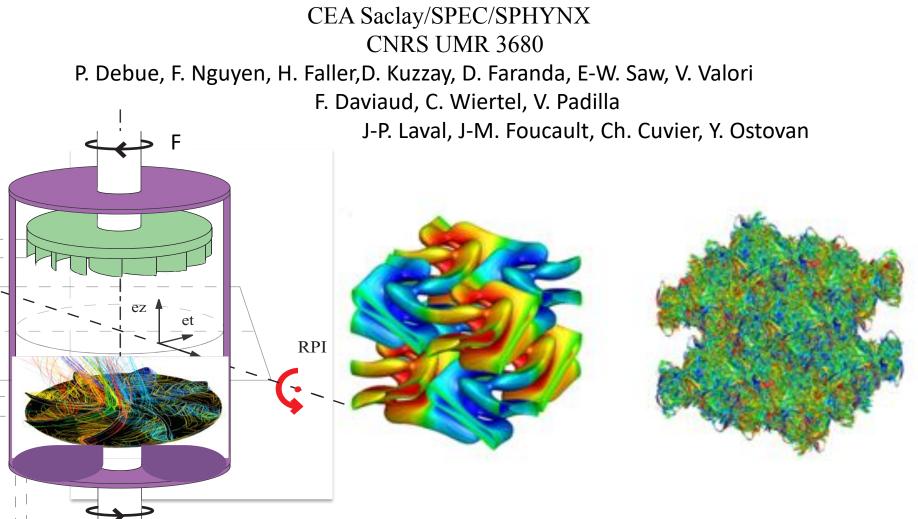
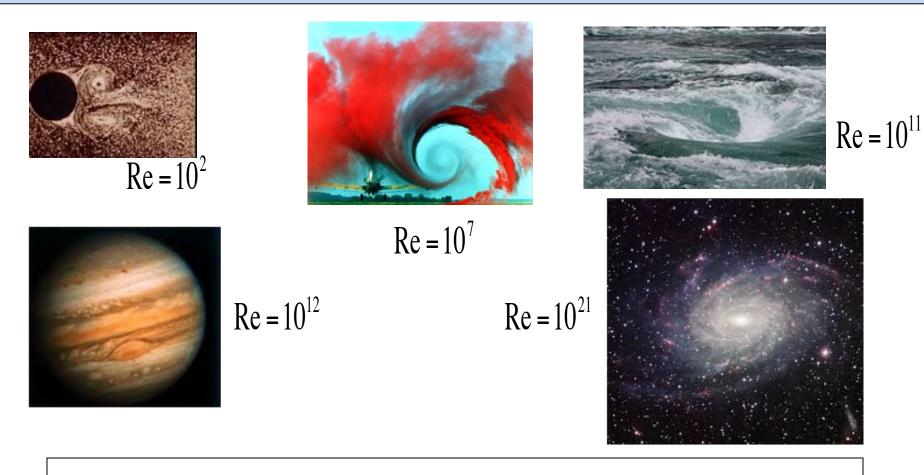
Out-of-equilibrium Statistics and Turbulence

B. Dubrulle



Turbulence



Navier-Stokes Equations:

$$\partial_t u + u \bullet \nabla u = -\nabla p + v \Delta u + f$$

Control Parameter:

 $\operatorname{Re} = \frac{LU}{v}$

Fluids and Navier-Stokes

$$\vec{\nabla} \cdot \vec{u} = \vec{0}$$

$$\vec{\partial}_t \vec{u} + (\vec{u} \cdot \vec{\nabla})\vec{u} = -\frac{1}{\rho}\vec{\nabla}p + \nu\Delta\vec{u}$$

Symmetries

Tme-translation

Space translation

Space-reversal

Galilean invariance

Scaling

 $t \rightarrow t + h$ $\vec{x} \rightarrow \vec{x} + \vec{h}$ $(\vec{x}, \vec{u}) \rightarrow (-\vec{x}, -\vec{u})$ $(\vec{x}, \vec{u}) \rightarrow (\vec{x} + \vec{U}t, \vec{u} + \vec{U})$ $(t, \vec{x}, \vec{u}) \rightarrow (\lambda^{2}t, \lambda \vec{x}, \lambda^{-1}\vec{u}) \quad \nu \neq 0$ $(t, \vec{x}, \vec{u}) \rightarrow (\lambda^{1-h}t, \lambda \vec{x}, \lambda^{h}\vec{u}) \quad \nu = 0$

Fluids and Navier-Stokes

$$\vec{\nabla} \cdot \vec{u} = \vec{0}$$

$$\vec{\partial}_t \vec{u} + (\vec{u} \cdot \vec{\nabla}) \vec{u} = -\frac{1}{\rho} \vec{\nabla} p + \nu \Delta \vec{u}$$

Broken Symmetry

Time-reversal

$$t \rightarrow -t$$

Only for
$$u = 0$$

 $\mathcal{U} - > -\mathcal{U}$

There is entropy production through viscosity:

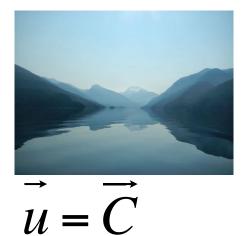
Unforced Navier-Stokes

the only equilibrium state (state that satisfies all the symmetries) is u=0

Forced Navier-Stokes

Non-equilibrium states that depend on the Reynolds number

Non-equilibrium states of NSE



How can we explain/describe the time-reverasl symmetry breaking in turbulent flow?

Satisfies all the symmetries

Re<<1

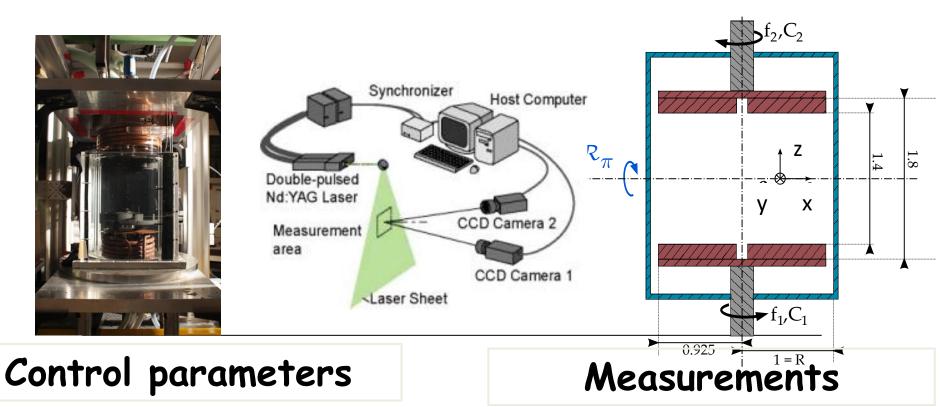
Re>>1

Laminar state

Turbulent state

All symmetries are broken

VKE experiment



Reynolds number

 $Re = \frac{2\pi f R^2}{\nu}$ $f = \frac{f_1 + f_2}{2}$

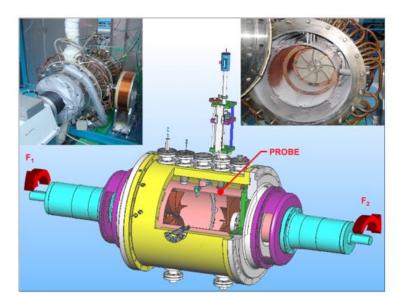
Global energy input viaTorque

PIV velocity fields

$$K_{p} = \frac{0.5(C_{1} + C_{2})}{\rho R^{5} f^{2}}$$

 $V_x(x,z), V_y(x,z)), V_z(x,z)$

von Karman experiments

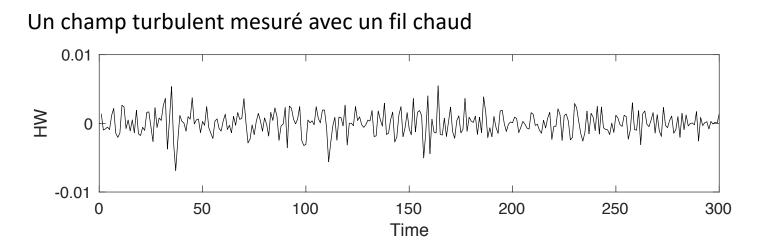


VKS=VKEx2

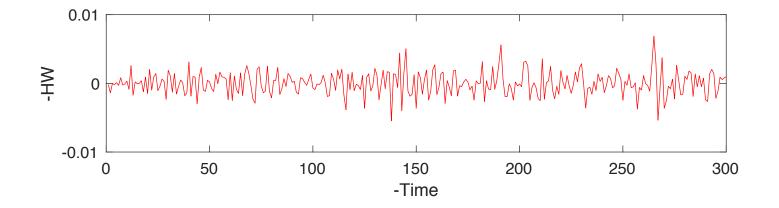
SHREK=VKEx4

SetUp	Fluid	P(bars)	Т(К)	Re
SHREK	Hel	1.1	2.62	10 ⁸
SHREK	N2	1.1	284	10 ⁵
VKS	Na		410	107
VKE VKE	H2O Glyc	1.8 1.8	300 300	10 ⁵ 10 ²

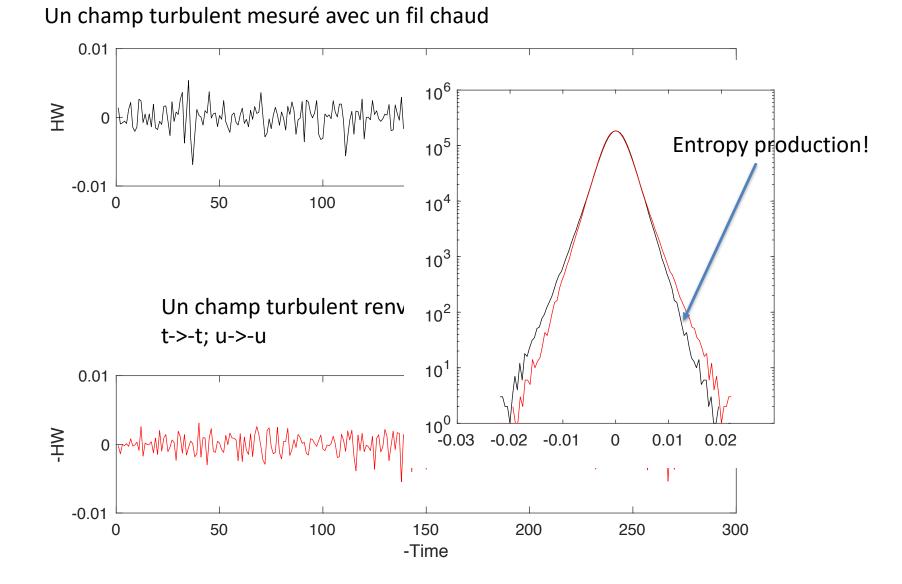
Can you see irreversibility by eye?



Un champ turbulent renversé t->-t; u->-u



No! Better use something else!

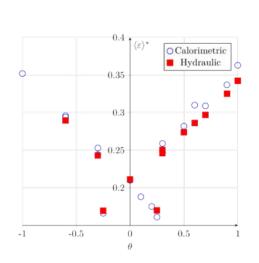


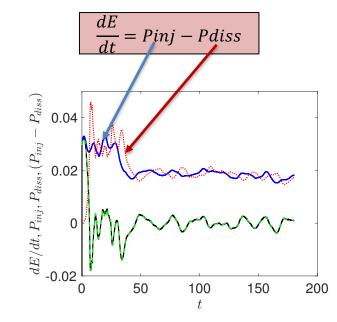
Mystery (i)

1st law: Energy can be split into work and heat

dE = dW + dQ

Work measured by Torques applied at Shafts Heat flux measured By keeping T constant

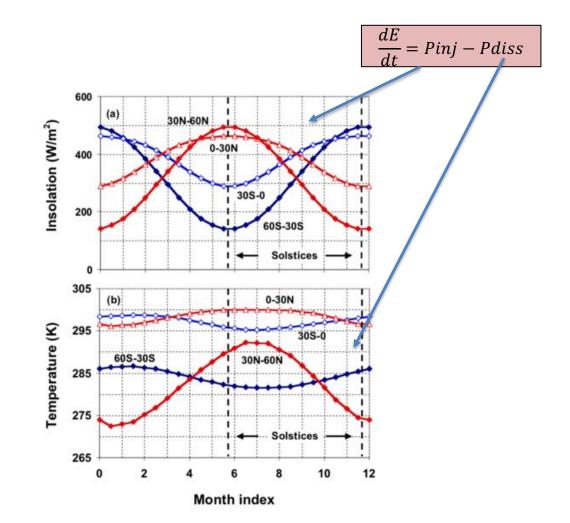




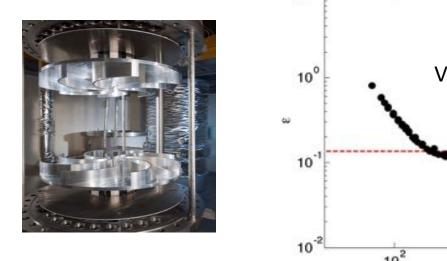
DNS V. Shukla

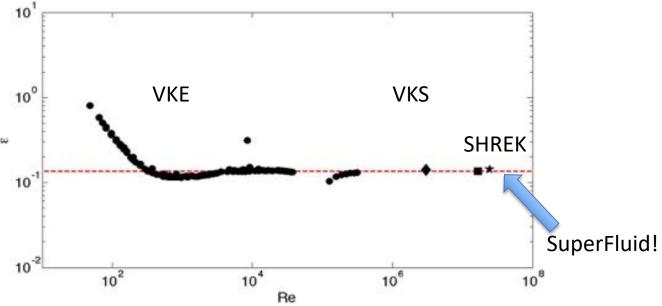
SHREK Collaboration

Mystery (i)



Energy dissipation does not go to zero as $v \rightarrow 0$ Spontaneous symmetry breaking/Dissipation anomaly !!!!!

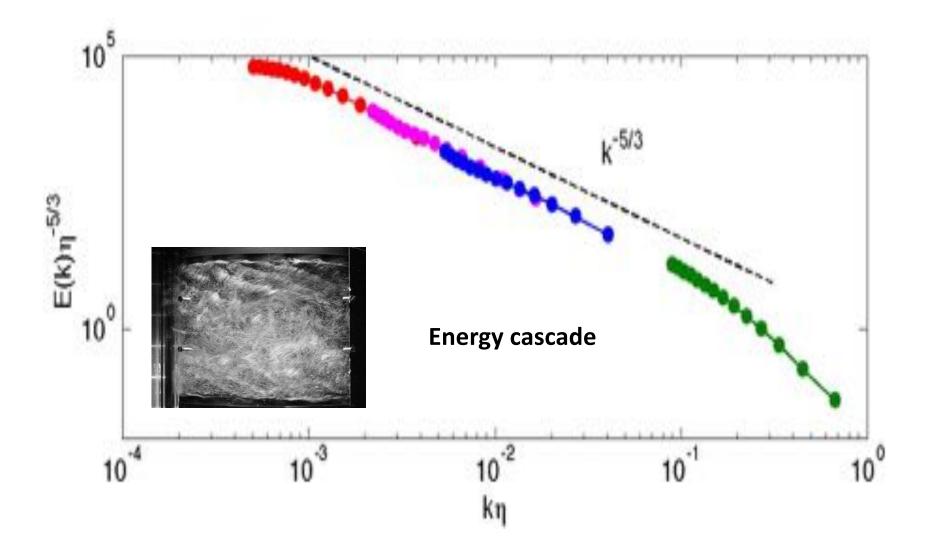




VKE+VKS collaboration+SHREK collaboration

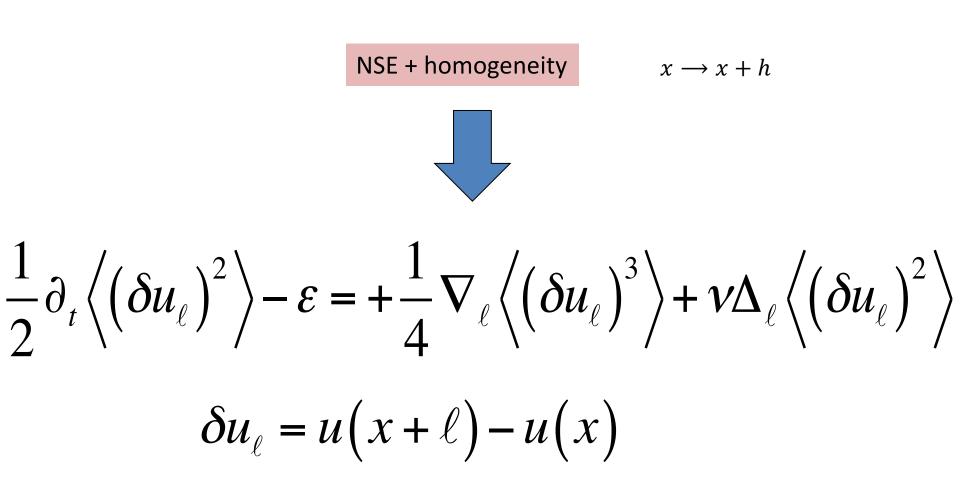
Saint-Michel et al, POF 26, 125109 (2014);

Observation: power-law spectrum



Saclay team: Debue, Kuzzay, Faranda, Saw, Daviaud, Dubrulle et al, (2016)

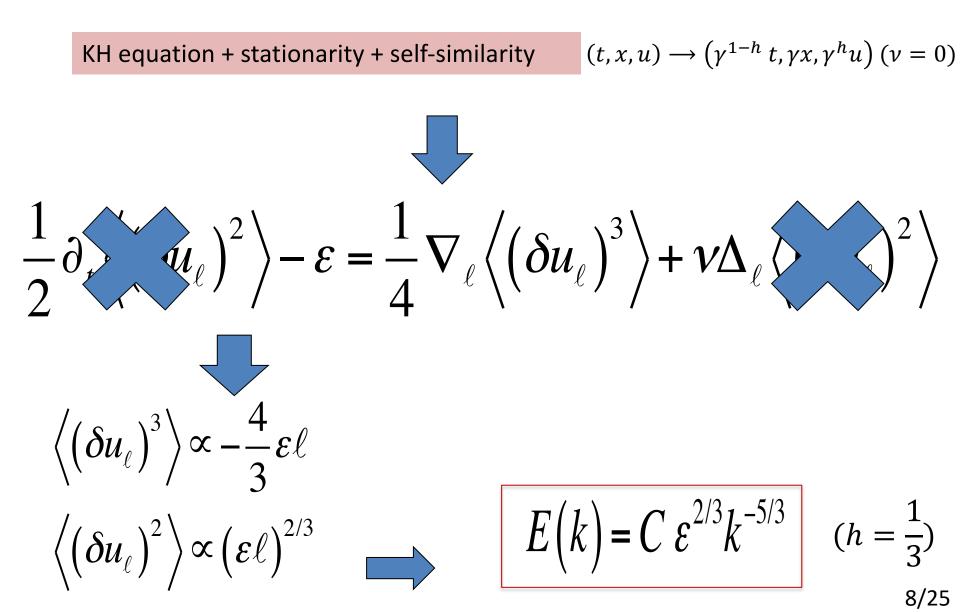
Kolmogorov Theory (1)



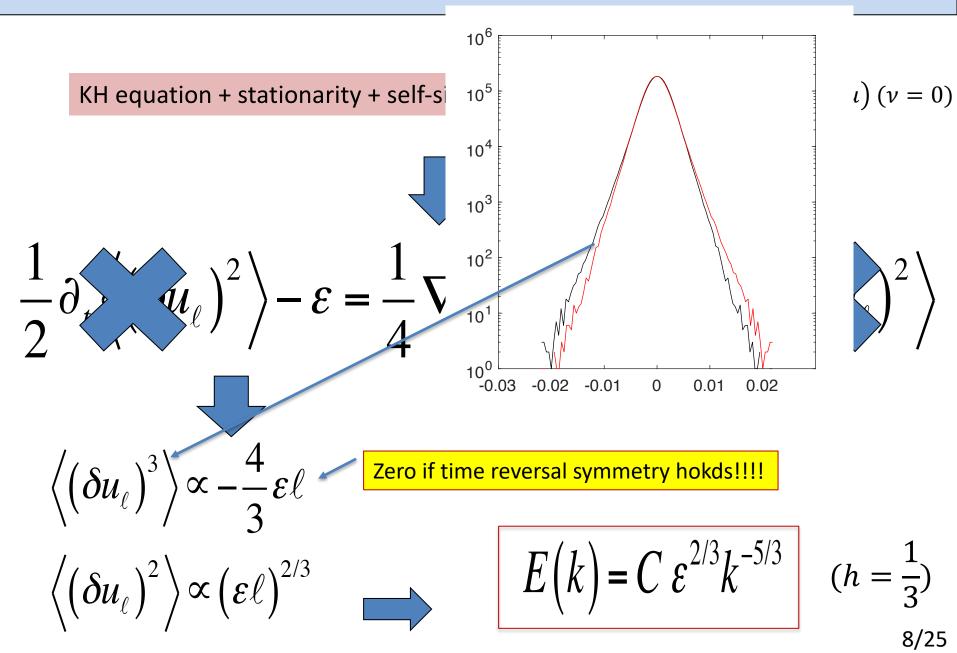
Karman-Howarth-Monin equation

Karman & Howarth (1938), Monin (1959)

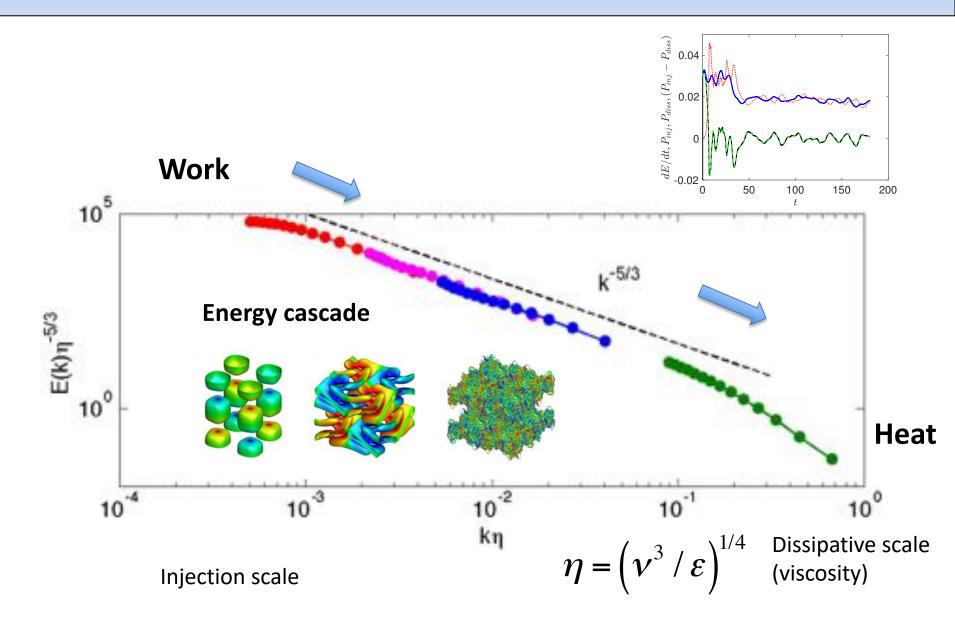
Kolmogorov Theory (2)



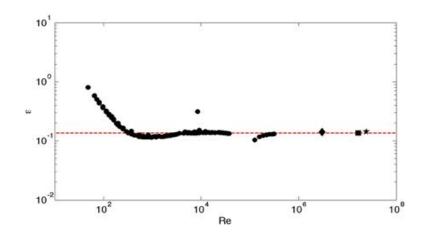
Kolmogorov Theory (2)



Solution to Mystery (i): energy cascade



Mystery (ii) and Onsager's conjecture



"...in three dimensions a mechanism for complete dissipation of all kinetic energy, even without the aid of viscosity, is available."

L. Onsager, 1949

$$\frac{1}{2}\partial_t \mathbf{u}^2 + \operatorname{div}\left(\mathbf{u}\left(\frac{1}{2}\mathbf{u}^2 + p\right) - \nu\nabla\mathbf{u}\right) = D(u) - \nu \nabla\mathbf{u})^2$$

Duchon&Robert. Nonlinearity (2000),

Inertial dissipation:

$$D(u) = \lim_{\ell \to 0} \frac{1}{4} \int_{r \le \ell} d^3 r \, \nabla \phi_\ell(r) \cdot \delta u_r |\delta u_r|^2$$
$$\delta u(\ell) \sim \ell^h \qquad \text{In the limit of} \quad \ell \approx 0$$
$$D(u) [x] \propto \lim_{\ell \to 0} \ell^{3h-1}$$

If $h > 1/3 \rightarrow$ Euler equation conserves energy, Dissipation in Navier-Stokes by viscosity.

If $h \le 1/3 \rightarrow$ Dissipation through irregularities (singularities) Without viscosity !

Local Energy Balance at finite scale

Continuous wavelet transform+ Navier-Stokes

$$\partial_{t} u_{i}^{\ell} + \partial_{j} (u_{i} u_{j})^{\ell} = -\partial_{i} p^{\ell} + \nu \partial_{k} \partial_{k} u_{i}^{\ell}.$$

$$u^{\ell} (x) = \int dx' u(x') \phi_{\ell} (x - x') \phi_{\ell} (x) = \frac{1}{\ell^{3}} \phi \left(\frac{x}{\ell}\right)$$

$$\phi_{\ell} (x) = \frac{1}{\ell^{3}} \phi \left(\frac{x}{\ell}\right)$$

$$\partial_{t} E^{\ell} + \partial_{j} J_{j}^{\ell} = -\frac{1}{4} \int \nabla \phi^{\ell} (\xi) \cdot \delta \mathbf{u} (\delta u)^{2} d\xi + \nu \partial^{2} E^{\ell}$$

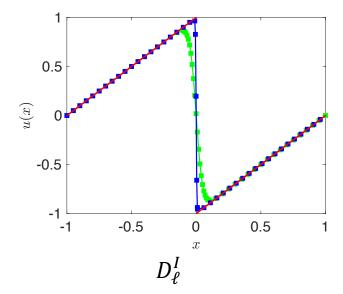
$$\equiv -D_{\ell}^{\ell} - D_{\ell}^{\nu},$$

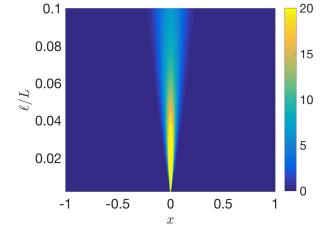
where

$$\begin{aligned} J_i^{\ell} &= u_i E^{\ell} + (p^{\ell} u_i + p u_i^{\ell})/2 - [(u_i u_j u_j)^{\ell} - (u_i (u_j u_j)^{\ell}]/4 - \nu \partial_i E^{\ell} \\ E^{\ell} &= \frac{1}{2} \int \phi^{\ell}(\xi) u_i(x) u_i(x + \xi) d\xi \\ \delta \mathbf{u} &= \mathbf{u}(\mathbf{x} + \ell) - \mathbf{u}(\mathbf{x}) \quad \text{(velocity increment)} \end{aligned}$$

Duchon&Robert (2000), Eyink (2005), Kuzzay et al. (2016)

Example: 1D: Burgers

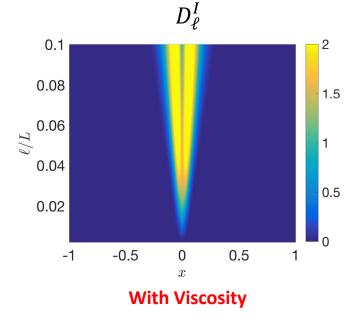




Without Viscosity

 $\partial_t u + u \partial_x u = v \, \partial_{xx} u$

Turbulence compressible sans pression



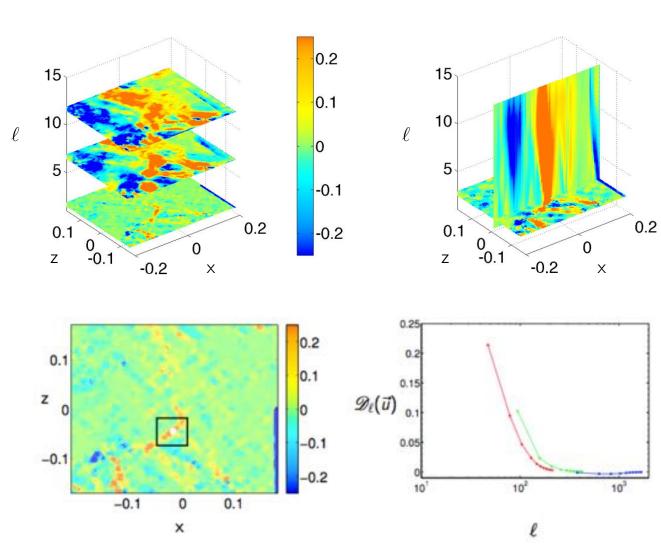
Dubrulle 2019 JFM Perspectives

In von Karman 3D flow

$$D_{\ell}(\mathbf{u}) = \frac{1}{4} \int_{\mathcal{V}} d^3 r \, (\boldsymbol{\nabla} G_{\ell})(\mathbf{r}) \cdot \delta \mathbf{u}(\mathbf{r}) \, |\delta \mathbf{u}(\mathbf{r})|^2, \qquad G_{\ell}(r) = \frac{1}{N} \exp(-1/(1 - (r/2\ell)^2)),$$

Comparing 2D to 3D data: Stereo –PIV data can only Detect events with strong components laying in the measurement plane.

- Kuzzay D. et al. (2016), :arXiv:1601.03922.



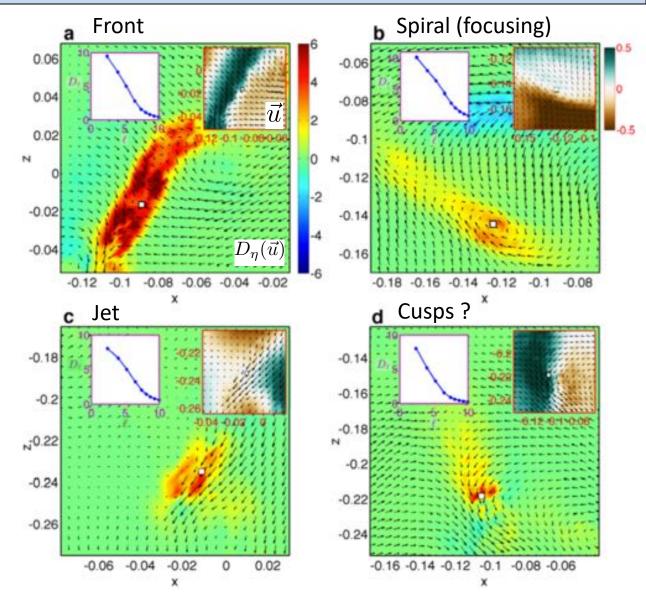
Extreme events of $D_{L=\eta}(u)$

Extreme events : 1000 times of the mean.

Found ~ 30 Events (30,000 frames of 100*100 values)

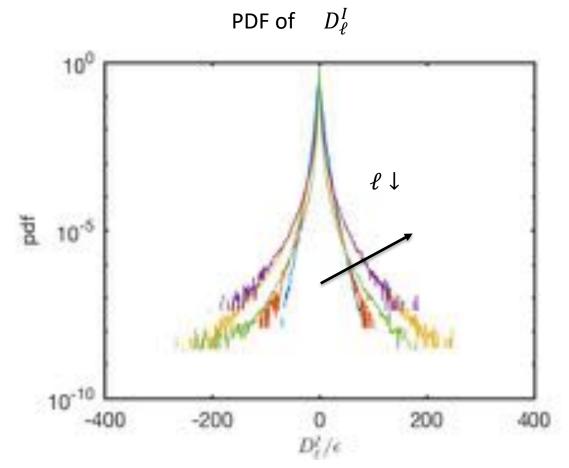
Can be categorized into 4 geometries (topologies).

75% are fronts.



Statistics of energy transfers

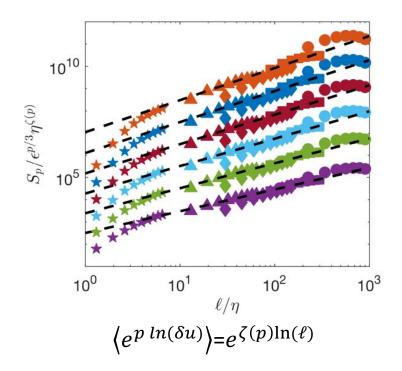
statistics highly non gaussian



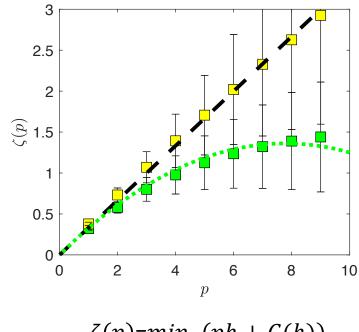
Debue et al et al. (2017), submitted

Statistical caracterization of singularities

Large deviation property for velocity Increments around singularities

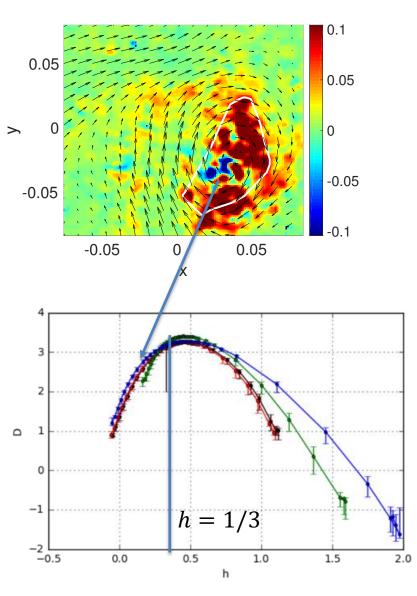


$$P(ln(\delta u) = hln(\ell)) = e^{ln(\ell)C(h)}$$

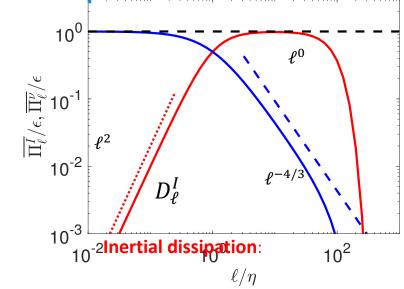


 $\zeta(p)=min_h(ph+C(h))$

Mean energy budget in von Karman

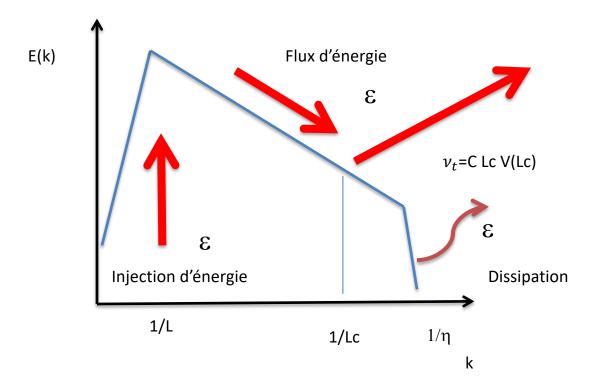


 $\begin{array}{c}
10^{\circ} \\
\overset{\circ}{\square} \\
\overset{\circ}{\square} \\
\overset{\circ}{\square} \\
\overset{\circ}{\square} \\
\overset{\circ}{\square} \\
\overset{\circ}{\square} \\
10^{-4} \\
10^{0} \\
\overset{\circ}{\ell/\eta} \\
10^{2} \\
\end{array}$



Obtained through Legendre transform

Outstanding issues: modelling the flux!



Can we do that using out-of-equilibrium phsics?