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The canonical Law of Equilibrium Statistical
Mechanics

The statistical mechanics of a system at thermal equilibrium is encoded
in the Boltzmann-Gibbs canonical law:

Peq(C) =
e−E(C)/kT

Z

the Partition Function Z being related to the Thermodynamic Free
Energy F:

F = −kTLog Z

This provides us with a well-defined prescription to analyze systems at
equilibrium:
(i) Observables are mean values w.r.t. the canonical measure.
(ii) Statistical Mechanics predicts fluctuations (typically Gaussian) that
are out of reach of Classical Thermodynamics.

Equilibrium is a dynamical concept: Thermodynamic observables
are nothing but average values of fluctuating, probabilistic,
microscopic quantities.

K. Mallick Fluctuations far from equilibrium



Systems near equilibrium

Consider a Stationary Driven System in contact with two reservoirs at
temperatures T1 and T2 (or chemical, or electric, potentials µ1, µ2).

R1

J

R2

• If T1 = T2 : Equilibrium Statistical Mechanics. The state of the
system, characterized by very few parameters, is determined by
optimizing the relevant thermodynamic potential and leads to an
equation of state.

This allows us to study phase transitions, universality classes,
statistical fluctuations (generically Gaussian).
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Systems near equilibrium

Consider a Stationary Driven System in contact with two reservoirs at
temperatures T1 and T2 (or chemical, or electric, potentials µ1, µ2).

R1

J

R2

• When |T1 − T2| � T1 : A stationary current, breaking time reversal
invariance, sets in, proportional to the temperature gradient.

This flow of the current implies that entropy is continuously
generated and keeps on increasing with time.

Conductivity determined by quadratic correlations at equilibrium
(Einstein-Kubo linear response theory): mobility = diffusivity/kT

Minimal Entropy Production Rate (Prigogine): an elegant way to
reformulate linear response theory.
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Systems far from equilibrium

Consider now a Stationary Driven System in contact with reservoirs at
different potentials: no microscopic theory is yet available.

R1

J

R2

• What are the relevant macroscopic parameters?

• Which functions describe the state of a system?

• Do Universal Laws exist? Can one define Universality Classes?

• Can one postulate a general form for the microscopic measure?

• What do the fluctuations look like (‘non-gaussianity’)?

In the steady state, a non-vanishing macroscopic current J flows.

What can we say about the non-equilibrium properties of
observables (e.g., current) from the point of view of Statistical
Physics?
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Density Fluctuations

Consider a gas in a room, at thermal equilibrium. The probability of
observing a density profile ρ(x) takes the form:

Pr{ρ(x)} ∼ e−βV F({ρ(x)}

What is F({ρ(x)}?

F({ρ(x)}) =

∫ 1

0

(f (ρ(x),T )− f (ρ̄,T )) d3x

Equilibrium Free Energy can be seen as a Large Deviation Function.

R1 R2

What is the probability of observing an atypical density profile in the
steady state? What does the functional F({ρ(x)}) look like for such a
non-equilibrium system?
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Large Deviations of the Total Current

R1

J

R2

Let Qt be the total charge transported through the system (integrated
total current) between time 0 and time t.

In the stationary state: a non-vanishing mean-current Qt

t → J

The fluctuations of Qt obey a Large Deviation Principle:

P

(
Qt

t
= j

)
∼e−tΦ(j)

Φ(j) being the large deviation function of the total current.

Note that Φ(j) is positive, vanishes at j = J and is convex (in general).
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The General Large Deviations Problem

R1 R2

J

The Probability to observe an atypical current j(x , t) and the density
profile ρ(x , t) during 0 ≤ s ≤ L2 T (L being the size of the system)
assumes a Large Deviation behaviour

Pr{j(x , t), ρ(x , t)} ∼ e−L I(j,ρ)

Knowing I(j , ρ), one could deduce the large deviations of the current and
of the density profile. For instance, Φ(j) = minρ{I(j , ρ)}.

Is there a Principle which gives this large deviation functional for
systems out of equilibrium?
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The importance of Large Deviations

Equilibrium Thermodynamic potentials (Entropy, Free Energy) can
be defined as large deviation functions.

Large deviations are well defined far from equilibrium: they are good
candidates for being non-equilibrium potentials.

Large deviation functions obey remarkable identities, valid far from
equilibrium (Gallavotti-Cohen Fluctuation Theorem; Jarzynski and
Crooks Relations).

These identities imply, in the vicinity of equilibrium, the fluctuation
dissipation relation (Einstein), Onsager’s relations and linear
response theory (Kubo).

Solutions of specific models (Ising, SAW) played a key role in Equilibrium
Statistical Mechanics as benchmarks of analytical, numerical
(Monte-Carlo) perturbative (Diagrammatics, RG) methods.

Models are also very useful far from equilibrium.
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Classical Transport in 1d

A picture of a non-equilibrium system

R1

J

R2

A paradigm: the asymmetric exclusion model with open boundaries

q 1

γ δ

1 L

RESERVOIRRESERVOIR

α β

A building block in many realistic models of 1d transport and studied
extensively in probability, combinatorics, condensed matter physics...
Thousands of articles devoted to this model in the last 20 years.
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An Elementary Model for Protein Synthesis

30S

50S

(a) (b) (c)

=3

C. T. MacDonald, J. H. Gibbs and A.C. Pipkin, Kinetics of
biopolymerization on nucleic acid templates, Biopolymers (1968).
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ORIGINS

• Interacting Brownian Processes (Spitzer, Harris, Liggett).

• Driven diffusive systems (Katz, Lebowitz and Spohn).

• Transport of Macromolecules through thin vessels.
Motion of RNA templates.

• Hopping conductivity in solid electrolytes.

• Directed Polymers in random media. Reptation models.

• Interface dynamics. KPZ equation

APPLICATIONS

• Traffic flow.

• Sequence matching.

• Molecular motors.
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The Kardar-Parisi-Zhang equation in 1d

The height of an interface h(x , t) satisfies the generic KPZ equation

∂h

∂t
= ν

∂2h

∂x2
+
λ

2

(
∂h

∂x

)2

+ ξ(x , t)

The ASEP is a discrete version of the KPZ equation in one-dimension.
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INTEGRABILITY

Interacting particle processes are complex enough to exhibit a rich
phenomenology that captures the physics involved.

On the other hand, some of these models have intricate mathematical
properties that allows us to solve them exactly: they are integrable.

Exact solutions are benchmarks for testing general theories or more
versatile approximation methods.

Some techniques involved:

Coordinate and Algebraic Bethe Ansatz (cf H. Bethe’s solution of
the Heisenberg spin chain).

Integrable probabilities and determinantal processes.

Continuous limits: Stochastics hydrodynamics and Macroscopic
Fluctuation Theory.

NEXT: Some examples of exact results.
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Current/Density Fluctuations
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Current fluctuations on the Infinite Line

Consider the Totally Asymmetric case with a step initial condition:
What is the statistics of the total current Qt that has flown through the
(0,1) bond in the exclusion process during time t?

3 41 2−1−2−4 −3 0

1

The Probability that (Qt ≥ N) is equal to the Probability that the Mth
particle has jumped at least N steps (to the right).
Here, the summation over the Green function can be done explicitly:

Prob(Qt ≥ N) =
1

ZN

∫
[0,t]N

dNx
∏

1≤i<j≤N

(xi − xj)
2

N∏
i=1

e−xi

This integral has a meaning in random matrix theory: this is the
distribution of the Largest Eigenvalue in the Laguerre ensemble.
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The Tracy-Widom Law

The statistics of Qt can be extracted from the random matrix integral:

Qt =
t

4
+

t1/3

24/3
ξTW

The random variable ξTW follows the Tracy-Widom distribution F2 (K.
Johansson, 2000), which is the cumulative distribution of the maximal
eigenvalue λmax in a GUE:

Prob (ξTW ≤ s) = 1− F2(−s)

with F2(s) = exp

(
−
∫ ∞
s

(x − s) u(x)2dx

)
u(x) being the solution of Painlevé II equation u′′ = xu + 2u3, matching
the Airy function at infinity.
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TASEP and Corner Growth

The exclusion process is equivalent to a dynamically growing Young
Tableau.

In particular, the position of the rightmost particle is equal to the length
of the first line of the Young Tableau.

Furthermore, the length of the first line of the Young Tableau is equal to
the length of the largest increasing subsequence in a permutation.

Ulam’s Problem: Choose a random permutation σ, e.g.,

2 5 1 3 7 4 6

extract a largest increasing subsequence and call l(σ) its length.
What are the statistical properties of l(σ)?
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Ulam’s problem and Patience Sorting

It has been proved (Baik-Deift-Johansson, circa 2000) that

l(σ) = 2
√

n + n1/6 ξTW

HOW?
• A random permutation can be mapped to a (two) Young Tableau(x),
via the RSK (Robinson-Knuth-Schensted) correspondence.

• A Young Tableau is a corner growth and therefore a configuration of
TASEP.

• TASEP with step initial condition can be studied by “Bethe Ansatz”

This can be related to sorting algorithms: Aldous and Diaconis (1999).
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Solution of KPZ and universality classes

Exact solution to the KPZ equation in one dimension: Sasamoto-Spohn,
Corwin-Amir-Quastel, Dotsenko, Le Doussal-Calabrese-Rosso...

Generalizations to different settings and processes are possible: Various
distributions appear, related to the Tracy-Widom Law, which has a
strong universality in mathematics and in physics. This is an extremely
active field of mathematics: Integrable Probability (Borodin, Corwin,
Ferrari, Sasamoto...).

The Tracy-Widom Law has been precisely measured in liquid crystals
experiments of Takeuchi and Sano, 2010.
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Large deviations in presence of reservoirs

q 1

γ δ

1 L

RESERVOIRRESERVOIR

α β

The stationary probability of a configuration C is given by (Derrida et al.,
1993)

P(C) =
1

ZL
〈W |

L∏
i=1

(τiD + (1− τi )E ) |V 〉

where τi = 1 (or 0) if the site i is occupied (or empty). The operators D
and E , the vectors 〈W | and |V 〉 satisfy a quadratic algebra

D E − qE D = (1− q) (D + E )

(β D − δ E ) |V 〉 = |V 〉
〈W |(αE − γ D) = 〈W |

What is the statistics of the density profile and the current?
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The Phase Diagram of the open ASEP

The Matrix Ansatz leads to Stationary State Properties (currents,
correlations, fluctuations) and to the Phase Diagram in the infinite size
limit.

Finite size corrections (a) to the infinite-size limit (b) are analytically
accessible.

A very large body of knowledge has been developed thanks to the Matrix
Ansatz (Review of R. Blythe and M. R. Evans, 2007).

K. Mallick Fluctuations far from equilibrium



Large Deviations of the Density Profile

• In the equilibrium case, ρ1 = ρ2 = ρ̄, we have

F({ρ(x)}) =

∫ 1

0

dx

{
(1− ρ(x)) log

1− ρ(x)

1− ρ̄
+ ρ(x) log

ρ(x)

ρ̄

}

• When ρ1 6= ρ2, the Large Deviation Functional of the profile,
Pr{ρ(x)} ∼ e−LF({ρ(x)}, is given by (for q = 0)

F({ρ(x)}) =

∫ 1

0

dx

(
B(ρ(x),F (x)) + log

F ′(x)

ρ2 − ρ1

)
where B(u, v) = (1− u) log 1−u

1−v + u log u
v and F (x) satisfies

F
(
F ′2 + (1− F )F ′′

)
= F ′2ρ with F (0) = ρ1 and F (1) = ρ2 .

This functional is non-local and is not given by local equilibrium (B.
Derrida, J. Lebowitz E. Speer, 2002).
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Current Fluctuations

The large deviation function Φ(j) of the total current is, as above,

P

(
Yt

t
= j

)
∼e−tΦ(j)

.

Low Density (and High Density) Phases: writing j = (1− q)r(1− r)

Φ(j) = (1− q)
{
ρa − r + r(1− r) ln

(
1−ρa
ρa

r
1−r

)}
Maximal Current Phase: The Legendre transform E of Φ(j) is

µ = −L−1/2

2
√
π

∞∑
k=1

(2k)!

k!k(k+3/2)
Bk

E − 1− q

4
µ = − (1− q)L−3/2

16
√
π

∞∑
k=1

(2k)!

k!k(k+5/2)
Bk

These exact results were obtained using a Generalized Matrix
Product (S. Prolhac, A. Lazarescu, K. M.).
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A special case

In the totally asymmetric case with ρL = 1, ρR = 0, a parametric
representation of the cumulant generating function E (µ):

µ = −
∞∑
k=1

(2k)!

k!

[2k(L + 1)]!

[k(L + 1)]! [k(L + 2)]!

Bk

2k
,

E = −
∞∑
k=1

(2k)!

k!

[2k(L + 1)− 2]!

[k(L + 1)− 1]! [k(L + 2)− 1]!

Bk

2k
.

First cumulants of the current

Mean Value : J = L+2
2(2L+1)

Variance : ∆ = 3
2

(4L+1)![L!(L+2)!]2

[(2L+1)!]3(2L+3)!

Skewness :
E3 = 12 [(L+1)!]2[(L+2)!]4

(2L+1)[(2L+2)!]3

{
9 (L+1)!(L+2)!(4L+2)!(4L+4)!

(2L+1)![(2L+2)!]2[(2L+4)!]2 − 20 (6L+4)!
(3L+2)!(3L+6)!

}
For large systems: E3 → 2187−1280

√
3

10368 π ∼ −0.0090978...
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Tagged particle dynamics
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Motion of a tagged particle

We now focus the Symmetric Exclusion Process, (p = q = 1), on an
infinite one-dimensional line with a finite density ρ of particles. This
model was defined by F. Spitzer in 1970.

Suppose that we tag and observe a particle that was initially located at
site 0 and monitor its position Xt with time.

On the average 〈Xt〉 = 0 but how large are its fluctuations?

• If the particles were non-interacting (no exclusion constraint), each
particle would diffuse normally 〈X 2

t 〉 = Dt .

• Because of the exclusion condition, a particle displays an anomalous
diffusive behaviour:

〈X 2
t 〉 = 2

1− ρ
ρ

√
Dt

π
(Arratia, 1983)

The full distribution of Xt has remained unknown for 35 years!
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Single-file diffusion

SEP is a pristine model for single-file diffusion, an important phenomena
soft-condensed matter (for example, transport in chanels through cell
membranes).
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Experimental realizations

(C. Bechinger’s group in Stuttgart)
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SEP with step profile

We begin with a step-like profile (ρ+, ρ−) with the tagged particle is
located at 0 and let the system evolve.

1 1 1 1 1

0 0

ρ

ρ
+

_

x x

The goal is to calculate the large deviation function (LDF) φ(ξ) or,
equivalently, the characteristic function of Xt , which behaves as

〈esXt 〉 ∼ e−
√
tC(s) when t →∞

and generates the cumulants of Xt .

This problem is solved using the newly developed methods of
integrable probabilities
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Exact finite time expression

There exists a formula for the distribution of the tracer exact at any
finite-time, in terms of a Fredholm determinant:

det(1 + ωKt,x)

where ω = ρ+(eλ − 1) + ρ−(e−λ − 1) + ρ+ρ−(eλ − 1)(e−λ − 1)
Kt,x is a compact operator

f →
∫

Kt,x(ξ1, ξ2)f (ξ2)dξ2

with kernel

Kt,x(ξ1, ξ2) =
ξx1 eε(ξ1)t

ξ1ξ2 + 1− 2ξ2
with ε(ξ) = ξ + ξ−1 − 2

The arithmetical and combinatorial properties of such Kernels are
systematized in the field of Integrable probabilities.

(T. Imamura, K. M. and T. Sasamoto, 2017)
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Hydrodynamic limit
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The Hydrodynamic Limit: deterministic case

E = ν/2L

ρ ρ
21

L

Starting from the microscopic level, define local density ρ(x , t) and
current j(x , t) with macroscopic space-time variables x = i/L, t = s/L2

(diffusive scaling).
The average hydrodynamic evolution of the system is given by:

∂tρ(x , t) = −∇J(x , t) with J = −D(ρ)∇ρ+ νσ(ρ)

How can Fluctuations be taken into account?
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Fluctuating Hydrodynamics

Let Yt be the integrated current of particles transferred from the left
reservoir to the right reservoir during time t.

limt→∞
〈Yt〉
t = D(ρ)ρ1−ρ2

L + σ(ρ)νL for (ρ1 − ρ2) small

limt→∞
〈Y 2

t 〉
t =

σ(ρ)

L
for ρ1 = ρ2 = ρ and ν = 0.

Then, the equation of motion is obtained as:

∂tρ = −∂x j with j= −D(ρ)∇ρ+ νσ(ρ)+
√
σ(ρ)ξ(x , t)

where ξ(x , t) is a Gaussian white noise with variance

〈ξ(x ′, t ′)ξ(x , t)〉 =
1

L
δ(x − x ′)δ(t − t ′)

For the symmetric exclusion process, the ‘phenomenological’ coefficients
are given by

D(ρ) = 1 and σ(ρ) = 2ρ(1− ρ)
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Values of Diffusivity and Conductivity

• Independent particles: D = 1, σ = 2ρ

• Simple Exclusion Process: DSEP = 1, σSEP = 2ρ(1− ρ)

• Kipnis-Marchioro-Presutti model: DKMP = 1, σKMP = 2ρ2

• Repulsion Process (P. Krapivsky, 2015): Hops increasing the number of
nearest neighbourg pairs are forbidden:

DRP =

{
1

(1−ρ)2 if 0 < ρ < 1
2

1
ρ2 if 1

2 < ρ < 1
σRP =

{
2ρ(1−2ρ)

1−ρ if 0 < ρ < 1
2

2(1−ρ)(2ρ−1)
ρ if 1

2 < ρ < 1

• Exclusion with Avalanches: DEPA = 1
(1−2ρ)3 , σEPA = 2ρ(1−ρ)

(1−2ρ)3
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Katz-Lebowitz-Spohn model (Driven Ising Model)

The Katz-Lebowitz-Spohn model is a driven lattice gas where the
hopping rates depend on the neighbouring sites:

0100
1+δ
�
1+δ

0010 1101
1−δ
�

1−δ
1011 1100

1−ε
�
1+ε

1010 0101
1+ε
�
1−ε

0011

σKLS = 2
λ(ρ)[1+δ(1−2ρ)]−2ε

√
ρ(1−ρ)

λ(ρ)3 with λ(ρ) =
1+
√

1−8ερ(1−ρ)/(1+ε)

2
√
ρ(1−ρ)

The diffusivity is given by DKLS(ρ) = 1
2χ(ρ)σKLS(ρ), where χ(ρ) is

obtained by eliminating the parameter h between the two equations:

χ =
1

4

1 + ε

1− ε
cosh h(

sinh2 h + 1+ε
1−ε

)3/2

ρ =
1

2

1 +
sinh h√

sinh2 h + 1+ε
1−ε


(Y. Kafri et al., 2013)
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Towards a General Principle for Large Deviations

The probability to observe an atypical current j(x , t) and the
corresponding density profile ρ(x , t) during a time L2T (L being the size
of the system) is given by

Pr{j(x , t), ρ(x , t)} ∼ e−L I(j,ρ)

A general principle has been found (G. Jona-Lasinio et al.), to express
this large deviation functional I(j , ρ) as an optimal path problem:

I(j , ρ) = min
ρ,j

{∫ T

0

dt

∫ 1

0

dx
(j − νσ(ρ) + D(ρ)∇ρ)2

2σ(ρ)

}
with the constraint: ∂tρ = −∇.j and suitable boundary conditions.

At present, most of the available results for this variational theory are
given by exact solutions of solvable models (cf ASEP).
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Macroscopic Fluctuation Theory

Mathematically, one has to solve the corresponding Euler-Lagrange
equations. The Hamiltonian structure is expressed by a pair of conjugate
variables (p, q).
After some transformations, one obtains a set of coupled PDE’s (here, we
take ν = 0):

∂tq = ∂x [D(q)∂xq]− ∂x [σ(q)∂xp]

∂tp = −D(q)∂xxp − 1

2
σ′(q)(∂xp)2

where q(x , t) is the density-field and p(x , t) is a conjugate field.
The transport coefficients D(q) and σ(q) contain the information of the
microscopic dynamics relevant at the macroscopic scale.

A general framework but the MFT equations are very difficult to
solve in general. By using them one can in principle calculate large
deviation functions directly at the macroscopic level.

The analysis of this new set of ‘hydrodynamic equations’ has just
begun!
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Conclusions

Non-Equilibrium Statistical Physics has undergone remarkable
developments in the last two decades and a unified framework is
emerging.

Large deviation functions (LDF) appear as a generalization of the
thermodynamic potentials for non-equilibrium systems. They satisfy
remarkable identities (Gallavotti-Cohen, Jarzynski-Crooks) valid far from
equilibrium.

The LDF’s are very likely to play a key-role in the future of
non-equilibrium statistical mechanics.

Current fluctuations are a signature of non-equilibrium behaviour. The
exact results (e.g. for the Exclusion Process) can be used to calibrate the
more general framework of fluctuating hydrodynamics (MFT), which is
currently being developed.
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FT for a system with two heat reservoirs

For a system exchanging heat with two reservoirs, the heat current j
breaks time reversal. The Fluctuation Theorem takes the form, when
t →∞,

Prob
(
Qt

t = j
)

Prob
(
Qt

t = −j
)' e

( 1
kT2
− 1

kT1
)jt

Using the definition of the Large Deviation Function, this is equivalent to
the Gallavotti-Cohen relation:

Φ(j) = Φ(−j)− ( 1
kT2
− 1

kT1
)j
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