Cosmogenic activation

What is it? How does it impact experiments? How well we can model it? How to control it?

> Jules Gascon (IPNLyon, Université Lyon 1 + CNRS/IN2P3) .. with help from M. De Jesus & C. Augier

Cosmogenic activation – Lyon

Cosmic Ray interactions

- Electromagnetic component stopped in atmosphere
- Hadronic (n) component penetrates a few m

 $I(mwe) \sim I_0 e^{-mwe/[1.5m]}$ [³H in rock, arxiv:1607.08770]

- Deep underground, only high-energy muons can produce nuclear reactions
- Neutrinos? [HALO expt...]

- Cosmic ray flux Φ_0
- Attenuation of flux in matter (mostly: n, μ): $\Phi_{\mu,n}(z)$
- Cross-section σ for production of isotope X on a target Y
- Production during a time t_{prod} : $\sigma \Phi (1-exp(-t_{prod}/\tau))$
- Decay of Y during a time t_{decay} : exp(-t_{decay}/τ)

Uncertainties in neutron flux

- Parameterizations:
 Gordon (New York data),
 Ziegler
- Models: Activia, MCNPX, COSMO, GEANT4,
 FLUKA, ... (see Kudryavtsev, LRT2017)

Attenuation of flux

Production Cross-Sections

- Production cross-sections (excitation functions) of ⁶⁸Ge and ⁶⁰Co in natural Ge (Cebrian et al. Journal of Physics, Conference series, **39** (2006) 344; Cebrian et al. Astroparticle Physics, **33** (2010) 316; Review by Cebrian at LRT2013).
- Cross-sections:
 - o Silberberg, Tsao and Barghouty. Astrophys. J., **501** (1998) 911; YELDX.
 - MENDL-2/2P libraries: https://www-nds.iaea.org/publications/iaea-nds/iaeands-0136.htm.

LRT2017, 24-26 May 2017

Vitaly Kudryavtsev

4

Production Cross-Section at Low Energy

Y. A. Ramachers, Nucl. Instr. and Meth. A586 (2008) 286.

LRT2017, 24-26 May 2017

Vitaly Kudryavtsev

Impact in Argon

 Huge impact on low-energy background of removal of cosmogenic background of ³⁹Ar

Impact: ⁶⁰Co activation in Cu

Ex. of measurement: Baudis et al., EPJ C 75 (2015) 485

- Exposure of 10.35 kg Cu (OFHC) to cosmic rays 3470 m above sea level (x11) for 345 days
- ⁶⁰Co activation (at saturation): $340^{+82}_{-60} \mu Bq/kg$ (but others: x3)
- Not dominant γ background wrt U/Th + ⁴⁰K [see eg LUX: AP 62 (2015) 33; Majorana NIMA 828 (2016) 22]... but with efforts

Impact: ³H in Ge

- ³H is dangerous for low-energy searches: low end point (18 keV) large half-life (12 y)
- Expected to be the main background for SuperCDMS SNOLAB Ge-HV search for low-mass WIMPs

Good Impact? Bulk Calibration...

- Cosmogenic activation is uniform over the entire volume: useful for low-energy calibration of massive detectors and fiducial volume measurements
- However thermal neutron activation (here: 71Ge) is more selective & cleaner

Production yield measurement in TeO₂

CUORE, PRC 92 (2015) 024620

- Replace cosmic rays with (\rightarrow 800 MeV) n and (\rightarrow 28 GeV) p beams
- Measure activation of TeO₂ powder with Ge
- Check that $T_{1/2}$ >1y isotopes with Q>2.5 MeV have negligible impact on backgrounds in region of interest for $2\beta 0v$

Underground Production Measurement

- Kamland, Borexino: measure cosmogenic isotope production correlated with muon track (<Eµ> ~ 270 GeV)
- Ex: Borexino, JCAP 1308 (2013) 049, arXiv:1304.7381

Production yield measurement in Si

- ${}^{32}Si \beta^{-} decay may be an important bkg for CDMS SNOLAB Si-HV$
- Origin: spallation of Ar in atmosphere
- Decay cascade:

 DAMIC CCD: from observed 13 Si/P pairs with <7 pixel separation and <70 days apart, deduce a production rate of 80⁺¹¹⁰-65 atoms/kg/day
 @95%CL. Reconstruction efficiency: 49%.

Control of exposure

Example: MAJORANA, NIMA 779 (2015) 52

in the database and the components linked.

Table 1

FedEx Tracking information (upper left table) and the inferred set of transportation and storage record entries for the PTDB (lower table). All dates occur in the calendar 2012. The figure shown in the upper right presents the altitude variation experienced by the part during shipment, with a notable day long stop in Denver, CO located at red arrow.

Parts Tracking Database records information (chronological order)			Exposure calculation
Record	Start – End	Movement or Location	Sea-level Equivalent
Type	(Date, Time) – (Date, Time)	(City, State)	Exposure (hours)
Transport	Jun 8, 14:23 PDT – Jun 8, 14:43 PDT	Richland, WA \rightarrow Pasco, WA	0.4
Storage	Jun 8, 14:43 PDT – Jun 8, 20:45 PDT	Pasco, WA	4.6
Transport	Jun 8, 20:45 PDT – Jun 8, 21:30 PDT	Pasco, WA \rightarrow Hermiston, OR	0.9
Storage	Jun 8, 21:30 PDT – Jun 9, 2:50 PDT	Hermiston, OR	6.2
Transport	Jun 9, 2:50 PDT – Jun 9, 8:03 MDT	Hermiston, $OR \rightarrow Boise$, ID	11.2
Storage	Jun 9, 8:03 MDT – Jun 11, 8:32 MDT	Boise, ID	114.9
Transport	Jun 11, 8:32 MDT – Jun 11, 20:42 MDT	Boise, $ID \rightarrow Denver, CO$	95.2
Storage	Jun 11, 20:42 MDT – Jun 12, 21:10 MDT	Denver, CO	133.5
Transport	Jun 12, 21:10 MDT – Jun 13, 3:12 MDT	Denver, $CO \rightarrow Rapid City, SD$	29.8
Storage	Jun 13, 3:12 MDT – Jun 13, 10:37 MDT	Rapid City, SD	21.1
Transport	Jun 13, 10:37 MDT – Jun 13, 11:34 MDT	Rapid City, SD \rightarrow Lead, SD	2.9
Storage	Jun 13, 11:34 MDT – Jun 13, 12:06 MDT	Lead, SD	2.7

- Production in underground lab
- Storage in underground lab
- Adapt production process to reduce exposure
- Shallow labs? (remove hadronic component)

Measurements to further tests present codes