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Quantum noise in a semiclassical picture

Shot noise Radiation pressure noise
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the photon arrival time transterred to the mirror



Shot noise derivation
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P. Saulson “Fundamentals Of Interferometric Gravitational Wave Detectors ”



What is the minimum phase change we can measure?

e Arrival time of photon: poissonian process
NNe=N =
P(N) = c=1/N

* Average number of impinging photons

v 77Pout5T 5P A / hw
N = e shot — 775T

* Ratio between the power change due to GW and shot noise

0FPgw \/ nPinoT C'sin ¢
5Pshot - hw \/(1 + C' cos (D)

Yegw

e [tis maximized close to the dark fringe



What is the minimum phase change we can measure?

* Minimum detectable phase change
0P, oW — 0L, shot

v

5¢min —

hw
nPinéT

e Shot noise amplitude spectral density

A=1064nm, L = 3km, P, =20W



Radiation pressure noise

* Variable force induced by power fluctuation acting on the mirrors

_wp

SmhP
: F(H) =175

0F

e Corresponding displacement spectrum of each test mass

2
, F(f) 1 |2mhP —
(f) = M (27 f)? B M (27 f)? cA hrp(f) Lm(f)

e Total quantum noise




Quantum noise in a semiclassical picture
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The standard quantum limit (SQL)
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e Quantum mechanics of the test mass wave function turns out to be
irrelevant since we measure classical forces'

* Quantum mechanics of the laser light used for the measurement wave
function can be circumvent using “special” states of light

Braginsky, Khalili, “Quantum measurement” (1992)


http://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Vladimir+B.+Braginsky&search-alias=books&field-author=Vladimir+B.+Braginsky&sort=relevancerank

Quantum representation: the quadrature picture

f Phase Coherent State\

Quadrature

e Quantization of the EM field

 Amplitude and phase fluctuations
equally distributed and
uncorrelated

 Infrequency domain is described
by two quantum operators
accounting for guantum
fluctuation in each quadrature

1 Amplitude

K 0, & Quadratury.

E(t) = |Eo+ Ea(t)] cos wnt+ Ex(t)sin ant 3(Q) = ( ay Egg )
22
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Quantum noise in GW interferometers

* Vacuum fluctuation entering the dark Mirror
port need to be considered

e Strangely enough, if the cavities are
symmetric only vacuum fluctuations

are responsible for quantum noise’ Beam
Splitter

Input Port
Light 3 T
Source
a INPUT FIELDS:\ & OUTPUT FIELDS: B Vacuum

Fluctuations

Mirror

Photodetector

1C.Caves “Quantum-mechanical noise in an interferometer”
Phys. Rev. D 23 (1981)
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Quantum noise in GW interferometers

d=tCy(—ra +tb) + rCy(ta + rb) = tr(C, — Cy)a + (fz(y.r + "2(‘!_/)1_)

e |f the cavity parameters are exactly the
same the optical fluctuation enter the
g system only from the antisymmetric port
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Quantum representation: squeezed states

AXT

[ Phase

Quadrature

A\ X

Squeezed Stata

 Non classical light state

 Noise in one quadrature is
reduced with respect to the
one of a coherent state

e (Correlations are introduced
between amplitude and phase
fluctuations

- Amplitude

Quadratuy

Each state is characterized by

Squeezing factor (magnitude of the squeezing)

Squeezing angle (orientation of the ellipse)
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How to generate a squeezed state

To inter- A BHD

° Squeezing IS produced inducing Squeezing  ferometer | ,-\)
- resonator : ~
correlation between quantum ; é >
fluctuations C}}:\ ------------ ' ,Aﬁ—b
DBS =
OPA '
* The most effective way to generate LO
correlation is a optical parametric . M| |DBS
oscillator (OPO) =g
SHG

* OPO uses non linear crystal to
create correlation between
quadratures

Mode cleaner

R. Schnabel- Physics Reports 684 (2017) 1-51
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How to generate a squeezed state

P(E) = e (XVE + X E?) e Optical parametric

<ou — TOn <on i <o
A \VE ¢ Csqz,w T €2 T Cy4y

- amplification of a vacuum

[&d
: i - state
tr cout
- - - - Cav
A 4 !

* The input field (vacuum

L and pump) is transferred

INto a time-dependent

> cin = gin 4 gin dielectric polarization that

NIy IS the source of the output
field

R. Schnabel- Physics Reports 684 (2017) 1-51
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How to measure a squeezed state

e Balanced Homodyne detector

(Squeezed)
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rinput

Noise Power
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\/5( ) \/5( )
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Q

Measurement
Projection
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Quantum noise reduction using squeezed light
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Quantum noise reduction using squeezed light

Michelson (1) (11)
interferometer
Bright
laser Signal
input 50/50 >

Squeezed Faraday

Photo current [rel. units]

?I?C:lltum g rotator Shot noise Squeezed noise
= P*- -A- z 1 1 1 1 1 1 | 1 ]
- 0 5 10
0
Q‘ Photo diode Time [ms] Simulation by B. Hage,
Albert Einstein Institute

« Simulated output of Michelson interferometer where a signal is produced
by modulating the relative arm length

 With squeezing the shot noise is reduced and a sinusoidal signal is visible
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Quantum noise reduction using squeezed light
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Injecting squeezed vacuum from the output port is a tested strategy to

reduce gquantum noise’

H. Grote et al. “First Long-Term Application of Squeezed States of Light in a Gravitational-Wave Observatory”

Phys. Rev. Lett. 110, 181101 (2013)

5000
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Quantum noise reduction using squeezed light

® Successfully tested also in LIGO

;'i'ypicati “n”oi's'e without squeezing
B —Squeezmg enhanced sensutuvuty

Strain Sensitivity [1/ VHz]

10 10°
Frequency (Hz)

LIGO Scientific Collaboration, J. Aasi et al., “

Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light”,
Nat Photon 7 no. 8, (Aug, 2013) 613-619.
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New squeezing record at GEO 600

® The AEl team at GEO recently

reached a squeezing level of
5.7 dB

® |t corresponds to a quantum
noise suppression of a factor 2

Inside the central building of the gravitational-wave
detector GEO600.
© H.Grote/Max Planck Institute for Gravitational Physics

102 7T 3 OO IR 0 LT :
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Optical losses degrades squeezing

e Nalve model
) [a,aT) =1

b= \/na 6,6 =n#1

N Squeezing deteriorated

b= \/7}& -+ \/ 1 — nay because of its

recombination with non
squeezed vacuum
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Optical losses degrades squeezing

® Measured squeezing as a function of the input squeezing foe
different loss levels
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S. Chua et al. Class. Quantum Grav. 31 (2014)



Phase noise effect

® Measured squeezing as a function of the input squeezing for
different phase noise levels
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Optical losses and phase noise effect

® Maximum level of squeezing measurable in the presence of optical
losses and phase noise (a.k.a squeezed quadrature fluctuations)
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REVIEW- Squeezed vacuum states of light for gravitational wave detectors
Lisa Barsotti, Jan Harms and Roman Schnabel

Published 18 December 2018

Reports on Progress in Physics, Volume 82, Number 1



Optical losses and phase noise effect

® |njecting more squeezing is not always beneficial

® Coupling from anti squeezing can increase the noise

Range v squeezing
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0 2 4 6 8 10 |2 14 16 18 20

Injected squeezing [dB)

Figure Credit: John Miller
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Squeezed light in 2nd generation GW detectors

Frequency independent squeezer are now installed both in Advanced
Virgo and Advanced Ligo as upgrade between 02 and 03

| DARM with squeezing and power increase |

LIGO-Livingstone
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maggie.tse @LIGO.ORG - posted 01:38, Friday 19 October 2018 - last comment - 15:17, Saturday 20 October 2018(41250)
Squeezing with IFO 20W, and then squeezing with IFO 25W

[Anamaria, Matt, Lisa, Valera, Carl, Terra, Maggie]

Today, after powering up to 30W, we also tried two more tests that improved our range.

« 118 Mpc: Injecting SQZ, IFO at 20W input power
e 120 MPc: Powering IFO up to 25W while continuing to inject SQZ

These periods are annotated in the range plot in Figure 1.

DARM spectra shown in Figure 2, for a) 20 W input, b) 30 W input, ¢) 20 W input with 1.5-1.6 dB squeezing, d) 25 W input with 1.5-1.6 dB squeezing.
More analysis on squeezing parameters and setup coming tomorrow.



Squeezed light in 2nd generation GW detectors

« Squeezer from AEI installed on Virgo site

 (Commissioning on-going
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Broadband guantum noise reduction?

e Frequency independent squeezing can only improve high (or low)
frequency noise

e |f we inject phase squeezed noise we reduce shot noise but increase
radiation pressure noise

e The effect has not been observed yet since radiation pressure noise is
not yet limiting the sensitivity

| DARM with squeezing and power increase
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* |t should be visible at the design sensitivity in 2nd generation detectors



Broadband gquantum noise reduction

e Squeezing ellipse undergoes a rotation inside the interferometer
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Optimal rotation frequency
between 40 and 70 Hz

* Reflect frequency independent
squeezing off a detuned Fabry-

Perot cavity

* Rotation frequency depends on
cavity detuning and finesse
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Noise Power [dBm)]

What has been done in the past?
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Audio-band frequency-dependent squeezing

Eric Oelker, Tomoki Isogai, John Miller, Maggie Tse, Lisa Barsotti, Nergis Mavalvala, and Matthew Evang

Massachusetts Institute of Technology, Cambridge, MA 02139, USA
(Dated: August 20, 2015)
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300 m filter cavity at TAMA (NAQOJ)

GOAL.: full scale filter cavity prototype to demonstrate frequency
dependent squeezing with rotation at 70 Hz

@
g e (Cavity length: 300m
E e Finesse: 4500
o & e Storage time: 3 ms
BN @ * 9dB freq. independent squeezing

source

TN /l\ /,\ [
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Many loss source can degrade the squeezing

PHYSICAL REVIEW D 90, 062006 (2014)
Decoherence and degradation of squeezed states in quantum filter cavities

P. Kwee, J. Miller,” T. Isogai, L. Barsotti, and M. Evans FI |ter CaVIty |OSS€S

8 Loss
<> Phase noise

e Injection/readout losses

Mode overlap Ulo
o « Mode mismatch

 Frequency-dependent

Interferometer p h ase no | Se
Vi Usqz | ! :
Filte
.->..E--..) ------ *'.-<--.>--.-%’---E:;\':;lr\-’-.--ﬂ
% .\

‘Mnj

Quantum fluctuation entering with losses should be taken into account
— | 2 h 2 h 2
N(§) = [bg - Ty - v1|* + [by - Ty - 05| + |by - T3 - 03]
¢ $ ¢

vacuum fluctuation vacuum fluctuation
due to losses due to losses after
before the ITF the ITF 35
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Squeezing degradation

QN relative to coherent vacuum [dB]

I I I I I 1 I I I
(o) 00) ~ (o)) 03] A~ w N —

T T ]

—I|deal system

Filter cavity losses (RTL 80 ppm) |
—Injection/Readout losses
—Mode mismatch (worst case)
—All mechanisms

1 l L L L ' ' 1 L l

10" 102

Frequency [Hz]
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Squeezing degradation from filter cavity losses

—Ideal system

— 0.01 ppm/m
2 0.10 ppm/m |

— 0.50 ppm/m
-3 — 1.00 ppm/m |

QN relative to coherent vacuum [dB]
&

10" 102 10°
Frequency [Hz]

 Losses are more influent at low frequency where the squeezing
experiences the rotation

* The cavity performance depends on the loss per unit length
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The origin of filter cavity losses

* Light scattered from mirror defects
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-~ . Rampe92
102F >

B0 vedse ~ The loss per unit length
g iER ~ are observed to decrease
M., With cavity length

Confocal cavity lenght [m]

Improve the mirrors quality

Increasing cavity length
(which are the limits?)



Squeezing degradation from filter cavity losses

® Simulation to measure losses
associated to different mirror quality

PHYSICAL REVIEW D 93, 082004 (2016)

Estimation of losses in a 300 m filter cavity and quantum noise reduction
in the KAGRA gravitational-wave detector

1,2, N A .3 . 3y .3
Eleonora Capocasa, Matteo Barsuglia, Jérome Degallaix,” Laurent Pinard,” Nicolas Straniero,”
4 . 5 Coy e 2 . .2 . . .2
Roman Schnabel,” Kentaro Somiya,” Yoichi Aso,” Daisuke Tatsumi,” and Raffaele Flaminio
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Filter cavity operation and characterization

e Main laser locked on the cavity length

e (Cavity characterization performed: losses compliant with the
requirement of 80 ppm

120

100

! f
80 }
60..1..]....[..[..*.;...;.5.i...i...l...m

40+

Losses(ppm)

20

01 5 3 24 5 6 7 8 9 1011 12 13 14 15 16

PHYSICAL REVIEW D 98, 022010 (2018)

Measurement of optical losses in a high-finesse 300 m filter cavity for
broadband quantum noise reduction in gravitational-wave detectors

Eleonora Capocasa,l‘z‘* Yuefan Guo,3 Marc Eisenmann,4 Yuhang Zhao,l‘5 Akihiro Tomura,6 Koji Ar:ai,7
Yoichi Aso,] Manuel Marchi(‘),1 Laurent Pinard,8 Pierre Prat,2 Kentaro Somiya,9 Roman Schnabel,lo
Matteo Tacca,'’ Ryutaro Takahashi,' Daisuke Tatsumi,' Matteo Leonardi,'
Matteo Barsuglia,” and Raffaele Flaminio™'




Squeezing optical bench

Geen mode cleaner
and Mach-Zhender

for power stabilization [:1

locked

OPO installed an Homodyne
locked detector
installed

IR mode
cleaner
assembled
and locked

Phase locked
loop (PLL) for

1 Second harmonic Auxiliary

' generator (SHG) lasers
assembled and installed and
operated locked
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Squeezing optical bench

First squeezing measurement expected soon!
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—xpected improvement on KAGRA sensitivity
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Horizon without squeezing  BNS =289 Mpc BBH = 2.26 Gpc
Horizon with squeezing BNS =374 Mpc BBH =2.89 Gpc
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Filter cavity In 2nd generation detectors

e 300 m filter cavity are planned for Advanced Virgo and Advanced
Ligo upgrade

e [urther increasing the length seems not so convenient

|— LFC=30 m
— LFC=1OO m
LFC=300 m
—LFC=1OOO m

_"No squeezing quantum noise
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Eisenmann et al. VIR-0312A-18
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Filter cavity In 2nd generation detectors

e 300 m filter cavity are planned for Advanced Virgo and Advanced
Ligo updated

e [urther increasing the length seems not so convenient
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Eisenmann et al. VIR-0312A-18
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Frequency dependent squeezing via EPR entanglement

® The main idea: inject a pair of EPR-
entangled beams from the ITF dark

port

® |f one of the beams is detuned from
the carrier, it will see the |TF as a
detuned cavity -> thus it will
experience frequency dependent
squeezing

® Measuring a fixed quadrature of the
detuned beam will allow to
conditionally squeeze the other beam
In a frequency dependent way
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EPR entangled beam generation

® PR entangled beams realized by
detuning the pumping frequency
of the Optical Parametric
Oscillator (OPQO)

® |f the pump frequency is shifted of
A, correlations will be created
between upper and lower
symmetric sidebands around half
of the pumping frequency
W,/2 = Wo+ A/2

(.u‘,,/? = Wwo + A/Q
U:}U /\ » _l+_ :
Q. Q Q:Q
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X frequency .
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Pros and cons with respect to filter cavity
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No need of a filter cavity
Reduced cavity losses

X Larger effect of input/output losses
(they count twice, as there are two

beams)

x Complexity of the conditional
measurement



Conclusions

® Quantum noise is limiting the 2nd generation detector in a large
fraction of the spectrum

® Frequency independent squeezing (FIS) is a mature technology
able to mitigate quantum noise in the high frequency region

® FIS are now integrated in both AdLIGO and AdVirgo and are
currently under commissioning

® Frequency dependent squeezing (FDS) would be able to bring a
broadband guantum noise reduction

® The most mature technique to produce FDS makes use of ~100
scale filter cavity. Full scale demonstration on-going

® Another more sophisticated technigue, the so-called EPR
technigue has been proposed and it’s currently being tested

® FDS will be a key technology for 3rd generation detectors
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