

Solid targets containing high amount of ⁴He for Nuclear Physics Experiments

F.J. Ferrer, B. Fernández, V. Godinho, J.P. Fernández-García, A. Fernández, D. Galaviz, J. Gómez-Camacho

INDEX

- > Team
- 🕨 Goal
- Helium targets problems
- Sample preparation
- Morphological characterization
- Elemental characterization
- Stability
- > Example 1: 4 He(1 H, 1 H) 4 He Elastic scattering (Backscattering, θ >90°)
- **Example 2:** ⁴He(⁶Li, ⁶Li) ⁴He Elastic scattering (Forward scattering, θ<90°)
- Perspectives: Next future
- Some bibliography

TEAM

- Material synthesis (Magnetron sputtering)
- > Morphological characterization (SEM, TEM)
- Elemental Characterization (EELS)

<u>TEAM</u>

Centro Nacional de Aceleradores

- Dr. F. Javier Ferrer
- Dr. Begoña Fernández
- Dr. J.P. Fernández-García
- Prof. Joaquín Gómez
- Elemental characterization
- > Nuclear Physics Experiments

> Nuclear Physics Experiments

<u>GOAL</u>

Using nuclear reactions for investigating properties of nuclei far from the stability line ("exotic" nuclei).

unstable exotic nucleus

Protons		Alphas		
(¹ H, ¹ H)	Elastic scattering		(⁴ He, ⁴ He)	
(¹ H, ³ H)	Two neutron transfer		(⁴ He, ⁶ He)	
(¹H, ⁵H)	Fo neutron	ur transfer	(⁴ He, ⁸ He)	

He filled chamber problems

 \triangleright

He solid targets soutions

Implantation Alternative

Problems:

- Expensive use of implanter
- > Hardly achieved "homogeneous" profile
- ➤ "Low" amount of ⁴He
- "High" (same order of ⁴He) contamination (C, O)

Sample preparation Magnetron Sputtering

Adjustable parameters:

- RF/DC Power
- Substrate bias
- Gas type and Pressure
- Target material

Magnetron sputtering:

- Wide extended technique in <u>industry</u>
- Very versatile allowing to deposit on <u>large areas</u>
- Deposition on <u>different kinds of substrates</u>
- Controlling deposition parameters is possible to <u>control the microstructure</u> and composition

Morphological Characterization SEM and TEM

SEM TEN cross-setional view cross

TEM cross-setional view

Control of porosity and ⁴He amount inside the coating

Homogeneously distributed pores structure

Control of parameters:

- RF/DC Power
- Substrate bias
- Gas type and Pressure
- Target material

Elemental Characterization Elastic Backscattering Spectroscopy

Elemental Characterization EELS (electron energy loss spectroscopy)

Si plasmon

out of the pore

pore border

pore center

35

40

Zero Loss Peak (ZLP)

He-K edge

20

Energy loss (eV)

25

30

15

10

5

Intensity (arb. units)

0

He localization and quantification at the nanoscale in porous Si

STEM-HAADF (Z-contrast) Intensity proportional to Z² **Pores are darker than the matrix**

Spectrum image dataset: Pixel size: 1nm Each pixel contains one EELS spectrum

EELS acquired in the Low Loss region

In the pore region: additional peak around 22 eV → He-K edge

Helium localized inside the pores

R. Schierholz et al, Nanotechnology 26 (2015) 075703

Example 1: ⁴He(¹H,¹H) ⁴He Elastic scattering Backscattering ($\theta > 90^\circ$)

Example 1: ⁴He(¹H,¹H) ⁴He Elastic scattering Backscattering (θ > 90°)

Example 1: ⁴He(¹H,¹H) ⁴He Elastic scattering Backscattering ($\theta > 90^{\circ}$)

Solid targets containing high amount of ⁴He for Nuclear Physics Experiments 📃 📑 🔼 <u>nmai</u>u

Example 2: ⁴He(⁶Li, ⁶Li) ⁴He Elastic scattering Forward scattering (θ < 90°). Self-supported.

Self-supported porous a-Si:⁴He target

	Present work	Vanderbist et al. (2002)	Raabe et al. (2003)	Ujic et al. (2011)	
Technique	Magnetron sputtering	Ion implantation	Ion implantation	lon implantation	
Metal	(Si)	(AI)	(AI)	(AI)	
(×10 ¹⁵ at/cm ²)	9250	1100	4200	1200	
⁴ He (×10 ¹⁵ at/cm ²)	4060	275	270	130	
O (×10 ¹⁵ at/cm ²)	700	60	100	Not mentioned	
⁴He/M	0.44	0.25	0.06	0.11	
O/He	0.17	0.22	0.37	Not mentioned	

High amount of ⁴He!!! ⁴He/Si = 0,44

	Present work	Vanderbist et al. Raabe et al. (2002) (2003)		Ujic et al. (2011)	
Technique	Magnetron sputtering	Ion implantation	Ion implantation	on Ion implantation	
Target	(Si)	(AI)	(AI)	(AI)	
(µm)	2.3	0.2	0.7	0.2	
Metal (µg/cm²)	430	50	200	50	
⁴ He (µg/cm ²)	27	1.8	1.8	0.9	
Ο (μg/cm²)	19	1.6	2.7	Not mentioned	

High amount of ⁴He!!! ⁴He/Si = 0,44

Solid targets containing high amount of ⁴He for Nuclear Physics Experiments 📃 📑 🔼 📶

Example 2: ⁴He(⁶Li, ⁶Li) ⁴He Elastic scattering Forward scattering (θ < 90°). Self-supported.

Si: 9250 x10¹⁵ at/cm² = 430 μ g/cm²

	uma	E0	Ef	FWHM	FWHM/Ef	ΔΕ/Ε0	MeV/uma
6Li 6 MeV	6	6,00	5,32	0,04	0,008	0,11	1,0
12C 15 MeV	12	15,00	13,18	0,09	0,006	0,12	1,3
28Si 21 MeV	28	21,00	15,03	0,20	0,013	0,28	0,8
64Ni 196 MeV	64	196,00	182,79	0,41	0,002	0,07	3,1
150Gd 900 MeV	150	900,00	866,91	0,89	0,001	0,04	6,0

Conclusions

- > MS to produce Si:He targets He trapped in closed porosity
 - □ with high He/Si low O/Si content
- > He homogeneously distributed throughout the film thickness
- Control of the MS parameters => control of the He content and morphology
- Reproducibility of the targets
- Targets deposited over a variety of substrates
- Self-supported targets

Conclusions

- Stability against fluence, temperature and aging.
- Validity for calculation of the differential cross-section for the elastic scattering of proton-helium in the energy range from 0.6 to 3.0 MeV at laboratory angles from 110 to 165°
- > Proofs in forward geometry using ⁶Li beam and self-supported coatings

 \succ He solid targets for experiments with radioactive beams at

LARGE FACILITIES

nuclear reactions at low energy (close to the Coulomb barrier)

Perspectives: Next future

Targets: solid He targets CNA Stable Beams: ⁴He, ⁶Li, ⁷Li, ⁸Be, ¹⁰B y ¹²C Forward geometry ΔE-E telescope with Si detectors Verify the experimental setup Detection system CNA Electronic and data acquisition system Optimization of targets: higher He/Si and lower O/Si ratio nuclear reactions LARGE Targets: solid He targets **FACILITIES** Exotic Beams: ⁶He, ⁸He, ¹¹Li, ⁷Be, ¹¹Be, ¹⁰C y¹¹C

Some bibliography

Papers

- "Characterization and validation of a-Si magnetron sputtered thin films as solid He target with high stability for nuclear reactions", V Godinho, F. Ferrer, B. Fernández, J. Caballero-Hernandez, J. Gómez-Camacho, A. Fernández, ACS Omega, 1 (2016) 1229–1238
- R. Schierholz, B. Lacroix, V. Godinho, J. Caballero-Hernández, M.Duchamp, A. Fernández, Nanotechnology 26 (2015) 075703 (10pp)
- Ferrer, F. J.; Alcaire, M.; Caballero-Hernandez, J.; Garcia-Garcia, F. J.; Gil-Rostra, J.; Terriza, A.; Godinho, V.; Garcia-Lopez, J.; Barranco, A.; Fernandez-Camacho, A., Simultaneous quantification of light elements in thin films deposited on Si substrates using proton EBS (Elastic Backscattering Spectroscopy). *Nucl. Instrum. Methods Phys. Res., Sect. B 332 (2014)* 449–453
- Godinho, V.; Caballero-Hernández, J.; Jamon, D.; Rojas, T. C.; Schierholz, R.; García-López, J.; Ferrer, F. J.; Fernández, A., A new bottom-up methodology to produce silicon layers with a closed porosity nanostructure and reduced refractive index. Nanotechnology 2013, 24 (27), 275604.

Patents

- V. Godinho, A. Fernandez, *Procedimiento de obtención de recubrimientos mediante pulverización catódica y recubrimiento obtenible mediante dicho procedimiento.* **ES2347123 (A1) 2010-10-25.**
- V. Godinho, J. Caballero, A. Fernandez, F.J. Ferrer, J. Gomez-Camacho, B. Fernández-Martínez, Blanco sólido de gases nobles para reacciones nucleares. ES2582052 (A1) — 2018-01-04

Solid He targets for Nuclear Physics Experiments

Thank you for your attention

