

A Staged Muon Accelerator Facility for future Neutrino and Collider Physics in the multi-TeV energy range

J.P. Delahaye / CERN

"The greater danger for most of us lies not in setting our aim too high and falling short; but in setting our aim too low, and achieving our mark"

-- Michelangelo

Particle physics studies the fundamental nature of energy, matter, space, and time, and applies that knowledge to understand the birth, evolution and fate of the universe

BIG BANG

Particle Accelerators recreating conditions at the early stages of the universe

Collisions in Particle Accelerators with energy density comparable to early Universe and generating particles:

- Present exploration from 10⁻¹⁵ s after Big Bang
- Performing the archeology of particles from this early date to today
- Observing the rules governing their evolution
- More powerful collisions required to simulate conditions closer to Big Bang

Accelerators acting as "super-microscpe" at the dimensions of sub-particles

Complementarity between experiments:

- infinity small scale (particle physics)
- infinity large scale (cosmology)

 10^{6}

1010

1014

1018

1022

10²⁶

Telescope

Telescope

Radio

Earth radius

Earth to Sun

Galaxies

Radius of

observable Universe

A powerful & successful "standard model"

Model consistent with up to now observations and with extremely high precision

Strong predictive power: Higgs boson interaction by which fundamental particles get mass

J.P.Delahaye

Many questions still to be answered

J.P.Delahaye

Hadron & Lepton Colliders complementary for High Energy Physics

Hadron colliders as discovery facilities

- at the energy frontier
- huge QCD background
- not all nucleon energy available in collision
- Lepton colliders for precision physics
 - well defined initial energy for reaction
 - Colliding "point" like particles

- Consensus for Lepton Collider as next facility @ High Energy Frontier after LHC
 - energy determined by LHC discoveries
 - Study in detail the properties of new physics identified by LHC (when and if confirmed?):

presently HIGGS, possibly BSM in the future J.P.Delahaye CPPM seminar (Jan 21, 2019)

J.P.Delahaye

Linear Collider layouts

http://www.linearcollider.org/cms http://clic-study.web.cern.ch/CLIC-Study/

ILC and CLIC layouts in CERN area

Future Circular Collider (FCC) study 100TeV Hadron Collider in new 100km tunnel

			Z	Z	w	н	tt
		Circumference [km]			100		
	11116	Bending radius [km]			11		
		Beam energy [GeV1	45	.6	80	120	175
		Roam Surrent Part	14	50	152	30	6.6
		bunches / beam	30180	91500	5260	780	81
	0	Bunch spacing [ns]	7.5	2.5	50	400	4000
Jura S S	5	Bunch population [10 ¹¹]	1.0	0.33	0.6	0.8	1.7
	>	Horizontal emittance ϵ [nm] Vertical emittance ϵ [pm]	0.2 1	0.09 1	0.26 1	0.61 1.2	1.3 2.5
		Momentum comp. [10 ⁻⁵]	0.7	0.7	0.7	0.7	0.7
	Prealing	Betatron function at IP - Horizontal β* [m] - Vertical β* [mm]	0.5	1	1	1	1
and the second s	Freatps	Horizontal beam size at IP σ^* [µm] Vertical beam size at IP σ^* [nm]	10 32	9.5 45	16 45	25 49	36 70
		Crossing angle at IP [mrad]			30		
Some h		Energy spread [%] - Synchrotron radiation - Total (including BS)	0.04 0.22	0.04 0.09	0.07 0.10	0.10 0.12	0.14 0.17
Schematic of an		Bunch length [mm] - Synchrotron radiation - Total	1.2 6.7	1.6 3.8	2.0 3.1	2.0 2.4	2.1 2.5
🚺 🧧 80 - 100 km		Energy loss / turn [GeV]	0.0)3	0.33	1.67	7.55
long tunnel		SR power / beam [MW]			50		
iong tunner		Total RF voltage [GV]	0.4	0.2	0.8	3	10
	1	RF frequency [MHz]			400		
		Longitudinal damping time [turns]	13	20	243	72	23
		Energy acceptance RF [%]	7.2	4.7	5.5	7.0	6.7
		Synchrotron tune Q _s	0.036	0.025	0.037	0.056	0.075
		Polarization time τ_p [min]	112	200	672	89	13
		Interaction region length L _i [mm]	0.66	0.62	1.02	1.35	1.74
A 🕹 🕹 🕹 🕹 🖌 A	ravis	Hourglass factor H (L _i)	0.92	0.98	0.95	0.92	0.88
		Luminosity/IP for 2IPs [10 ³⁴ cm ⁻² s ⁻¹]	207	90	19.1	5.1	1.3
		Beam-beam parameter - Horizontal - Vertical	0.025 0.16	0.05 0.13	0.07 0.16	0.08 0.14	0.08 0.12
Mandalaz		Luminosity lifetime [min]	94	185	90	67	57
Cop	byright CERN 2014	Beamstrahlung critical	No/Yes	No	No	No	Yes

First phase: e⁺/e⁻ collider with colliding beam energy of up to 350 GeV

Novel technologies for high gradient acceleration

- High gradient acceleration requires high peak power and structures that can sustain high fields
 - Beams and lasers can be generated with high peak power
 - Dielectrics and plasmas can withstand high fields
- Many paths towards high gradient acceleration
 - RF source driven metallic structures
 - Beam-driven metallic structures
 - Laser-driven dielectric structures
 - Beam-driven dielectric structures
 - Laser-driven plasmas
 - Beam-driven plasmas

~10 GV/m

100 MV/m

1 GV/m

NewAcceleration Techniques Page 10

Plasma Acceleration (Beam-driven or Laser-driven)

state-of-the-art PW-laser for laser plasma accelerator science in BELLA /LBNL – demonstrator for 10 GeV module

Test @ FACET /SLAC

Primary Goal:

Demonstrate a single-stage high-energy plasma accelerator for electrons.

- Meter scale
- High gradient
- Preserved emittance
- Low energy spread
- High efficiency

Achieved (two bunches)

- 2 GeV Acceleration ³/₂²⁰
- 6 GV/m acceler. field
- 2% mom. spread

Timeline:

- Commissioning (2012)
- Drive & witness e⁻ bunch (2012-2013)
- Optimization of e⁻ acceleration (2013-2015)
- First high-gradient e⁺ PWFA (2014-2016)

Muons, an attractive alternative with high potential and critical challenges

Muons are leptons like electrons & positrons but with a mass 207 times larger

- Negligible synchrotron radiation emission (α m⁻²)
 - Multi-pass collisions (1000 turns) in ring
 - High luminosity with reasonable beam power and power consumption
 - relaxed beam emittances & sizes, alignment & stability
 - Multi-detectors supporting broad physics communities
 - Large time (15 μ s) between bunch crossings ...
- No beam-strahlung at collision:
 - narrow luminosity spectrum
 - Multi-pass acceleration:
 - Cost effective construction & operation
 - Compact acceleration system and collider

- No cooling by synchrotron Radiation in standard Damping rings
 - Requires development of novel cooling method

The beauty of Muons

- Strong coupling to Higgs mechanism by s channel
 - Cross section enhanced by $(m_{\mu}/m_{e})^{2}$ =40000 with sharp peak at 126GeV resonance
 - Higgs factory allowing energy scan with high energy resolution for direct mass and width measurements at half colliding beam energy and 10³ less luminosity than with e+/e-
- 8
- Requires colliding beam with extremely small momentum spread (4 10⁻⁵) and high stability

As with an e⁺e⁻ collider, a $\mu^+\mu^-$ collider offers a precision probe of fundamental interactions

without limitations in energy:

- By synchrotron radiation as in circular colliders
 - By beamstrahlung as in linear colliders

Muon Colliders extending high energy frontier with excellent performance in the Multi-TeV range

Lepton Collider Technoloy for largest Luminosity

- Low energy range (0-350GeV): Circular colliders
- Medium energy range (350-2000GeV): Linear Colliders
 - High energy range (Multi-TeV): Muon Colliders

Provided their feasibility is demonstrated!

J.P.Delahaye

10

cm⁻²

Muons: Issues & Challenges

- Limited lifetime: 2.2 μs at rest
 - Race against death: fast generation, acceleration & collision before decay
 - Muons decay in accelerator and detector
 - Physics feasibility with large background?
 - Shielding of detector and facility irradiation
 - Decays in neutrinos:
 - Ideal source of well defined electron and muons neutrinos in equal quantities :

The neutrino factory concept

- Generated as tertiary particles in large emittances
 - powerful MW(s) driver
 - novel cooling method (6D 10⁶ emittance reduction)

Development of novel technologies with key accelerator and detector challenges

Muon Accelerator Program (MAP @ FNAL/USA) addressing feasibility of muon based accelerators

focused on developing a facility that can address critical questions spanning two frontiers...

<u>The Intensity Frontier:</u> with a *Neutrino Factory* producing well-characterized v beams for precise, high sensitivity studies

<u>The Energy Frontier:</u> with a *Muon Collider* capable of reaching multi-TeV CoM energies and a *Higgs Factory* with unique property

The unique potential of a facility based on muon accelerators is physics reach that <u>SPANS 2 FRONTIERS</u>

Muon Accelerator Concept Muon production from Proton driven Pions decay

Technical challenges Muon production as tertiary particle

J.P.Delahaye

Multi-MW class liquid HG target

The MERIT Experiment at the CERN PS

 Demonstrated a 20m/s liquid Hg jet injected into a 15 T solenoid and hit with a 115 KJ/pulse beam!

➡ Jets could operate with beam powers up to 8 MW with a repetition rate of 70 Hz

MAP staging aimed at initial 1 MW target

Hg jet in a 15 T solenoid with measured disruption length ~ 28 cm

Technology Challenges – Capture Solenoid

- A Neutrino Factory and/or <u>Muon</u> Collider Facility requires challenging magnet design in several areas:
 - Target Capture Solenoid (15-20T with large aperture)

E_{stored} ~ 3 GJ

O(10MW) resistive coil in high radiation environment

Possible application for High Temperature Superconducting magnet technology

Technical challenges Fast and cost efficient acceleration

Technology Challenges - Acceleration

Muons require an ultrafast accelerator chain

⇒ Beyond the capability of most machines

- Solutions include:
- Superconducting Linacs
 Recirculating Linear Accelerators (RLAs)
- Fixed-Field Alternating-Gradient (FFAG)
 Machines
- Rapid Cycling Synchrotrons (RCS)

RCS requires 2 T p-p magnets at f = 400 Hz (U Miss & FNAL)

JEMMRLA Proposal: JLAB Electron Model of Muon RLA with Multi-pass Arcs

Cost efficient low frequency Super-Conducting RF Cavities

RLA II

255 m 2 GeV/pas

Nb coated Cu cavities (D.Hartill / Cornell)

- Two 500 MHz cavities spun from <u>explosion</u> <u>bonded Nb</u>-Cu sheets
- Research partnership with Epner Technologies to study Cu on Nb electroforming

Technology & Design Challenges Ring, Magnets, Detector

- Emittances are relatively large, but muons circulate for ~1000 turns before decaying
 - Lattice studies for 126 GeV, 1.5 & 3 TeV CoM
- High field dipoles and quadrupoles must operate in high-rate muon decay backgrounds
 - Magnet designs under study

• Detector shielding & performance

- Initial studies for 126 GeV, 1.5 TeV, and 3 TeV using MARS background simulations
- Major focus on optimizing shielding configuration

Fast Pulsed Normal Conducting Dipole for hybrid (NC/MC magnets) Rapid Cycling Synchrotrons (RCS)

1.8 T, 400Hz Dipole – D. Summers, U Miss. A 1.8 T dipole magnet using thin grain oriented silicon steel laminations has been constructed as a prototype for a <u>muon</u> synchrotron ramping at 400Hz

The dipole has run at 1.8 Tesla both at both 425 Hz and 1410 Hz as well as DC as shown in the graph below

Reached 1.8T - further design & prototype work in progress

J.P.Delahaye

Technical challenges Collider Rings

[β.

VBx

Detailed optics studies for Higgs, 1.5 TeV, 3 TeV and now 6 TeV CoM

• With supporting magnet designs and background studies

 $\sqrt{\beta_{m}(m)}$

 $D_{i}(m)$

\$0

20

s(m)

J.P.Delahave

CCS

Optics functions from IP to the end of the first arc cell (6 such cells / arc) for $\beta^{\star=5}$ mm

Machine Detector Interface Background mitigation

gamma

Much of background soft and out of time

Timing window with ns resolution is key to reduce background by three orders of magnitude

Requires a detector with fast, pixelated tracker and calorimeter

J.P.Delahaye

Technical Challenge Detector with Background Mitigation

MARSDBkg@s ⇒ ILCRoot Det Model ¢PPM seminar (Jan 21, 2019)

Cooling Methods

The challenge of muon cooling is due to the short muon lifetime (2 µs at rest)

- Cooling must take place very quickly
- More quickly than any of the cooling methods presently in use
- Utilize energy loss in materials with RF re-acceleration

Muons cool via dE/dx in low-Z medium

Ionization cooling RF Cavities SC magnets dE dEd

Vacuum Cooling Channel (VCC)

Major challenges

Accelerating field limitation by magnetic field (10 T)

Helical Cooling Channel (HCC)

High pressure (160atm) Gas (GH₂) filled RF cavities

J.P.Delahaye

Muon Ionization Cooling Experiment MICE @ RAL (International Collaboration)

Goals:

- Demonstrate in steps the method with beam and its feasibility
- Validate cooling simulation tools
- System integration

emittance measurements with 1% precision and 1‰ resolution (muon by muon)

J.P.Delahaye

MICE completed (2015) Data taking with beam (2016-17) Analysis and simulation (2017-18)

MICE experimental results First ionization cooling demonstation Validation of beam dynamics & simulation tools

FIGURE 10. (a) Behavior of e₂ subemittance (emittance of central 9% of beam) in MICE, compared to simulation, for nominal posorber: shaded band shows systematic uncertainty; (b) cumulative amplitude ratios measured in MICE f

J.P.Delahaye

An attractive novel alternative Low Emittance Muon Accelerator (LEMMA)

Muon production by e+/e- annihilation at 45 GeV threshold no cooling required

10¹¹ ∞ pairs/sec from e⁺e⁻ interactions. The small production emittance allows lower overall charge in the collider rings – hence, lower backgrounds in a collider detector and a higher potential CoM energy due to neutrino radiation.

Major challenge: Large positron flux (10¹⁸ e⁺/s) required

J.P.Delahaye

Series of STAGED facilities

- physics interest at each stage
- Technology with increasing complexity progressively developed and validated

Possibly MULTIPURPOSE

maximizing supported physics community and funding!

Affordable steps (<1 G\$) from one facility to next

Stage built-on previous stage with additional facilities

Taking advantage of existing facilities

synergy between present and future program

J.P.Delahaye

Unique opportunity of Muon based accelerators to enable facilities at both High Intensity and High Energy Frontiers in a staged approach

Staged pathway of a series of facilities with physics interest at each stage

Intensity Frontier

Staged Neutrino Factory and Muon Colliders Increasing complexitymendrshallenges

Neutrino Factory at intensity frontier Muon Collider at the energy frontier NuMAX Top Threshold Options | Multi-TeV Baselines nuSTORM NuMAX Unit NuMAX+ **Higgs Factory** System **Parameters** Commissioning v_e or v_u to Perfor-mance 3×10¹⁷ 4.9×10¹⁹ 1.8×10²⁰ 5.0×10²⁰ detectors/year Hiah High Production Startup 1.25×10²⁰ 4.65×10²⁰ 1.3×10²¹ Stored u+ or u-/vear 8×10¹⁷ Parameter Units Operation Operation Resolution Luminosity MIND / MIND / MIND / **SuperBIND** Far Detector: Type Mag LAr Mag LAr Mag LAr TeV 0.126 0.126 0.35 0.35 1.5 CoM Energy 3.0 **Distance from Ring** 1.9 1300 1300 1300 km 10³⁴ cm⁻² s⁻¹ 0.07 0.6 1.25 0.0017 0.008 4.4 Avg. Luminosity kΤ 1.3 100 / 30 100 / 30 100 / 30 Mass Detector **Magnetic Field** Т 2 0.5-2 0.5-2 0.5-2 0.004 0.01 Beam Energy Spread % 0.003 0.1 0.1 0.1 **SuperBIND** Suite Suite Near Detector: Type Suite Higgs* or Top⁺ Production/10⁷sec 3 500* 13 500* 7 000⁺ 60 000⁺ 37 500* 200 000* **Distance from Ring** 50 100 100 100 m 0.3 2.5 Circumference km 0.3 0.7 0.7 4.5 kΤ 0.1 2.7 Mass 1 1 **Magnetic Field** Т Yes Yes Yes No. of IPs Yes Ring Momentum GeV/c 3.8 5 5 5 30 15 15 15 15 Hz Repetition Rate Neutrino Ring Circumference (C) 480 737 737 737 m 1.5 3.3 1.7 0.5 1 (0.5-2) 0.5 (0.3-3) ß* 184 281 281 281 cm Straight section m Number of bunches 60 60 60 1012 No. muons/bunch 1×10⁹ 6.9 26 35 Charge per bunch No. bunches/beam Initial Momentum 0.25 GeV/c 0.25 0.25 Accelerati -GeV/c 1.0.3.75 1.0.3.75 1.0.3.75 0.05 0.025 0.025 0.4 0.2 0.2 -Norm. Trans. Emittance, ε_{τν} L O π mm-rad Single-pass Linacs MHz 325,650 325,650 325,650 -1.5 1.5 70 10 70 Norm. Long. Emittance, E., π mm-rad Repetition Hz 30 30 60 _ Cooling No No Initial Initial 0.9 0.5 Bunch Length, o. 5.6 6.3 0.5 cm **Proton Beam Power** MW 0.2 2.75 1 1 Proton Driver Proton Driver Power MW GeV 120 6.75 6.75 6.75 Proton Beam 1×10²¹ 0.1 9.2 9.2 25.4 Protons/year 6D no final Full 6D Cooling 0.75 15 15 Repetition Hz 15

J.P.Delahaye

NUON Accelerat

CPPM seminar (Jan 21, 2019)

Accounts for

Site Radiation

Mitigation

6.0

12

0.1

0.25

0.025

70

0.2

1.6

820 000*

1500 ft

BNF

SURF

NuMAX:

D.Neuffer

A Muon Collider in the CERN LHC tunnel Unique and attractive opportunity in Europe **V.Shiltsey** for a realistic precision & exploratory facility

Taking advantage of CERN LHC tunnel and injectors infrastructure

for substantial cost savings

14 TeV muon collider in the (existing) 27kms LHC tunnel

Parameter	"PS"	"MAP"	"LEMC"		
Luminosity cm ⁻² s ⁻¹	1.2·10 ³³	3.5·10 ³⁵	2.4·10 ³²		
Beam ōE/E	0.1%	0.1%	0.2%		
Rep rate, Hz	5	5	2200		
N _µ /bunch	1.2·10 ¹¹	2·10 ¹²	4.5×10 ⁷		
n _b	1	1	1*		
$\epsilon_{t,N}$ mm-mrad	25	25	0.04		
β [*] , mm	1	1	0.2		
σ*(IR), μm	0.6	0.6	0.011		
Bunch length, m	0.001	0.001	0.0002		
μ production source	24 GeV p	8 GeV p	45 GeV e⁺		
p or e/pulse	8·10 ¹²	2·10 ¹⁴	3·10 ¹³		
Driver beam power	0.15MW	1.3MW	40 MW		
Acceleration,	1-3.5, 3.5- 7 RCS	1-3.5, 3.5- 7 RCS	75 GV, RLA 100 turn		
v rad. (unmitigated)	0.02	0.30	0.003 mSv/y r		

14 TeV c.m. at constituants level equivalent energy reach FCC-hh : 100 TeV pp collider

100 TeV FCChh 350GeV FCCee in 100km tunnel-(to be built)

27km LHC tunnel (existing) 14 IeV (c.m.)

Courtesy V. Shiltsev,

27 km, 20 T 33 TeV (c.m.)

Figure 1: The energy at which the proton collider cross-section equals that of a muon collider. The dashed line assumes comparable Feynman amplitudes for the muon and the proton production processes. A factor of ten enhancement of the proton production amplitude squared, possibly due to QCD production, is considered in the continuous line.

PPAP communit

CPBMvs2011/ar (Jan 21, 2019)

Limitation of HEP facilities by practicalities Wall-plug power consumption

Wall-plug power consumption function of energy and luminosity

- In linear collider:
- P \product L*E + offset (Injectors+ conventional facilities)

Fair comparison through a Figure of merit (FoM):

FoM = Luminosity / Wall Plug consumption (L per MW)

Conclusion (1)

Most appropriate Lepton Collider Technoloy depends on Colliding Energy

- Low energy range (0-350GeV): Circular Colliders
- Medium energy range (350-2000GeV): Linear Colliders
- High energy range (Multi-TeV): Muon Colliders

Muon based technology provides unique opportunity to enable facilities at both the high intensity and the high energy frontiers

- High precision neutrino physics and lepton colliders in multi-TeV range
- Great progress of R&D addressing key issues & feasibility of novel, challenging tech.
- Mature proton driven MAP & novel positron driven LEMMA scenarios

Muon colliders greatest potential to extend energy frontier in the multi-TeV colliding beam energy range

- High energy for exploratory physics & High luminosity for precision physics
- Ideal tool for physics beyond standard model
- With reasonable dimensions, cost & power consumption

Conclusion (2)

A multi-TeV Muon Collider especially attractive in the existing CERN/LHC tunnel

- Taking advantage of available infrastructures & injectors for substantial cost savings
- Potential of equivalent energy reach as a FCCpp in a (to be built) 100km tunnel
- Building-up on impressive R&D and progress during last 30 years
- Exploratory study to be confirmed by feasibility study

Proposal to European Particle Physics Strategy Upgrade by dedicated Muon Collider Working Group

- Set-up International Collaboration to promote Muon Colliders
- Define road map for a CDR by next European Strategy Upgrade (5 years)
- Develop Muon Collider concepts based on proton driven and positron driven scenarios
- Carry-out R&D towards Muon Collider (Accelerator & Detector)

All welcome to join & participate

Muon Collider Working Group web site (under construction) https://muoncollider.web.cern.ch/

Proposal of Muon Collider study to European Particle Physics Strategy Upgrade, <u>http://arxiv.org/abs/1901.06150</u>

Recent RAST review about the various muon based scenarios
M. Boscolo, J. P. Delahaye and M. Palmer, "The future prospects of muon colliders and neutrino factories,"
Rev. of Acc. Sci. and Tech. vol 9 (2018) 1-25. or arXiv:1808.01858

Supporting slides

nuSTORM A.Bross neutrinos from STOred Muons

 Neutrino Beam
 Muon Decay Ring
 Target

 3.8 GeV/c stored μ
 200

vSTORM

Far Detector Far Detector With more than 2 cross section mean ANNEE THINKE

An entry-level NF?

DOES NOT Require Development of ANY New Technology

ν **STORM**

200kW

Low energy, low luminosity muon storage ring. Provides with $1.7 \times 10^{18} \mu^+$ stored, the following oscillated event numbers

 $\begin{array}{ll} \nu_e \rightarrow \nu_\mu \ \mathrm{CC} & 330 \\ \bar{\nu}_\mu \rightarrow \bar{\nu}_\mu \ \mathrm{NC} & 47000 \\ \nu_e \rightarrow \nu_e \ \mathrm{NC} & 74000 \\ \bar{\nu}_\mu \rightarrow \bar{\nu}_\mu \ \mathrm{CC} & 122000 \\ \nu_e \rightarrow \nu_e \ \mathrm{CC} & 217000 \end{array}$

and each of these channels has a more than $10\,\sigma$ difference from no oscillations

With more than 200 000 ν_e CC events a %-level ν_e cross section measurement should be possible

ENCLOSURE ENCLOSURE INDICATES 50' MAIN Momentum of u after degrade 24'x7.5 MAGNET INJECTOR CLEARANG EMG Fit -LogNormal Fit DETECTO MUON DECAY RING F TARGET STATION BEAM ABORT J.P.Delaha CPPM sen mar (Jan 21, 2019) 400 600 800 Total Momentum (MeV/c)

10¹⁰ μ / 1μs pulse Ideal R&D platform to get experience, test & validate muon technology

J.P.Delahaye

Linear Colliders (CLIC and ILC) at 500 GeVc.m.PowerCost

