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KAGRA gravitational wave detector
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Kamioka mine



The KAGRA collaboration
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• Host institution: ICRR    Co-Host: NAOJ and KEK 

• More than 90 institutions from Japan and abroad (~280 collaborators)



KAGRA timeline
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Founded 
by MEXT 
(~165 M$)

Tunnel 
excavation

iKagra run 
(simple 

Michelson)

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

bKagra run 
(simple Michelson 
+ cryogenic mirror)

Join O3

arXiv:1901.03569 



KAGRA optical scheme
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Status of KAGRA
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• Injection system installed and commissioned 
• All the suspensions have been installed in they vacuum 

chamber 
• All the mirrors are suspended (including the cryogenic ones) 
• X arm has been stably locked (more than 1 day of continuous 

lock)

..next steps..

• Lock of the Y arm 
• Lock of the full dual recycling interferometer  
• Intense commissioning activity to join the network before the 

end of O3  



Expected sensitivity
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Expected sensitivity
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KAGRA VIRGO

• Seismic noise (and Newtonian noise) limit the low frequency sensitivity 



Why to reduce seismic disturbance?
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• Reduce Newtonian Noise 
• Reduced low-frequency motion of mirrors 
• Lower gain of control loops → lower control noise in-band 

• Reduce technical noise coupled to seismic (i.e scattered light) 
• Stability



Seismic noise
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 A persistent vibration of the ground generated by natural 

and human activities 

• Low frequency: (f < 1 Hz): oceanic and sea origin. Depends 
on large-scale meteorological conditions 

• Mid frequency: (f ~ 1 Hz): local meteorological condition  

• High frequency: (f > 1 Hz): human activities  



Seismic noise amplitude
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• Amplitude spectral density (above few Hz) approximated by

• It can vary depending on the human and natural activity 
• Similar amplitude in the three directions

x̃ = A × [ 1Hz
f 2 ] [m/ Hz]

A ≃ 10−6 − 10−9

Mitaka (Tokyo) 
 K.Arai 



Seismic noise characterization
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• Peterson measurement from a worldwide seismometer network 
composed of 75 stations (in surface and underground) 

Peterson (1993), Observation and modeling of seismic background noise. 
U.S. Geological Survey Technical Report 93-322, pages 1–95.



Seismic noise characterization
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• Measurement between 10-5 and 50 Hz

Peterson (1993), Observation and modeling of seismic background noise. 
U.S. Geological Survey Technical Report 93-322, pages 1–95.

new high noise model (NHNM)

new low noise model (NLNM)



Microseism

 14

• PRIMARY (∼ 0.06 − 0.1 Hz): generated only in shallow 
waters next to the coast 

• SECONDARY (∼0.2 Hz): generated by pairs of ocean wave 
trains of opposing propagation directions with half the 
seismic frequency  -> more harmful



Microseism in KAGRA
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Histogram of displacement at 0.2 Hz (Sept. 2009 ~ Feb. 2011) 


T.Sekiguchi 



Earth tide
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• Effect of the gravitational interaction with the Moon and 
Sun 

• Strain  of ~ 100 um for the kilometric interferometer   

• Test mass move coherently and the effect can be predicted 
and compensated → not a limitation for the sensitivity

ftide = 2.3 × 10−5 Hz



1500 m strain meter in Kamioka mine
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• Asymmetric Michelson interferometer to measure strain at 
low frequency



1500 m strain meter: operation
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• Mirrors are fixed to the ground with granite blocks 

• High frequency stabilized laser 

• A quarter-wave plate produces 
a 90° phase shift between S 
and P polarizations. 


• The intensities of the 
interference beams separated 
by the polarizing beam splitter 
complementarily change as 
sine and cosine (bottom right)


•  By normalizing the observed 
elliptic Lissajous curve (top 
right) into a circular one, mirror 
motion can be determined 
from the phase angle

Quadrature interferometer

Earth, Planets and Space 2017 69:77



1500 m strain meter: results
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• The observed tidal waveform shows good agreement with 
the theoretical waveform  

•  Strain spectra show lower background noise than those 
obtained from other strain meters at 2–20 mHz

Earth, Planets and Space 2017 69:77



Seismic waves
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L. Naticchioni - Low Frequency Noise Suppression for the 
Development of
Gravitational Astronomy.  PhD Thesis.

Speed : 0.5 - 8 km/s

Speed : 0.25 - 4 km/s

Speed : < S-waves

Speed < S-wave

Body waves Surface waves

• Lower frequency and larger amplitude 
• Exponential decay with depth



Depth dependence
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• Seismic wave either by natural or anthropic sources, are 
attenuated exponentially in an underground environment

Factor ~100 between 
VIRGO and KAGRA site

d = depth 

λ = seismic wavelength

A. Shoda JGW-G1706740



Seismic noise at different detector sites
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Rana X. Adhikari Rev. Mod. Phys. 86, 121 (2014)



Seismic noise at different sites
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• Large variation according to the atmospherical condition 

T. Sekiguchi. A Study of Low Frequency Vibration Isolation System for Large Scale Gravitational Wave Detectors. Phd thesis



Seismic noise: time series
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Ultrastable performance of an underground-based laser interferometer observatory for gravitational waves
LISM Collaboration
Phys. Rev. D 69, 102005 – Published 28 May 2004. 



Vibration isolation 
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• Seismic motion at ~10 Hz:  ~ 10-11 m/√Hz 
• Required mirror motion at ~10 Hz:   ~ 10-19 m/√Hz

A high performance vibration isolation system is still required (at least 8 
order of magnitudes) 



Vibration isolation system
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• Pendulum transfer function

slow motion rapid motion

The suspended mass 
follows the suspension 

point

The suspended mass 
doesn’t follows the 
suspension point



Vibration isolation system
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• Usual system based on a chain of pendulums to isolate the test 
mass from the vibration of their suspension point

Transfer function: motion of mirror/motion of support



Vibration isolation system
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Geometrical 
antispring (GAS) 

filter

Preisolation stage 
with inverted 

pendulum

• KAGRA vibration isolations (as Virgo and TAMA) uses a chain of 
pendulums and vertical (GAS) spring to attenuate seismic vibration in all 
the degrees of freedom



Vibration isolation system 
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Type-B Type-Bp Type-CType-A

• Different optics have different requirements for vibration isolation 



Vibration isolation system performances
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T. Sekiguchi. A Study of Low Frequency 
Vibration Isolation System for Large Scale 
Gravitational Wave Detectors. Phd thesis



Vibration isolation system 
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• Comparison of the performances of different detector suspension

Rana X. Adhikari Rev. Mod. Phys. 86, 121 (2014)



Newtonian noise 
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Due to fluctuations of the terrestrial gravity field

• Mainly produced by density perturbation in the atmosphere or  
from seismic field  

• It couples directly to the mirrors, bypassing any isolation system 
• It is expected to limit low frequency sensitivity 

ET design study



Newtonian noise: depth dependance 
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• Seismic NN effect it is proportional to the ground motion, 
so it reduces with depth

P Saulson
Phys. Rev. D 30, 732 

arXiv:1712.00148 

https://arxiv.org/abs/1712.00148


Newtonian noise: depth dependance 
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• Other sources of NN noise (human activity, atmospheric) 
are also reduced underground 

3rd generation (ET)



Newtonian noise: cancellation 

• Seismic sensors surrounding the detector to obtain the correlation 
between seismic signal and detector data  

• Use the information to subtract the noise

• Tested but not yet used for science data



Underground challenges 
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• Tunnel excavation 

• Underground environmental issues 

• Daily work and safety 



Kamioka Mine 
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• Very old and well known mine 

• It host neutrinos and dark matter 
experiment facilities (SK, XMASS)



Kamioka mine 
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• It already hosted two GW detector prototypers of 20 m and 100 m 
respectively

CLIO (100m cryogenic 
prototype)



Tunnel excavation 
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• Delayed due to the 2011 
earthquake 

• Started in May 2012 
• Completed in 22 months 



Tunnel excavation: cost and issues 
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S. Miyoki  “Experience with underground facilities for KAGRA site” GWADW 2018 

• Disposal of heavy metals in the rocks 
• Neutralization of alkalized spring water caused by concrete

• Total cost of the tunnel: 24 MUSD (original) + 3.5 MUSD 
(additional cost)



Excavation performances: a new record 
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S. Miyoki  “Experience with underground facilities for KAGRA site” GWADW 2018 



Tunnel depth and rock condition
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S. Miyoki  “Experience with underground facilities for KAGRA site” GWADW 2018 



Spring water in the tunnel 
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S. Miyoki  “Experience with underground facilities for KAGRA site” GWADW 2018 

• Underestimated problem 

• Many levels of isolation 
required for the walls 

• 1/300 slope for the tunnel floor 

• Ditch and pumps and water 
pipe installed to drain the 
water



Spring water in the tunnel 

 44S. Miyoki  “Experience with underground facilities for KAGRA site” GWADW 2018 

• Amount of water depends on the amount of winter snow 

• Y arm especially affected because 
of known fault 

• Associated Newtonian noise 
estimated to be negligible 

[T
on
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r]

Y-arm drained water

Flood in Y arm



Spring water in the tunnel 
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 Many “small” issues..
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• Provide GPS signal 

• Provide power supply and purified water for 
cryocooler 

• CO2 free vehicle to reach end stations 

• Temperature and humidity control  

• Air (O2 CO2, CO) control and sensors  

• Rn gas control 

• Clean environment  

• Safety 



Conclusions 
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• Underground operation can reduce significantly seismic noise 
(about a factor ~100) 

• Lower seismic noise relaxes the requirement on vibration 
isolation possibly reducing technical noise in the observation 
bandwidth 

• Newtonian noise is also reduced  

• Many “underground” issues had to be tackled → valuable 
experience for 3rd generation GW detectors 


