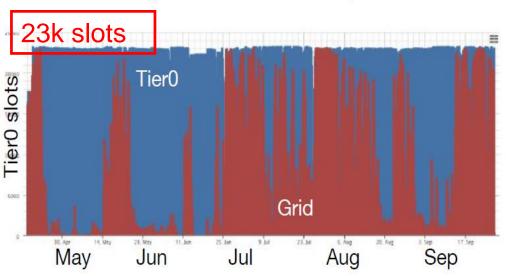


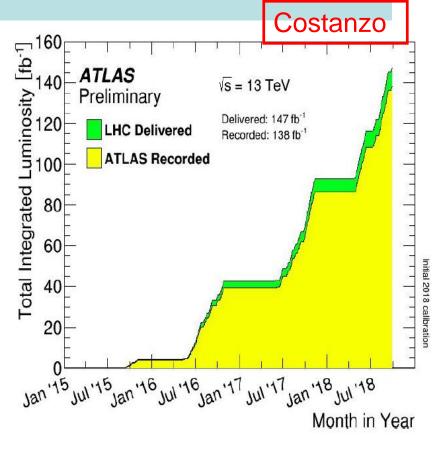
Software & Computing status

L. Poggioli, LAL

- End of Run-2
- Towards Run-3
- HL-LHC

Since last LCG-FR: Short period

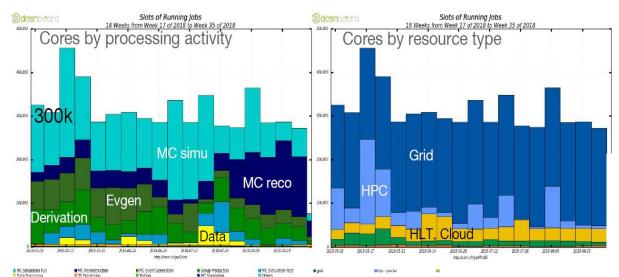



But big progress!

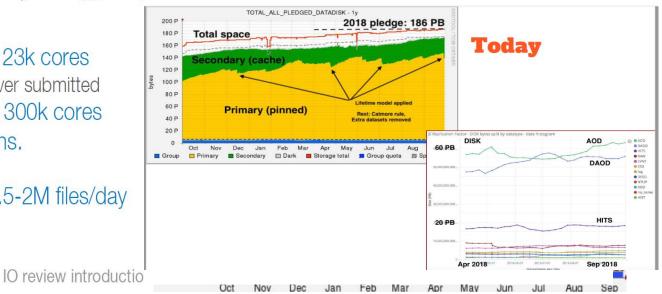
End of Run-2

Run-2: A lot of data!!

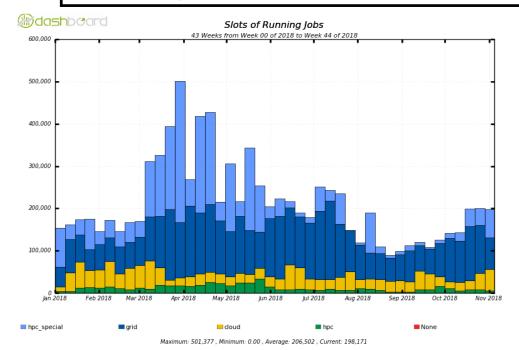
- A large dataset, and also a lot of MC
- S&C smooth operations in 2018
 - Data and MC needed for Physics analysis ready <u>ahead</u> of time
 - Smooth operations at Tier0
- Stable <u>release 21</u> was key to this
- Heavy Ion run ahead of us, still!



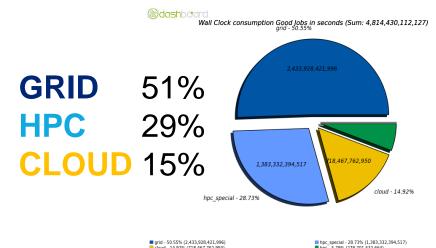
- Collected, (re)processed 22pB raw & 22B evts for analysis
- Same amount of MC evts

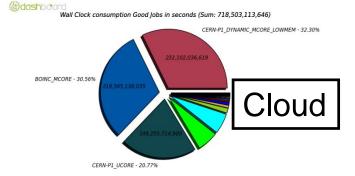

CPU & Disk usage

- Disk remains tight
- Dominated by AOD & dAOD


- Smooth Tier0 running on 23k cores
 - Bphysics stream spillover submitted
- Production on more than 300k cores
- Exhausted HPC allocations.
 - Waiting for more
- Move >1PB, >20GB/s, 1.5-2M files/day

Davide Costanzo


Non-grid resource (MC sim only)


Running slots (January->Now)

- **US-HPC:** Lower now
 - Allowed slots exhausted
- **CLOUD**
 - •HLT 64%, **BOINC** 31%!!

CPU (Jan->Now)

- CRR-P.I DYNAMIC MCORE LOWMEN 32.30% (232.1 CERN-P.I LOCRE 20.77% (149.255.714.900) CERN-P.I DYNAMIC SCORE 5.60% (40.215,805,766) IAAS 0.74% (5,322.422.116) CERN-EXTENSION CERN 0.49% (3,556,033,808) IN2P3-CC-T3_CONDOR8 0.25% (1,715,720,096) CERN-EXTENSION_UK - 0.20% (1,472,759,365)
 IN 1293-CC-T3_MCORE_CSP01 - 0.15% (1,077,044,110)
 ICERN-EXTENSION_GOOGLE_HARVESTER - 0.11% (789,172,224)
 CALABSTS - 0.04% (288,688,018)
- BOINC_MCORE 30.56% (219,565,138,035)
 CERN-P1_DYNAMIC_MCORE 5.73% (41,135,953,112)
 IAAS MCORE 1.30% (9,361,397,792)
 CERN-EXTENSION HARVESTER 0.66% (4,886,903,586)
 CA-IAAS-T3_MCORE 0.28% (2,004,794,400) UKI-SCOTGRID-GLASGOW_MCOREVAC - 0.22% (1,607,752,480) ■ CERN-EXTENSION DE - 0.18% (1.274.708.238) UKI-SOUTHGRID-BHAM-HEP MCOREVAC - 0.14% (1.025.229.184) ■ IN2P3-CC-T3_CONDOR - 0.10% (700,714,996

Looking for extra-resources

- CLOUDS (commercial)
 - Google 'Data Ocean': GCE integration with Panda, GCS interface to Rucio, first 'solid' cost discussions
 - HNSciCloud project ongoing

· BOINC

- Volunteer base (@home) stable but not really increasing
- Recent increase in resources mainly from spare CERN machines and grid backfilling (up to 25/% for a site)

· HPC

- Exascale ~ 2022 in US, China
 Japan, Europe (EUHPC)
- Architecture moving -> GPU
 - · ATLAS today: No GPU software
- USA, 4 pre-exa and 3 exascale systems in 2018-2022
 China, exascale in 2021?
 Japan, exascale in 2022
 2 pre-exascale by 2020 and two exascale systems by 2022/2023
 Hybrid HPC/Quantum infrastructure emerging "computing architectures"

(quantum/neuromorphic)

novel applications in key areas (Cybersecurity, AI)

Activities (1)

- Software
 - AthenaMT, manpower in better shape
 - ACTS (Stand alone tracking library) manpower!!
 - FastSim
- · DDW
 - RUCIO adopted by CMS!!
 - Rucio mover unified way to interact with data
 - Protocols progress xRootD, WebdaV
 - Caches progress: Xcache (XrootD)
 - XCache dedicated XrootD server. User access cached data thru XCache server from upstream XrootD server
 - Towards Run4: Tape carousel, DOMA, QOS

Activities (2)

WFM

- Pile-up premixing (à la CMS) and overlay
- Harvester sw to interface various platforms
 - · HPC, Grid,...
- Event Service also for sites
- Global shares (UCORE queues)
 - · Unified score/mcore queues to better handle EVTGEN
- R&D project (eg with Google)
- ATLAS@home
- Data carousel mode of operation with tapes
 - R&D ongoing to use tapes more efficiently, eg producing directly Derivations from AOD on tape

Activities (3)

- Databases
 - Condition DB: Prepare migration from COOL to REST (Representation State Transfer) -> CREST for Run-3
 - Frontier Analytics progress
 - To understand bottlenecks of the overlay production on the grid (squid-Frontier caching)
 - Essential for efficient pileup treatment
- Monitoring
 - Progress using Kibana Elastic search
 - Unified CERN tools, eg GRAFANA

For sites (1)

- Unified Queues (score/mcore->UCORE)
 - Brand new way to submit jobs: ATLAS controls its internal priorities to run (eg EVTGEN)
 - Only 1 queue & submit w/ job params from scouts
 - ALL French sites have now UCORE queues
- Harvester
 - Unified way to submit jobs wrt resources: Grid, Cloud, HPC
 - Ongoing migration for grid from to Harvester
 - Requires Unified queues
 - Migration a priori transparent for sites

For sites (2)

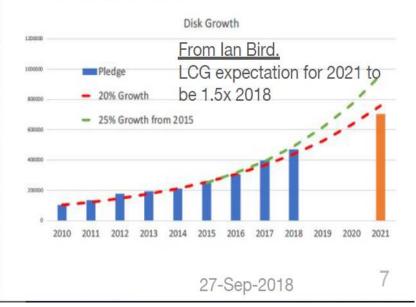
- FAX decommissioned
 - Sites still required to provide xrootd access to storage, BUT no need to have it federated
- DOMA TPC (3rd party copy)
 - Need alternative to gridftp: http/xrootD
- · CentOS7
 - No deadlines for migration until early 2019
 - Sites encouraged to upgrade earlier if they can
 - · Containers better supported
 - Native CentOS7 releases are now being built and will not run on SL6 nodes
 - Singularity is a requirement for upgrading sites

LCG-FR,08/11/2018 Luc

Lines of effort: Summary

- Software
 - Leverage additional resources (HPC, Boinc, ...)
 - Improve software and efficiency (SPOT group)
 - Run less full-simulation (and more fast sim)
 - Promote support for software development
- · Workflow
 - T1s continue to exercise and improve perf. of dAOD production from tape inputs
 - Harvester, Event service (ES), Overlay (pileup handling),
 - New: Event Streaming service (ESS)
 - · What ES is to computing, ESS is to input data transfer
- Computing Model
 - Nucleus/satellites model
- LCG-FR,08/17/2018 consolidation. Check pledges deployment

Preparing Run-3


CRSG

Costanzo

- Report submitted to referees over the summer
 - Resources in 2020 expected to be at the same level as 2019
 - See presentation at <u>ATLAS weekly</u>
- Received a few mild comments
 - We need to prepare for the 2021 request. Large uncertainties from LHC and lumi
 - We need to reduce disk usage (Analysis Model Study Group for Run-3)

	2018 Agreed @ Oct2017 RRB	2018 pledges	2019 Agreed @ April2018 RRB	2020 Request @ Oct 2018 RRB	Balance 2020 wrt 2019 request
TO CPU (kHS06)	411	411	411	411	0%
T1 CPU (kHS06)	949	969	1057	1079	2%
T2 CPU (kHS06)	1160	1136	1292	1320	2%
SUM CPU	2520	2516	2760	2810	2%
TO DISK (PB)	26	27	27	27	0%
T1 DISK (PB)	72	80	88	91	3%
T2 DISK (PB)	88	86	108	111	3%
SUM DISK (PB)	186	193	223	229	3%
TO TAPE (PB)	94	105	94	94	0%
T1 TAPE (PB)	195	196	221	221	0%
SUM TAPE (PB)	289	251	315	315	0%

Target an increase such as R(2021)/R(2018) = 1.5

Computing Model during LS2

Costanzo

- Current use of computing is successfully delivering Physics results
 - No plan to change our model for Run-2 analysis during LS2
 - Large CPU usage for Full Simulation
 - Disk usage dominated by AOD and DAOD
 - Changes expected for Run-3
- Computing usage in LS2 for:
 - Complete MC16 simulation (extensions, new generators)
 - Run-3 preparation (validation, samples preparation)
 - Some reprocessing for specific samples (no full reprocessing)
 - HL-LHC studies

Initial plans for Run-3

Costanzo

- Initial estimate of Run-3 computing resources
 - Big change for CPU: Larger use of fast simulation (FastCaloSim, FastChain)
 - Big change for Disk: New analysis model (study group started AMSG-R3)
 - AthenaMT in release 22 and software optimisation (eg number of hits per track)
 - Changes in operations for new workflows
 - Detector upgrades (New Small Wheels, Level-1 Calorimeter trigger)

Main parameters

- LHC performance. "Nominal-pushed" <u>scenario</u> eg ~8 hrs leveling at μ~65
- Trigger rate of 1 KHz.
- 6.5×10⁶ s running in 2021
- Increase of CPU for prompt processing factor 1.5 2.0
 - May not be able to run all prompt processing at Tier0 (spill-over to grid)
- Resource needs in 2021 around 1.5x 2018.
 - Compatible with flat budget
 - Largely depends on analysis model and simulation plans
 - Further increase in 2022-23 as LHC ramps up to full Run-3 operation

Software for Run-3

- AthenaMT: Move towards a multithreaded framework to use modern architectures
- FastCaloSim: High priority for ATLAS
- Add new detectors to simulation and reconstruction (NSW)
- ACTS (A Common Tracking Software) for tracking. Streamlined ATLAS software, MT by construction. Recommendation to use some ACTS at end of June
- Lack of developers ~3FTEs missing

Analysis for Run-3

- · Run 2 model very successful
 - Many derived AOD (DAOD) formats O(100)
 - AOD use 55 PB of disk / DAOD use 52 PB of disk
- · Focus on AOD & dAOD
 - Reduced overall size
 - #versions used
 - Smaller evt sizes?
- Scrutiny group at last RRB
 - ATLAS uses more disk than CMS. Difference is growing
 - Encouraged to look into smaller data formats
- · -> Analysis Model Study Group for Run-3
 - Run-3: More MC (FastSim), Bigger evts (μ), Same #data

AMSG-R3 working group Elmheuser

- ATLAS is reaching the limits of the current data production model in terms of disk storage resources
- Tasks:
 - Analyse the efficiency and usefulness of the current analysis model and consider improvements
 - Consider options allowing ATLAS to save, for the same data/MC sample, at least 30% disk space overall, and give directions how significant larger savings can be realised for the HL-LHC.
 - For MC production, discuss storage options allowing ATLAS to significantly increase the number of simulated events using fast simulation (FastCaloSim and FastChain).
 - Analyse the current stage of analysis harmonisation and consider steps for improvement
- ESSENTIAL: Gathers input for physics & performance groups
- https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/AnalysisModelStudyGroupRun3

LCG-FR,08/11/2018 Luc 20

Towards HL-LHC

Towards HL-LHC: Challenges

Inputs

- Trigger rate 10kHz. Increase total evt numbers
- $\langle \mu \rangle$ ~200. Increase in CPU & storage needs
- Today
 - X 3 missing in CPU. Seems doable (many ideas)
 - R&D inside HSF, Accelerators (GPU, FPGA), Extraresources (HPC, R&D with Google,...)
 - FastSim, Detecor layout, Machine Learning
 - X7 missing in storage More critical
- R&D areas
 - DOMA, Software upgrade, HSF technical forum

Possible gains for storage

- Disk usage today: ½ AOD, ½ dAOD
- · -> Extend tape carousel to (d)AOD
 - But Tape means delay, and (d)AOD workflows time critical & very complex
 - But Tape is limited at T1s, while processing resources much more widely distributed
- Also Possible:
 - Make AODs 10x smaller à la CMS
 - Streamline some physics analyses
 - Limitation of # replicas
 - >=1 replicas on disk today, -> dynamic, managed availa'ty of actively used data via Data Lake, replica count <<1

LCG-FR,08/11/2018 Luc 23

DOMA/ACCESS

DOMA/ACCESS: Scope and Mandate

Scope

- Improve data access performance and costs by addressing latency, bandwidth management and data structures/access patterns
 - caching solutions (XCache, Squids,...), smart data access/clients and content delivery services and networks

Mandate:

- Provide a forum to share and aggregate knowledge on remote and local data access by the experiments' current and future workloads
- Compile quantitative information: provide input to WLCG DOMA
- o Identify areas where further R+D is required and prioritise topics
 - Foster commonalities between experiments, storage providers and sites
 - Ensure priorities are aligned with the requirements gathered from the experiments towards the HL-LHC with a common strategic vision
- Track and report about the progress in relevant and related fora

3 main topics

- Deploy new setup and measure performances within experiment workflow
 - 'Caching' is current hot topic (Ilija's talk)
- Study and measure workflow to estimate gain with new setup
- Development of generic tools for bandwidth management and caching simulations
 - Much better position than CMS
 - Non ATLAS teams present report on our workflow and make recommendations

Stéphane, October S&C See L. Duflot's talk

Activities

- Call for projects over summer
 - → googledoc created to collect informations
 - → Currently 15 projects (some with subprojects)
 - Displays interest of computing teams
 - Not known by community even if presented in conferences
 - Many contributions from ATLAS members or associated sites
 - Not all ATLAS activities
 - Conveners:
 - Stéphane, I. Vukotic
 - Discussed extensively at this workshop

LCG-FR,08/11/2018 Luc 24

Summary

- · ATLAS S&C is in good shape
 - Now able to focus on refinements, performance, and look to future with R&D
- ATLAS is front and center in common R&D (inside HSF community)
- Run-3 a priori OK within flat budget. Key issue is software: AthenaMT & FastSim
- · HL-LHC
 - Trend lines are good in CPU (constant progress)
 - Plans in storage to be quantified (today critical)
 - R&D, DOMA, very active and growing