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Re =1012 Re =1021

Re =102

Re =107

Re =1011

∂tu + u •∇ u = −∇ p + ν Δ u + f
Navier-Stokes Equations:

Control Parameter: Re = LU
ν

Turbulence
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Fluids and Navier-Stokes 



∇
→

•u
→

= 0
→

∂t u
→

+ (u
→

•∇)
→

u
→

= −
1
ρ
∇
→

p+νΔu
→

Broken Symmetry

Time-reversal

Fluids and Navier-Stokes 

t− > −t
u− > −u

Only for ! = 0

There is entropy production through viscosity:

Unforced Navier-Stokes
the only equilibrium state (state that satisfies all the symmetries)  is u=0

Forced Navier-Stokes
Non-equilibrium states that depend on the Reynolds number



Non-equilibrium states of NSE

u
!
=C
"!

Re<<1 Re>>1

Satisfies all the symmetries All symmetries are broken

Laminar state Turbulent state

How can we explain/describe
the time-reverasl symmetry
breaking in turbulent flow?



Reynolds number

Control parameters

VKE experiment
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von Karman experiments

SetUp Fluid P(bars) T(K) Re
SHREK HeI 1.1 2.62 108

SHREK N2 1.1 284 105

VKS Na 410 107

VKE
VKE

H2O
Glyc

1.8
1.8

300
300

105
102

VKS=VKEx2 SHREK=VKEx4VKE



Can you see irreversibility by eye?

Un champ turbulent renversé     t->-t; u->-u

Un champ turbulent mesuré avec un fil chaud
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No! Better use something else!

Un champ turbulent renverse
t->-t; u->-u

Un champ turbulent mesuré avec un fil chaud
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Entropy production!
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1st law of thermodynamics
Mystery (i)

1st law: Energy can be split into work and heat

0 50 100 150 200
-0.02

0

0.02

0.04

!"
!' = ()*+ − (!)--

SHREK Collaboration

DNS V. Shukla
Work measured by
Torques applied at Shafts
Heat flux measured
By keeping T constant



1st law of thermodynamics
Mystery (i)
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1st law of thermodynamics
Mystery (ii)

Energy dissipation does not go to zero as ! → 0
Spontaneous symmetry breaking/Dissipation anomaly !!!!!

Saint-Michel et al, POF 26, 125109 (2014);VKE+VKS collaboration+SHREK collaboration

VKE VKS

SHREK

SuperFluid!



Observation: power-law spectrum

Energy cascade

Saclay team: Debue, Kuzzay, Faranda, Saw, Daviaud, Dubrulle et al, (2016) 



Kolmogorov Theory (1)

NSE + homogeneity

1
2
∂t δuℓ( )2 −ε = +

1
4
∇ℓ δuℓ( )3 +νΔℓ δuℓ( )2

Karman-Howarth-Monin equation

δuℓ = u x + ℓ( )−u x( )

! ⟶ ! + ℎ

Karman & Howarth (1938), Monin (1959)



Kolmogorov Theory (2)

KH equation + stationarity + self-similarity

δuℓ( )3 ∝−
4
3
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δuℓ( )2 ∝ εℓ( )2/3
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2
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1
4
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E k( ) =C ε 2/3k−5/3
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Kolmogorov Theory (2)
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Zero if time reversal symmetry hokds!!!!
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Solution to Mystery (i): energy cascade

Work

Heat

Injection scale

Energy cascade

Dissipative scale
(viscosity)η = ν 3 /ε( )

1/4
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Mystery (ii)  and Onsager’s conjecture

Manuscript submitted to Website: http://AIMsciences.org
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

LECTURES ON THE ONSAGER CONJECTURE

ROMAN SHVYDKOY
Department of Mathematics, Stat. and Comp. Sci., M/C 249,

University of Illinois, Chicago, IL 60607, USA

(Communicated by [the associate editor name])

ABSTRACT. These lectures give an account of recent results pertaining to the celebrated
Onsager conjecture. The conjecture states that the minimal space regularity needed for a
weak solution of the Euler equation to conserve energy is 1/3. Our presentation is based
on the Littlewood-Paley method. We start with quasi-local estimates on the energy flux,
introduce Onsager criticality, find a positive solution to the conjecture in Besov spaces of
smoothness 1/3. We illuminate important connections with the scaling laws of turbulence.
Results for dyadic models and a complete resolution of the Onsager conjecture for those
is discussed, as well as recent attempts to construct dissipative solutions for the actual
equation.

The article is based on a series of four lectures given at the 11th school “Mathematical
Theory in Fluid Mechanics” in Kácov, Czech Republic, May 2009.

”...in three dimensions a mechanism for
complete dissipation of all kinetic
energy, even without the aid of
viscosity, is available.”

L. Onsager, 1949

1. Lecture 1: motivation, Onsager criticality.

1.1. Onsager’s original conjecture. The motion of an ideal homogeneous (with constant
density 1) incompressible fluid is described by the system of Euler equations given by

∂u

∂t
+ (u ·∇)u = −∇p, (1)

∇ · u = 0, (2)
where u is a divergence-free velocity field, and p is the internal pressure. We assume that
the fluid domain Ω here is either periodic or the entire space. It is an easy consequence of
the antisymmetry of the nonlinear term in (1) and the incompressibility of the fluid that the
law of energy conservation holds for smooth solutions:

∫

Ω
|u(t)|2dx =

∫

Ω
|u0|2dx, for all t ≥ 0. (3)

2000 Mathematics Subject Classification. Primary: 76F02, 76B03; Secondary: 42B37.
Key words and phrases. Euler equation, Navier-Stokes equation, weak solutions, turbulence, Onsager conjec-

ture, Besov spaces, dyadic models.
The author is grateful to the Department of Mathematical Analysis, Faculty of Mathematics and Physics,

Charles University, and Jindřich Nečas Center for Mathematical Modeling for warm hospitality during the prepa-
ration of these notes. The research is partially supported by the NSF grant DMS - 0907812.
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If  h ≤ 1/3 à Dissipation through irregularities (singularities)
` ⇡ 0In the limit of

Without viscosity !

If  h > 1/3 à Euler equation conserves energy,
Dissipation in Navier-Stokes by viscosity.

�u(`) ⇠ `h

D u( ) x[ ]∝ limℓ→0 ℓ3h−1

Duchon&Robert. Nonlinearity  (2000),

D(u) = lim
`!0

1

4

Z

r`
d3r r�`(r) · �ur|�ur|2

Inertial dissipation:



Local Energy Balance at finite scale

Continuous wavelet transform+ Navier-Stokes uℓ x( ) = dx '∫ u(x ')φℓ(x − x ')

φℓ x( ) = 1
ℓ3
φ

x
ℓ
#

$
%
&

'
(

Duchon&Robert (2000), Eyink (2005), Kuzzay et al . (2016)

where

(velocity increment)



Example: 1D: Burgers

∂tu+u∂xu =ν ∂xxu
Turbulence compressible sans pression
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With ViscosityWithout Viscosity
Dubrulle 2019 JFM Perspectives

!ℓ# !ℓ#



In von Karman 3D flow

Estimation of dissipation and circulation production rates. With our velocity fields, we can

compute the velocity increments �u(r) = u(x2D + r2D)� u(x2D), From this, we define two scale

dependent scalar functions: the local energy dissipation rate D`(u) 15:

D`(u) =
1

4

Z

V
d3r (rG`)(r) · �u(r) |�u(r)|2, (4)

where V is a full disk, and the local rate of velocity circulation decay16:

d

dt
�`(u) =

I

C
ds ·F `(u), (5)

where

F `(u) =

Z

V
d3r

✓
�u(r)�

Z

V
d3r0G`(r

0
)�u(r0)

◆
·rG`(r)

�
�u(r), (6)

C being any contour advected by the fluid and G is a spherically symmetric function of r

given by:

G`(r) =
1

N
exp(�1/(1� (r/2`)2)), (7)

where N is a normalization constant such that
R
d3rG`(r) = 1.

In addition, we may also compute the local rate of viscous dissipation at the resolution scale,

given by:

D⌫
�x(u) = ⌫SijSij, (8)
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Supplementary figure 5: Maps of the instantaneous dimensionless coarse-grained inertial energy

dissipation D`(u) as a function of scale ` for a flow at Re ⇡ 3 ⇥ 105. a) Maps of D`(u) at three

different scales. b) Maps of D`(u) at different scales, along a line going through a peak in inertial

dissipation. The colors code D`(u). The scale is expressed in units of the grid step: 0.25 mm.

this computation, we have used a spherically symmetric function of x given by:

G`(r) =
1

N
exp(�1/(1� (r/(2`)2)), (1)

where N is a normalization constant such that
R

d
3
rG`(r) = 1. According to 1, the results should

not depend on the choice of this function, in the limit ` ! 0.

To estimate the scaling range of the extreme event, we have performed the computation of

D`(u) at different resolutions, using different averaging windows to reconstruct the velocity flow

from the same image. An example is provided in Fig. 6. One sees that, as the resolution is

increased, the region of elevated D`(u) becomes sharper and sharper, but globally remains at the

same location (emphasized by the white dot). On the other hand, the plot of D`(u) at this location

7

Comparing 2D to 3D data:

Stereo –PIV data can only

Detect events with strong 

components laying in the 

measurement plane.

- Kuzzay D. et al. (2016), 

:arXiv:1601.03922.



Extreme events of DL=η(u)
Front Spiral (focusing)

Jet Cusps ?

Extreme events : 1000 times 
of the mean. 

Found ~ 30 Events 
(30,000 frames of 
100*100 values)

Can be categorized into 4 
geometries (topologies).

Saw, Kuzzay et al. (2016), Nature-Comm. 7

75% are fronts.

~u

D⌘(~u)



Statistics of energy transfers

ℓ ↓

Debue et al  et al. (2017), submitted

statistics highly non gaussian

#ℓ$PDF of 



Statistical caracterization of singularities
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Large deviation property for velocity
Increments around singularities

Debue et al. 2018 PRE; Dubrulle 2019 JFM Perspectives
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Outstanding issues: modelling the flux!

E(k)

k

Flux d’énergie

Injection d’énergie

1/Lc 1/h

Dissipation

e

e

e

!"=C Lc V(Lc)

1/L

Can we do that using out-of-equilibrium phsics?


