

Turbulence & Auto-organisation dans des Plasmas de Fusion

G. Dif-Pradalier, with:

<u>Theory:</u> E. Caschera, P. Donnel, X. Garbet, C. Gillot, Ph. Ghendrih, V. Grandgirard, G. Latu, Y. Sarazin

Experiments: F. Clairet, P. Hennequin[†], P. Morel[†], L. Vermare[†]

CEA, IRFM, France †LPP, Palaiseau, France

October 2, 2018

Outline

- Fusion plasmas: out-of-equilibrium by necessity
- Taming the plasma:

from outside: **B** field;

from within: turbulence is problem & (partial) solution → transp. barriers

• beautiful lab. for out-of-equil. phenomena → lots to learn from cross-talk

Ackn.: Festival de Théorie, Aix-en-Provence

since 2001: 10^{th} anniversary ; ~ 100 participants plasmas / neutral fluids / GFD / astrophysics / complex systems

4

A harsh environment, out-of-equilibrium by necessity

$$D + T \longrightarrow {}^{4}He^{[3.5 \ MeV]} + n^{[14.1 \ MeV]}$$

$$+ in \ situ \ tritium \ generation:$$

$$\begin{bmatrix} n + {}^{6}Li & \longrightarrow {}^{4}He^{[2.1 \ MeV]} + T^{[2.7 \ MeV]} \\ n + {}^{7}Li & \longrightarrow {}^{4}He + T + n - 2.5 \ MeV \end{bmatrix}$$

- \triangleright requirement: interaction distance $\sim 10^{-13}$ m
 - \rightarrow threshold reaction: $\langle \sigma v \rangle_{D-T} = f(T)$
 - $\rightarrow E_{th} \sim 10 20 \text{ keV} \leftrightarrow T \sim 100 \cdot 10^6 \text{ K}$
 - \rightarrow ionised medium \equiv magnetised plasma, sensitive to electromagn. field

$$\blacktriangleright$$
 Lawson criterion:

$$n_D T_D \tau_E = 6 \, 10^{21} \, \text{m}^{-3} \, \text{keV s}$$

► Lawson criterion: $\frac{n_D T_D \tau_E = 6 \, 10^{21} \, \mathrm{m}^{-3} \, \mathrm{keV} \, \mathrm{s}}{n_D T_D \tau_E = 6 \, 10^{21} \, \mathrm{m}^{-3} \, \mathrm{keV} \, \mathrm{s}} \quad \rightarrow \quad \boxed{ \bullet \quad \mathrm{MHD \ stability:} \quad \beta = \frac{\sum nT}{B^2/2\mu_0} \ll \mathrm{few} \ \%} \\ \bullet \quad \mathrm{turbulence} \quad \tau_E = \frac{a^2}{D_{\mathrm{min}}} \sim \mathrm{few \ sec.} }$

▶ predict β & τ_E ?

 T is ~fixed
 limit on $n \sim 10^{20} \, \mathrm{m}^{-3} \, \left[\sim 10^{-5} n_{air} \right]$ $\tau_E \equiv$ need to understand turbulence & control it

Wager: "build one of the best insulators from one of the best conductors"

Insulator is the B field \rightarrow taylor geometry to confine & tame transport

key: strong **B** field ↔ strong insulator

$$ho_{\perp} = v_{\perp}/\Omega_c \approx 10^{-2} \,\mathrm{m}$$

⊥B	\mathcal{P}_{out} [MW]	therm.cond. λ [W/m/K]	$\mathcal{R} = a/\lambda$ [K m ² /W]	bât.basse conso.	bât. énergie positive	\mathcal{R}
current	< 20	$\sim 10^{-3}$	250 — 1000	> 8	> 10	combles
ITER	~ 100	$< 510^{-3}$	> 400	> 4	> 5	mur
reactor	~ 300	$< 10^{-2}$	> 300	> 4	> 5	sol

$$\parallel$$
 B $\frac{\lambda_{\parallel}}{\lambda_{\perp}}\sim 10^{8}$ $ightarrow$ intrinsic anisotropy $ightarrow$

fluid particle ↔ **B** flux surface analogy $\sim 2D$ turbulence

2D turb.: <u>deep formal analogies</u> between GFD & magn. fusion → robust saturation mechanism: shear flows [jets / zonal flows]

➤ Charney equation:

$$\left(\frac{\partial}{\partial t} + u_{g} \cdot \nabla\right) \left[\underbrace{h - \nabla^{2}h + \ln\frac{H_{0}}{f}}_{\text{planetary PV}}\right] = 0$$

➤ Hasegawa-Mima eq.:

$$\left(\frac{\partial}{\partial t} + u_{\mathsf{E} \times \mathsf{B}} \cdot \nabla\right) \left[\underbrace{\phi - \nabla^2 \phi + \ln \frac{n_0}{\omega_{\mathsf{c},i}}}_{\mathsf{plasma} \; \mathsf{PV}}\right] = 0$$

- ZF drive: $\partial_t \langle v_{Ey} \rangle = \langle v_{Ex} (PV) \rangle$
- [Taylor 1915] $\langle v_{Ex} (PV) \rangle = -\partial_x \langle v_{Ex} v_{Ey} \rangle$ Reynolds force

Plasma	Planetary		
Lorentz: $\omega_c \mathbf{z} \times \mathbf{v}$	Coriolis: $f\mathbf{z} \times \mathbf{v}$		
cyclo. freq. ω_c	$f = f_0 + \beta y$		
dens. $n = n_0 + \tilde{n}$	$H=H_0+h$		
QN: $\frac{\tilde{n}}{n_0} = \frac{e\phi}{T}$	SW: $\frac{h}{H_0} = o(1)$		
elect. pot. ϕ	$depth^{"}h$ or Ψ		
B field	planet rot. Ω		
$ ho_{\star}= ho_i/a$	$\mathcal{R}o = U/f_0L$		
H–M	Charney		
drift wave	Rossby		
2D ⊥ B	$2D \perp (fz)$		
adv. $\mathbf{E} \times \mathbf{B}$	geostrophic vel.		
$\mathbf{v}_{E imes B} = -rac{ abla \phi imes z}{ B }$	$\mathbf{v}_g = -rac{g abla h imes \mathbf{z}}{f_0}$		
PV $[f \text{ or } J_0 f]$	PV		

2D turb.: <u>deep formal analogies</u> between GFD & magn. fusion

→ robust saturation mechanism: shear flows [jets / zonal flows]

Zonal flows (jets) are vastly studied:

[eg. Diamond PPCF 05]

- robust generation via eg. modul. instability
- decorrelate eddies → reduce transport
- many modes produce shearing + straining + transport

 - $\boldsymbol{\rightarrow}$ safe repository for plasma free energy
- modes of minimal inertia
 - → easy to excite ZFs
- modes of minimal damping
 - → once excited, live on

deep analogies ↔ common patterns
ZFs: a seed for transport bifurcations

<u>Transport bifurcations</u> occur: universally measured, moderately understood, not reproduced in modeling

- fast / dithering-cyclic / slow: few μ s to fractions of τ_E
- narrow region of change, driven or influenced not locally, impact global
- transport barriers may differently affect heat, momentum or particles
- periodic relaxations & hysteresis
- multiple stability & 'valleys of stability'

How to model such phenomena?

Fluid or kinetic: how to model magnetised plasmas?

Fluid description appealing...yet often incorrect: 3d+time

$$\rho d_t \mathbf{v} = -\nabla p + \mathbf{j} \times \mathbf{B}$$
 ; $\partial_t \mathbf{B} = \nabla \times (\mathbf{v} \times \mathbf{B})$; $+ \text{ eqs. } \rho \& p$

- $\bullet \mbox{ Fluid description: } \left[\begin{array}{c} \omega \gg {\bf k} \cdot {\bf v} \\ \delta_{\mbox{\scriptsize orbit}} \ll \delta_{\mbox{\scriptsize mode}} \end{array} \right] \mbox{ fails when } \left[\begin{array}{c} \mbox{\scriptsize wave-particle resonances} \\ \mbox{\scriptsize finite extension particle orbits} \end{array} \right]$
- Especially critical for low freq. phenomena & small scales \rightarrow **turbulence:** dense resonances $\omega \sim \mathbf{k} \cdot \mathbf{v}$ & $\delta_{\mathrm{orbit}} \sim \delta_{\mathrm{mode}} \sim 1\,\mathrm{cm}$

 \exists small parameters \equiv focus on **low-freq.** electromagnetic fluctuations

reduction possible

- strong **B** field [cyclotron motion]
- effective separation of scales

Modern workhorse: 'gyro'-kinetics

•
$$\partial_t F + \nabla \cdot (\mathbf{v}F) = \mathcal{C}(F) + \mathcal{S}(F) + \text{Maxwell}$$

key idea: eliminate high-freq. processes $\omega > \omega_c$

4 gyrocentre coord. + magn. moment

6d
$$\bullet \omega_{p,s} \Delta t < 1$$
 \Rightarrow 5d $\bullet \omega_{c,s}^{\star} \Delta t < 1$ $\bullet \Delta x < \rho_c$

$$\bullet \ \omega_{c,s}^{\star}$$
 $\bullet \ \Delta x$

$$\bullet \quad \partial_t \mathbb{F} + \dot{\mathbf{x}} \, \partial_{\mathbf{x}} \mathbb{F} + \dot{\mathbf{v}}_{||} \, \partial_{\mathbf{v}_{||}} \mathbb{F} + \underbrace{\dot{\mu}}_{} \, \partial_{\mu} \mathbb{F} = \mathcal{C}(\mathbb{F}) + \mathcal{S}(\mathbb{F}) \quad + \text{ Maxwell [pol.; magn.]}$$

Magnetised plasma:

- multiple scales {ions, electrons} $\sim \{3, 5\}$ decades time ~ 5 decades

• ~2d turb. with important(?) kinetic features

Landau resonance ↔ dissipation damping of zonal flows mom.exchange: collisions, heating

How does the plasma organise? transport?

Validity of local transport closure: dubious

- ➤ first idea: ∃ local flux—gradient relation
- diffusive closure fails:
 - $\,\,\,\downarrow\,\,$ hysteresis, fronts, not-local mixing, etc.

Emergence of a non-local & non-diffusive mesoscale

$$Q = -n\chi(r)\nabla T \implies \boxed{Q = -\int \mathcal{K}(r, r')\nabla T(r') \, dr'}$$

$$\blacktriangleright \mathcal{K}(r,r') = \frac{S}{\pi} \frac{\Delta/2}{(\Delta/2)^2 + (r-r')^2}$$

- scale-invariant dynamics $NB: \int (r-r')^2 \mathcal{K}(r,r')$ divergent
- \blacktriangleright physics of Δ : many aspects of SOC [is it?]
 - ullet $\Delta \equiv$ 'contamination' **spreading** length
- stiff, multiple metastable states, organisation in spatially-separated domains, strong intermittency, behavioural change with source
 - $\rightarrow \Delta \equiv$ 'avalanche' scale $\sim \rho$, NOT $\sim a$

Two interconnected secondary structures: ZMF & 'avalanches' \rightarrow '**E** \times **B** staircase' solves the pattern coexistence problem

The conundrum: robust secondary patterning trends...yet mutually-exclusive

- avalanches correlated over-turnings extended, intermittent transport
- zonal flows limit the turbulent mixing, regulates transport via shearing

How can they coexist?

- **1** they do not both exist in different regions of parameter space
- **2** separation in time both exist alternately
- **3** separation in space $\stackrel{\blacksquare}{}$ the "E \times B staircase"

Normalised radius of

- ► ZFs concentrate into thin layers & endure mean flows (MFs)
- MFs organise into a lattice of quasi-regularly spaced layers
- avalanches propagate in-between

<u>Spontaneous large-scale layering</u> in quasi-2d: a pervasive problem in fluids, understanding still elusive

Oceans: thermohaline staircase, differential diffusion of competing heat & salt gradients leads to alternately sharp/flat gradient zones [stratification]

Atmospheric fluids: potential vorticity staircase, ZF structure from Rossby wave dynamics in QG turb. ["veins & arteries of the weather system"] $[\Omega]$;

Magnetised plasma: **E** × **B** staircase, quasi-regular ZF pattern of weak transport barriers co-located with prof. corrugations interspersed by avalanching **[B]**

Analogy with traffic jams: heat avalanche dynamics may generate staircase-like patterns

• traffic flow \equiv continuum (fluid) [Whitham 74]

$$\partial_t \rho + \partial_x (\rho u) = 0$$
$$\partial_t u + u \partial_x u + \frac{1}{\rho} \partial_x p = \frac{1}{\tau} (\bar{u} - u)$$

 $1/\rho\partial_x p \equiv$ drivers' "anticipation" to traffic $\tau \equiv$ relax. \equiv drivers' "response" time

- shock-like solutions
 - traffic moves freely;
 - ► small instabilities amplify ★ travelling wave arises & moves backwards:
 - jam cluster appears and propagates backward like a solitary wave

Human error is needed to cause fluctuations in behaviour ↔ "response time"

• in plasmas [Kosuga 13 & 14]

human error	pressure fluct.		
time delay $ au$	delay $\delta T \leftrightarrow \delta Q$		
traffic flow	heat avalanche		
"jamiton"	"staircase"		

- time delay btw flux ↔ gradient
- ▶ modified Burgers → telegraph

$$\tau \partial_t^2 \delta T + \partial_t \delta T + \lambda \delta T \partial_x \delta T = \nu \partial_x^2 \delta T$$

clustering instability

Bi-stability may also generate staircase-like patterns [1/2]

• start from H–W eqs [Ashourvan PRE16, PoP 17]

$$d_t \nabla^2 \phi = \eta \nabla_{\parallel}^2 [\log n - \phi] + \mu \nabla_{\perp}^4 \phi$$
$$d_t \log n = \eta \nabla_{\parallel}^2 [\log n - \phi] + D \nabla_{\perp}^2 n$$

expand vorticity, density & PV≡ n − u
in terms of mean/fluct.

$$\partial_t \bar{\zeta} + \partial_x \langle \tilde{v_x} \tilde{\zeta} \rangle = \text{dissip.} + (\text{ext.production})$$

- key: mixing of PV $\rightarrow \zeta = PV = q$
 - assume diffusive closure $\langle \tilde{v_x} \tilde{q} \rangle \equiv -D \partial_x \bar{q}$
 - dimensional args: $D \sim \ell^2 \, \tilde{q}^2/\alpha_{\parallel}$
- what prescription for ℓ?
 ∃ at least 2 scales in model:
- **1** length scale $\ell_F \equiv \text{constant forcing for turb.}$
- **2** Rhines scale $\ell_R \equiv$ cross-over from:

- eddy-like $\tau_{ov}^{-1} \sim \tilde{v}/\ell_R \sim \tilde{q}$ • wave-like $\omega_{DW} \sim \frac{k}{1+k^2} v_D \sim \frac{k}{1+k^2} \nabla \bar{n} \sim \ell_R \nabla \bar{q}$
- equating both: $\ell_R \sim \frac{\dot{q}}{\nabla \bar{q}}$
- 'combined' mixing length

$$\ell \equiv rac{\ell_F^{1-k}}{\left(\ell_F^{-2} + \ell_R^{-2}
ight)^{k/2}}$$
, hence flux:

Bi-stability may also generate staircase-like patterns [2/2]

- stability of shear layers? (log. time scale!)
- Competition mergers/re-formation?
 - → what evidence from experiments?

Conclusions

- \bullet Large sources of free energy, flux-driven, multiscale, open \rightarrow out-of-equil. system

Propensity

- concentrate energy & momentum → barriers for transp., bifurcations
 - $\mathrel{\ \, \hookrightarrow \ \, } \mathsf{ubiquitous \ in \ 2d} \quad ; \quad \mathsf{act} \, \neq \, \mathsf{heat}, \, \mathsf{momentum \ or \ particles}$
- intermittently 'discharge' free energy contents → 'avalanches'

 Ly emergent dynamic mesoscale
- ightarrow **E** imes **B** staircase solves pattern coexistence pb ightarrow gal understanding still elusive
- unifying theme(?) patterns of transp. barriers → cross-talk [astro/GFD/fluids]
 'natural upshot' of modulation in bistable/multi-stable system
 mixing scale dependence on gradients leads to multiple/bi stability