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Reducing the seismic disturbances:
an underground detector

Eleonora Capocasa

S
iUnivEarthS ® ... ersid APC January 2018




KAGRA gravitational wave detector

Kamioka mine

XMASS., Kamland Sakonishi ‘

~
| _Super
EGADS (#| & = Kamiokande

4
CLIO \
]
2

KAGRA |
E

Atotsu
Entrance




The KAGRA collaboration

e Host institution: ICRR  Co-Host: NAOJ and KEK

¢ More than 90 institutions from Japan and abroad (~280 collaborators)
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KAGRA timeline

Founded Tunnel iKa_gra run _ bKagr? run Join O3
by MEXT excavation §S|mple (simple M_|che_lson
(~165 M$) Michelson) + cryogenic mirror)
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KAG

RA optical scheme
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Status of KAGRA

Injection system installed and commissioned

All the suspensions have been installed in they vacuum
chamber

All the mirrors are suspended (including the cryogenic ones)
X arm has been stably locked (more than 1 day of continuous

lock)
..next steps..

L ock of the Y arm

_ock of the full dual recycling interferometer

ntense commissioning activity to join the network before the
end of O3



-Xpected sensitivity
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e Seismic noise (and Newtonian noise) limit the low frequency sensitivity



Why to reduce seismic disturbance?

Reduce Newtonian Noise

Reduced low-frequency motion of mirrors

_ower gain of control loops — lower control noise in-band

Reduce technical noise coupled to seismic (i.e scattered light)
Stability



Seismic noise

A persistent vibration of the ground generated by natural

and human activities

e | ow frequency: (f < 1 Hz): oceanic and sea origin. Depends

on large-scale meteorological conditions
e Mid frequency: (f ~ 1 Hz): local meteorological condition

e High frequency: (f > 1 Hz): human activities
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Seismic noise amplitude

e Amplitude spectral density (above few Hz) approximated by

/
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e [t can vary depending on the human and natural activity

e Similar amplitude in the three directions



Seismic noise characterization

e Peterson measurement from a worldwide seismometer network
composed of 75 stations (in surface and underground)

Peterson (1993), Observation and modeling of seismic background noise.
U.S. Geological Survey Technical Report 93-322, pages 1-95.
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Seismic noise characterization

e Measurement between 105 and 50 Hz

new high noise model (

PSD [m?/s*/Hz]
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Peterson (1993), Observation and modeling of seismic background noise.

U.S. Geological Survey Technical Report 93-322, pages 1-95.
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Microseism

PSD [m?/s*/Hz)
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e PRIMARY (~ 0.06 — 0.1 Hz): generated only in shallow
waters next to the coast

e SECONDARY (~0.2 Hz): generated by pairs of ocean wave
trains of opposing propagation directions with half the
seismic frequency -> more harmful y



Microseism in KAG

RA

Histogram of displacement at 0.2 Hz (Sept. 2009 ~ Feb. 2011)
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e [ffect of the gravitational interaction with the Moon and
Sun

e Strain of ~ 100 um for the kilometric interferometer

e Jest mass move coherently and the effect can be predicted
and compensated — not a limitation for the sensitivity
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1500 m strain meter In Kamioka mine
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e Asymmetric Michelson interferometer to measure strain at
low frequency
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1500 m strain meter: operation

e Mirrors are fixed to the ground with granite blocks

e High frequency stabilized laser

End

reflector@A
N~ 1500 m

0.5m
<
Front =N v
reflector |_| Beam splitter
Quarter
wave plate >» Sin
Polarizing
beam splitter
Laser > Cos

7

Earth, Planets and Space 2017 69:77

.............................

Displacement

Quadrature interferometer

* A quarter-wave plate produces

a 90° phase shift between S
and P polarizations.

The intensities of the
interference beams separated
by the polarizing beam splitter
complementarily change as
sine and cosine (bottom right)

By normalizing the observed
elliptic Lissajous curve (top
right) into a circular one, mirror
motion can be determined
from the phase angle



1500 m strain meter: results

[1x1079
4 Earth, Planets and Space 2017 69:77
f Kamioka 1500 m
3F' Calculated x 0.87  (Observed)
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e [he observed tidal waveform shows good agreement with
the theoretical waveform
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e Strain spectra show lower background noise than those
obtained from other strain meters at 2-20 mHz
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Seismic waves

Body waves

P-waves Speed : 0.5 - 8 km/s
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S-waves Speed : 0.25 - 4 km/s
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L. Naticchioni - Low Frequency Noise Suppression for the
Development of

Gravitational Astronomy. PhD Thesis.

Surface waves

Love waves Speed : < S-waves
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® [ ower frequency and larger amplitude
® Exponential decay with depth
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Displacement [m/sqrt(Hz)]

Depth dependence

e Seismic wave either by natural or anthropic sources, are
attenuated exponentially in an underground environment
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Seismic noise at different detector sites
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Rana X. Adhikari Rev. Mod. Phys. 86, 121 (2014)
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Seismic noise at different sites

e | arge variation according to the atmospherical condition
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Seismic noise: time series
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Vibration isolation

e Seismic motion at ~10 Hz: ~ 101" m/\/Hz
e Required mirror motion at ~10 Hz: ~ 1019 m/\/Hz

v

A high performance vibration isolation system is still required (at least 8
order of magnitudes)
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Vibration isolation system

e Pendulum transfer function

slow motion

+—>

The suspended mass
follows the suspension
point

rapid motion

+—>

The suspended mass
doesn’t follows the
suspension point
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Vibration isolation system

e Usual system based on a chain of pendulums to isolate the test
mass from the vibration of their suspension point
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Vibration isolation system

o KAGRA vibration isolations (as Virgo and TAMA) uses a chain of
pendulums and vertical (GAS) spring to attenuate seismic vibration in all
the degrees of freedom

top filter

N

i

inverted pendulum ——

<4— Preisolation stage
with inverted
pendulum

—p standard ﬁlter<

bottom ﬂlter\
outer shield @O K) Ea

platform _

marionette __ |

Geometrical

antispring (GAS)
filter duct shield (80 K)

W W . -

inner shield (8 K)

wide angle baffle”]
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Vibration isolation system

¢ Different optics have different requirements for vibration isolation

Ty‘pe-A Type-C _
2 s
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- | CasRM
©
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Vibration isolation system performances
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T. Sekiguchi. A Study of Low Frequency
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Gravitational Wave Detectors. Phd thesis
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Vibration isolation system

e Comparison of the performances of different detector suspension

2
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Newtonian noise

Due to fluctuations of the terrestrial gravity field

¢ Mainly produced by density perturbation in the atmosphere or
from seismic field
¢ |t couples directly to the mirrors, bypassing any isolation system

e |t is expected to limit low frequency sensitivity

AdV Noise Curve: P|n =1250 W
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Newtonian noise: depth dependance

e Seismic NN effect it is proportional to the ground motion,

so it reduces with depth

G px
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https://arxiv.org/abs/1712.00148

Newtonian noise: depth dependance

e (Other sources of NN noise (human activity, atmospheric)
are also reduced underground

----- On Earth surface without inside building contribution
----- On Earth surface with inside building contribution
o, \ 100m underground with inside cavity contribution
*,. |\ |===100m underground without inside cavity contribution
“.. |= =Sensitivity 3rd generation (ET)
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Impact of infrasound atmospheric noise on gravity detectors used
for astrophysical and geophysical applications

Donatella Fiorucci, Jan Harms, Matteo Barsuglia, Irene Fiori, and Federico Paoletti
Phys. Rev. D 97, 062003 - Published 30 March 2018



Newtonian noise: cancellation

Y-coord [m]

e Seismic sensors surrounding the detector to obtain the correlation
between seismic signal and detector data

e Use the information to subtract the noise
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e Jested but not yet used for science data

PHYSICAL REVIEW LETTERS 121, 221104 (2018)

Implications of Dedicated Seismometer Measurements on Newtonian-Noise
Cancellation for Advanced LIGO

M. W. Coughlin.l J. Harms,™ J. Driggcrs.4 D.J. McManus,” N. Mukund.® M. P. Ross,”
B.J.J. Slugmolcn.5 and K. Venkateswara’

® (Received 18 July 2018; revised manuscript received 20 August 2018; published 28 November 2018)



Underground challenges

e [unnel excavation
e Underground environmental issues

e Dally work and safety
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e \ery old and well known mine

It host neutrinos and dark matter
experiment facilities (SK, XMASS)
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Kamioka mine

It already hosted two GW detector prototypers of 20 m and 100 m
respectively

CLIO (100m cryogenic
prototype) .
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Tunnel excavation

e Delayed due to the 2011
earthquake

e Started in May 2012

e Completed in 22 months
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Tunnel excavation: cost and issues

e TJotal cost of the tunnel: 24 MUSD (original) + 3.5 MUSD
(additional cost)

Highway Rail Way Subway

(Sasago) (Tsugaru) (in Tokyo)

Size 4m x 4m ~10m x ~8m ? ~6m X ~6m

(~7,770m) (~4,700m) (~53,850m)
Cost 3,600 47,900 115,000 283,000
(USD/m) ~167,000
Only tunnel Including Including Including
(NATM) Infrastructure  Infrastructure Infrastructure

Under Sea (Shield Machine)

e Disposal of heavy metals in the rocks

e Neutralization of alkalized spring water caused by concrete

S. Miyoki “Experience with underground facilities for KAGRA site” GWADW 2018
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—Xxcavation performances: a new record
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S. Miyoki “Experience with underground facilities for KAGRA site” GWADW 2018
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Tunnel depth and rock condition
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S. Miyoki “Experience with underground facilities for KAGRA site” GWADW 2018




Spring water in the tunnel

Sprayed
Rock /——-i

~5cm Bubbling

Urethane
Anti-water
Vinyl sheets Plastic Painting

Vacuum Ducts

Underestimated problem

Many levels of isolation
required for the walls

1/300 slope for the tunnel floor

Ditch and pumps and water
pipe installed to drain the
water

S. Miyoki “Experience with underground facilities for KAGRA site” GWADW 2018
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Spring water in the tunnel

e Amount of water depends on the amount of winter snow

1000
., Huge snow in Heavy snow in Strong A lot of snow in
2014-15(887¢m) 2016-17 ( ) Typhoon 2017-18 ( )
800 N Attacked\ \
700 KAGRA

Extremely less snow
in 2015-16 (245¢cm)

500 \

[Ton/Hour]

-
i A B R N N N N N S

QAFIIV OO VOVNADOO

CTOrOr 000 OCr 80000800
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Winter 15~16

e Y arm especially affected because

of known fault

e Associated Newtonian noise

estimated to be negligible

S. Miyoki “Experience with underground facilities for KAGRA site” GWADW 2018
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Y-arm drained water
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Winter 16-17
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Spring water in the tunnel
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FIG. 15. Seismic noise measured at two locations near the
Y-end chamber; one is close to the drain pipe and the other
far away from the drain pipe.

pEP Prog. Theor. Exp. Phys. 2018, 013F01 (23 pages)
DOI: 10.1093/ptep/ptx 180

Construction of KAGRA: an underground
gravitational-wave observatory
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Many “small” issues..

Provide GPS signal

Provide power supply and purified water for
cryocooler

CO:z2 free vehicle to reach end stations
Temperature and humidity control

Air (O2 CO2, CO) control and sensors
Rn gas control

Clean environment

Safety
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Conclusions

Underground operation can reduce significantly seismic noise
(about a factor ~100)

Lower seismic noise relaxes the requirement on vibration
Isolation possibly reducing technical noise in the observation
bandwidth

Newtonian noise Is also reduced

Many “underground” issues had to be tackled — valuable
experience for 3rd generation GW detectors
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