet sont spatialement invariant.

Le mouvement de l'objet est très rapide :

Pas de contrainte temporelle sur l'objet.

Seul trois hyper-paramètres doivent être estimés :

Déconvolution aveugle

Holographie numérique

Coronarographie

Réglage des hyper-paramètres

Quelques constats à propos des données présentées : La statistique du bruit et la dynamique sont constants :

→ Les hyper-paramètres spatiaux sur la PSF et l'objet sont constants.

La statistique du bruit et la dynamique sont invariants spatialement :

→ Les hyper-paramètres temporels sur la PSF et l'objet sont spatialement invariant.

Le mouvement de l'objet est très rapide :

Pas de contrainte temporelle sur l'objet.

Seul trois hyper-paramètres doivent être estimés :

Déconvolution aveugle

Holographie numérique

Coronarographie

Réglage des hyper-paramètres

Quelques constats à propos des données présentées :

La statistique du bruit et la dynamique sont constants :

→ Les hyper-paramètres spatiaux sur la PSF et l'objet sont constants.

La statistique du bruit et la dynamique sont invariants spatialement :

→ Les hyper-paramètres temporels sur la PSF et l'objet sont spatialement invariant.

Le mouvement de l'objet est très rapide :

Pas de contrainte temporelle sur l'objet.

Seul trois hyper-paramètres doivent être estimés :

Déconvolution aveugle

Holographie numérique

Coronarographie

Réglage des hyper-paramètres

Quelques constats à propos des données présentées :

La statistique du bruit et la dynamique sont constants :

→ Les hyper-paramètres spatiaux sur la PSF et l'objet sont constants.

La statistique du bruit et la dynamique sont invariants spatialement :

→ Les hyper-paramètres temporels sur la PSF et l'objet sont spatialement invariant.

Le mouvement de l'objet est très rapide :

Pas de contrainte temporelle sur l'objet.

Seul trois hyper-paramètres doivent être estimés :

Déconvolution aveugle

Holographie numérique

Coronarographie

Réglage des hyper-paramètres

Quelques constats à propos des données présentées :

La statistique du bruit et la dynamique sont constants :

 \rightarrow Les hyper-paramètres spatiaux sur la PSF et l'objet sont constants.

La statistique du bruit et la dynamique sont invariants spatialement :

→ Les hyper-paramètres temporels sur la PSF et l'objet sont spatialement invariant.

Le mouvement de l'objet est très rapide :

Pas de contrainte temporelle sur l'objet.

Seul trois hyper-paramètres doivent être estimés :

Déconvolution aveugle

Holographie numérique

Coronarographie

Réglage des hyper-paramètres

Quelques constats à propos des données présentées :

La statistique du bruit et la dynamique sont constants :

 \rightarrow Les hyper-paramètres spatiaux sur la PSF et l'objet sont constants.

La statistique du bruit et la dynamique sont invariants spatialement :

→ Les hyper-paramètres temporels sur la PSF et l'objet sont spatialement invariant.

Le mouvement de l'objet est très rapide :

Pas de contrainte temporelle sur l'objet.

Seul trois hyper-paramètres doivent être estimés :

Déconvolution aveugle de séquences coronarographiques

(Observation effectuée par A. Gressard and R. Dauphin à l'hôpital de la Croix-Rousse) [Soulez et al., ICIP, 2008; Soulez et al., EUSIPCO, 2008]

Déconvolution aveugle

Holographie numérique

Microscopie Confocale

Microscopie Confocale

Observation de mitochondries d'une cellule cardiaque Non-Beating HL-1 en microscopie confocale à fluorescence.

(Expérience effectuée par S. Pelloux et Y. Tourneur)

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Microscopie conventionnelle

Microscopie conventionnelle

Observation d'une cellule cilliée épithéliale au microscope conventionnel.

(Expérience effectuée par B. Chhin et Y. Tourneur)

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Holographie numérique

Déconvolution aveugle

Holographie numérique

Principe

La localisation de micro-particules holographie numérique

- But : localisation en 3D de micro-particules en mouvement.
- L'holographie permet d'enregistrer de l'information 3D en une seule acquisition.
- Le montage de l'holographie en ligne :

Dans le cas dilué, le modèle de formation est approximativement linéaire :

$$y = \sum_{z} 2 \mathbf{R}_{z} \cdot \boldsymbol{x}_{z} + \boldsymbol{e} \, .$$

Déconvolution aveugle

Holographie numérique

Principe

La localisation de micro-particules holographie numérique

- But : localisation en 3D de micro-particules en mouvement.
- L'holographie permet d'enregistrer de l'information 3D en une seule acquisition.
- Le montage de l'holographie en ligne :

Dans le cas dilué, le modèle de formation est approximativement linéaire :

$$y = \sum_{z} 2\mathbf{R}_{z} \cdot \boldsymbol{x}_{z} + \boldsymbol{e} \,.$$

Holographie numérique

Principe

La localisation de micro-particules holographie numérique

- But : localisation en 3D de micro-particules en mouvement.
- L'holographie permet d'enregistrer de l'information 3D en une seule acquisition.
- Le montage de l'holographie en ligne :

Dans le cas dilué, le modèle de formation est approximativement linéaire :

$$y = \sum_{z} 2 \mathbf{R}_{z} \cdot x_{z} + e \, .$$

Holographie numérique

Principe

La localisation de micro-particules holographie numérique

- But : localisation en 3D de micro-particules en mouvement.
- L'holographie permet d'enregistrer de l'information 3D en une seule acquisition.
- Le montage de l'holographie en ligne :

Dans le cas dilué, le modèle de formation est approximativement linéaire :

$$y = \sum_{z} 2\mathbf{R}_{z} \cdot x_{z} + \boldsymbol{e} \,.$$

Holographie numérique

Principe

La localisation de micro-particules holographie numérique

- But : localisation en 3D de micro-particules en mouvement.
- L'holographie permet d'enregistrer de l'information 3D en une seule acquisition.
- Le montage de l'holographie en ligne :

Dans le cas dilué, le modèle de formation est approximativement linéaire :

$$\mathbf{y} = \sum_{z} 2 \, \mathbf{R}_{z} \cdot \mathbf{x}_{z} + \mathbf{e} \, .$$

Holographie numérique

Principe

La localisation de micro-particules holographie numérique

- But : localisation en 3D de micro-particules en mouvement.
- L'holographie permet d'enregistrer de l'information 3D en une seule acquisition.
- Le montage de l'holographie en ligne :

Dans le cas dilué, le modèle de formation est approximativement linéaire :

$$y = \sum_{z} 2 \mathbf{R}_{z} \cdot \boldsymbol{x}_{z} + \boldsymbol{e} \, .$$

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Principe

Codage de l'information 3D

depth = 50.0 μ m / radius = 5.0 μ m depth = 300.0 μ m / radius = 1.0 μ m 1001 50 50 microns microns 0 0 -50 -50 -100 -50 100 -100-50 100 50 50 microns microns

Centre de la figure de diffraction \rightarrow position latérale Modulation d'amplitude et fréquence \rightarrow rayon & profondeur

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Principe

Codage de l'information 3D

depth = 50.0 μ m / radius = 5.0 μ m depth = 300.0 μ m / radius = 1.0 μ m 1001 50 50 microns microns 0 -50 -50 -50 -100-50 100 50 100 50 microns microns

Centre de la figure de diffraction \rightarrow position latérale Modulation d'amplitude et fréquence \rightarrow rayon & profondeur

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Algorithme

Un algorithme itératif

Résolution du problème d'optimisation par un algorithme glouton en trois étapes :

- Détection,
- Ajustement précis,
- Soustraction aux résidus de la figure de diffraction de la particule courante,

Convergence atteinte en cas de détection de particule aberrante.

Déconvolution aveugle

Holographie numérique

Algorithme

Un algorithme itératif

Résolution du problème d'optimisation par un algorithme glouton en trois étapes :

- Détection,
- Ajustement précis,
- Soustraction aux résidus de la figure de diffraction de la particule courante,

Convergence atteinte en cas de détection de particule aberrante.

Déconvolution aveugle

Holographie numérique

Algorithme

Un algorithme itératif

Résolution du problème d'optimisation par un algorithme glouton en trois étapes :

- Détection,
- Ajustement précis,
- Soustraction aux résidus de la figure de diffraction de la particule courante,

Convergence atteinte en cas de détection de particule aberrante.

Déconvolution aveugle

Holographie numérique

Algorithme

Un algorithme itératif

Résolution du problème d'optimisation par un algorithme glouton en trois étapes :

- Détection,
- Ajustement précis,
- Soustraction aux résidus de la figure de diffraction de la particule courante,

Convergence atteinte en cas de détection de particule aberrante.

Déconvolution aveugle

Holographie numérique

Algorithme

Un algorithme itératif

Résolution du problème d'optimisation par un algorithme glouton en trois étapes :

- Détection,
- Ajustement précis,
- Soustraction aux résidus de la figure de diffraction de la particule courante,

Convergence atteinte en cas de détection de particule aberrante.

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Simulations

Résultats sur des simulations

Précisions sur les positions latérales.

 $\Delta x = \Delta y \approx 0.3 \mu m \ (\approx 1/20^{i em} de pixel).$

Précisions sur la profondeur.

 $\Delta z < 1 \mu m$ (< $1/6^{i em}$ de pixel).

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Résultats expérimentaux

Résultats expérimentaux

Conditions exprérimentales

- Impulsion laser de 7 ns à $\lambda = 0.532 \,\mu\text{m}$.
- camera CCD 12-bit avec 1280 × 1024 pixels de taille 6.7 × 6.7 μm.
- Gouttelettes générées par un **injecteur** piézo-électrique à 1000 Hz placé à environs 25 cm de la caméra.

Expérience conduite par C. Fournier et C. Goepfert au Laboratoire de Mécanique des Fluides et Acoustique à Lyon.

Déconvolution Démélang

Déconvolution aveugle

Holographie numérique

Résultats expérimentaux

Détection hors-champ (0)

Déconvolution Démélang

Déconvolution aveugle

Holographie numérique

Résultats expérimentaux

Détection hors-champ (1)

Déconvolution Démélang

Déconvolution aveugle

Holographie numérique

Résultats expérimentaux

Détection hors-champ (2)

Déconvolution Démélang

Déconvolution aveugle

Holographie numérique

Résultats expérimentaux

Détection hors-champ (3)

Déconvolution Démélang

Déconvolution aveugle

Holographie numérique

Résultats expérimentaux

Détection hors-champ (4)

Déconvolution Démélang

Déconvolution aveugle

Holographie numérique

Résultats expérimentaux

Détection hors-champ (5)

Déconvolution Démélang

Déconvolution aveugle

Holographie numérique

Résultats expérimentaux

Détection hors-champ (6)

Déconvolution Démélang

Déconvolution aveugle

Holographie numérique

Résultats expérimentaux

Détection hors-champ(7)

Déconvolution Démélang

Déconvolution aveugle

Holographie numérique

Résultats expérimentaux

Détection hors-champ(10)

Déconvolution Démélang

Déconvolution aveugle

Holographie numérique

Résultats expérimentaux

Détection hors-champ(18)

Déconvolution Démélang

Déconvolution aveugle

Holographie numérique

Résultats expérimentaux

Statistiques sur 200 hologrammes

Représentation 3D du jet de gouttelettes.

Soulez et al., JOSA-A, 2007b

Déconvolution Démélang

Déconvolution aveugle

Holographie numérique

Résultats expérimentaux

Conclusion & Perspectives

Résumé

- Succès de l'approche inverse en déconvolution aveugle comme en holographie,
- Extrapolation et/ou interpolation effective de l'objet.

Conclusion : intérêt de l'approche inverse

- Utilisation d'a priori issus de la physique,
- Prise en compte de l'ensemble du système d'observation,
- Utilise la totalité des données disponibles.

Perspectives

- Accélération de la résolution numérique (préconditionnement, parallélisation...),
- Automatisation des réglages des hyper-paramètres,
- Prise en compte de modèles plus complexes.

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Résultats expérimentaux

Conclusion & Perspectives

Résumé

- Succès de l'approche inverse en déconvolution aveugle comme en holographie,
- Extrapolation et/ou interpolation effective de l'objet.

Conclusion : intérêt de l'approche inverse

- Utilisation d'a priori issus de la physique,
- Prise en compte de l'ensemble du système d'observation,
- Utilise la totalité des données disponibles.

Perspectives

- Accélération de la résolution numérique (préconditionnement, parallélisation...),
- Automatisation des réglages des hyper-paramètres,
- Prise en compte de modèles plus complexes.

Déconvolution Démélange

Déconvolution aveugle

Holographie numérique

Résultats expérimentaux

Conclusion & Perspectives

Résumé

- Succès de l'approche inverse en déconvolution aveugle comme en holographie,
- Extrapolation et/ou interpolation effective de l'objet.

Conclusion : intérêt de l'approche inverse

- Utilisation d'a priori issus de la physique,
- Prise en compte de l'ensemble du système d'observation,
- Utilise la totalité des données disponibles.

Perspectives

- Accélération de la résolution numérique (préconditionnement, parallélisation...),
- Automatisation des réglages des hyper-paramètres,
- Prise en compte de modèles plus complexes.